Skip to main content

References

  • Chapter
The Sun from Space

Part of the book series: Astronomy and Astrophysics Library ((AAL))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

A

  • Abdurashitov, J. N., et al. (2002): Measurement of the solar neutrino capture rate by the Russian-American gallium solar neutrino experiment during one half of the 22 year cycle of solar activity. Journal of Experimental and Theoretical Physics 95, 181–193.

    Article  ADS  Google Scholar 

  • Abramenko, V. I. (2005a): Multifractal analysis of solar magnetograms. Solar Physics 228, 29–42.

    Article  ADS  Google Scholar 

  • Abramenko, V. I. (2005b): Relationship between magnetic power spectrum and flare productivity in solar active regions. Astrophysical Journal 629, 1141–1149.

    Article  ADS  Google Scholar 

  • Abramenko, V. I., Longscope, D. W. (2005): Distribution of the magnetic flux in elements of the magnetic field in active regions. The Astrophysical Journal 619, 1160–1166.

    Article  ADS  Google Scholar 

  • Abramenko, V. I., Pevtsov, A. A., Romano, P. (2006): Coronal heating and photospheric turbulence parameters: observational aspects. The Astrophysical Journal (Letters) 646, L81.

    Article  ADS  Google Scholar 

  • Acton, L. W., et al. (1982): Chromospheric evaporation in a well-observed compact flare. Astrophysical Journal 263, 409–422.

    Article  ADS  Google Scholar 

  • Acton, L. W., et al. (1992a): The Yohkoh mission for high-energy solar physics. Science 258,618–625.

    Article  ADS  Google Scholar 

  • Acton, L. W., et al. (1992b): The morphology of 20× 106 K plasma in large non-impulsive solar flares. Publications of the Astronomical Society of Japan 44, L71–L75.

    ADS  Google Scholar 

  • Acuña, M. H., et al. (1995): The global geospace science program and its investigations. Space Science Reviews 71, 5–21.

    Article  ADS  Google Scholar 

  • Acuña, M. H., et al. (2008): The STEREO/IMPACT magnetic field experiment. Space Science Reviews 136, Issue 1–4, 203–226.

    Article  ADS  Google Scholar 

  • Adhémar, J. A. (1842): Révolutions de la Mer. Paris: Deluges Périodiques.

    Google Scholar 

  • Aelig, M. R., et al. (1997): Solar wind iron charge states observed with high time resolution with SOHO/CELIAS/CTOF. In: Proceedings of the fifth SOHO workshop. The corona and solar wind near minimum activity. ESA SP-101. Noordwijk: ESA Publications Division,pp. 157–161.

    Google Scholar 

  • Aharmin, B., et al. (2005): Electron energy spectra, fluxes, and day-night asymmetries of 8B solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury Neutrino Observatory. Physical Review C 72, 055502–055549.

    Article  ADS  Google Scholar 

  • Ahmad, Q. R., et al. (2001): Measurement of the rate of the electron neutrino plus deuterium interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory. Physical Review Letters 87, 071301–071307.

    Article  ADS  Google Scholar 

  • Ahmad, Q. R., et al. (2002a): Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. Physical Review Letters 89, 011301–011302.

    Article  ADS  Google Scholar 

  • Ahmad, Q. R., et al. (2002b): Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters. Physical Review Letters 89, 011303–011307.

    Article  ADS  Google Scholar 

  • Ahmed, S. N., et al. (2004): Measurement of the total active 8B solar neutrino flux at the Sudbury Neutrino Observatory with enhanced neutral current sensitivity. Physical Review Letters 92, 181301.

    Article  ADS  Google Scholar 

  • Aiouaz, T., Peter, H., Lemaire, P. (2005): The correlation between coronal Doppler shifts and the supergranular network. Astronomy and Astrophysics 435, 713–721.

    Article  ADS  Google Scholar 

  • Akasofu, S.-I. (1964): The development of the auroral substorm. Planetary and Space Science 12, 273–282.

    Article  ADS  Google Scholar 

  • Akasofu, S.-I. (1968): Polar and magnetospheric substorms. Dordrecht: Reidel.

    Google Scholar 

  • Akasofu, S.-I., Chapman, S. (1972): Solar-terrestrial physics. Oxford: Oxford University Press.

    Google Scholar 

  • Akasofu, S.-I. (1977): Physics of magnetospheric substorms. Dordrecht: Reidel.

    Google Scholar 

  • Akasofu, S.-I. (1981): Energy coupling between the solar wind and the magnetosphere. Space Science Reviews 28, 121–190.

    Article  ADS  Google Scholar 

  • Akasofu, S.-I. (1989): Substorms. EOS American Geophysical Union 70, 529–532.

    Article  ADS  Google Scholar 

  • Alazraki, G., Couterier, P. (1971): Solar wind acceleration caused by the gradient of Alfvén wave pressure. Astronomy and Astrophysics 13, 380–389.

    ADS  Google Scholar 

  • Alexander, D., Richardson, I. G., Zurbuchen, T. H. (2006): A brief history of CME science. Space Science Reviews 123, 3–11.

    Article  ADS  Google Scholar 

  • Alexander, P. (1992): History of solar coronal expansion studies. EOS Transactions of the American Geophysical Union 73(41), 433, 438.

    Article  ADS  Google Scholar 

  • Alfvén, H. (1942): The existence of electromagnetic-hydrodynamic waves. Nature 150, 405.

    Article  ADS  Google Scholar 

  • Alfvén, H. (1947): Granulation, magneto-hydrodynamic waves, and the heating of the solar corona. Monthly Notices of the Royal Astronomical Society 107, 211–219.

    ADS  Google Scholar 

  • Alfvén, H. (1950): Cosmical Electrodynamics. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Alfvén, H. (1975): Electric current structure of the magnetosphere. In: Physics of the Hot Plasma in the Magnetosphere (Eds. B. Hultqvist and L. Stenflo). New York: Plenum 1975, pp. 1–22.

    Google Scholar 

  • Alfvén, H. (1977): Electric currents in cosmic plasmas. Reviews of Geophysics and Space Physics 15, 271–284.

    Article  ADS  Google Scholar 

  • Alfvén, H., Carlqvist, P. (1967): Currents in the solar atmosphere and a theory of solar flares. Solar Physics 1, 220–228.

    Article  ADS  Google Scholar 

  • Alfvén, H., Herlofson, N. (1950): Cosmic radiation and radio stars. Physical Review 78, 616. Reproduced in: A source Book in Astronomy and Astrophysics 1900–1975 (Eds. K. R. Lang and O. Gingerich). Cambridge: Harvard University Press 1977.

    Article  ADS  Google Scholar 

  • Aliani, P., et al. (2004): Neutrino mass parameters from KamLAND, SNO, and other solar evidence. Physical Review D 69, 013005–013012.

    Article  ADS  Google Scholar 

  • Allen, C. W. (1947): Interpretation of electron densities from corona brightness. Monthly Notices of the Royal Astronomical Society 107, 426–432.

    ADS  Google Scholar 

  • Altschuler, M. D., Newkirk, G. (1969): Magnetic fields and the structure of the solar corona. I. Methods in calculating coronal fields. Solar Physics 9, 131–149.

    Article  ADS  Google Scholar 

  • Amari, T., et al. (2000): A twisted flux rope model for coronal mass ejections and two ribbon flares. Astrophysical Journal (Letters) 529, L49–L52.

    Article  ADS  Google Scholar 

  • Anderson, C. D. (1932a): Energies of cosmic-ray particles. Physical Review 41, 405–421.

    Article  ADS  Google Scholar 

  • Anderson, C. D. (1932b): The apparent existence of easily deflectable positives. Science 76, 238–239.

    Article  ADS  Google Scholar 

  • Anderson, C. D. (1933): The positive electron. Physical Review 43, 491–494. Reproduced in: Cosmic Rays (Ed. A. M. Hillas). New York: Pergamon Press 1972.

    Article  ADS  Google Scholar 

  • Anderson, C. D., Neddermeyer, S. H. (1936): Cloud chamber observations of cosmic rays at 4300 meters elevation and near sea-level. Physical Review 50, 263–271.

    Article  ADS  Google Scholar 

  • Anderson, K. A., Winckler, J. R. (1962): Solar flare X-ray burst on September 28, 1961. Journal of Geophysical Research 67, 4103–4117.

    Article  ADS  Google Scholar 

  • Anderson, L. S., Athay, R. G. (1989): Chromospheric and coronal heating. The Astrophysical Journal 336, 1089–1091.

    Article  ADS  Google Scholar 

  • Anderson, L. S., Athay, R. G. (1989): Model solar chromosphere with prescribed heating. The Astrophysical Journal 346, 1010–1018.

    Article  ADS  Google Scholar 

  • Anderson, P. C., et al. (1998): Energetic auroral electron distributions derived from global X-ray measurements and comparison with in-situ particle measurements. Geophysical Research Letters 25, 4105–4108.

    Article  ADS  Google Scholar 

  • Ando, H., Osaki, Y. (1975): Nonadiabatic nonradial oscillations – an application to the five-minute oscillation of the Sun. Publications of the Astronomical Society of Japan 27, 581–603.

    ADS  Google Scholar 

  • Andreev, V. E., et al. (1997): Characteristics of coronal Alfvén waves deduced from Helios Faraday rotation measurements. Solar Physics 176, 387–402.

    Article  ADS  Google Scholar 

  • Antia, H. M. (1998): Estimate of solar radius from f-mode frequencies. Astronomy and Astrophysics 330, 336–340.

    ADS  Google Scholar 

  • Antia, H. M., Basu, S. (2000): Temporal variations of the rotation rate in the solar interior. The Astrophysical Journal 541, 442–448.

    Article  ADS  Google Scholar 

  • Antia, H. M., Basu, S. (2001): Temporal variations of the solar rotation rate at high latitudes. The Astrophysical Journal (Letters) 559, L67–L70.

    Article  ADS  Google Scholar 

  • Antia, H. M., Basu, S. (2005): The discrepancy between solar abundances and helioseismology. The Astrophysical Journal (Letters) 620, L129–L132.

    Article  ADS  Google Scholar 

  • Antia, H. M., Chitre, S. M. (1995): Helioseismic bounds on the central temperature of the Sun. The Astrophysical Journal 442, 434–445.

    Article  ADS  Google Scholar 

  • Antia, H. M., Chitre, S. M., Kale, D. M. (1978): Overstabilization of acoustic modes in a polytropic atmosphere. Solar Physics 56, 275–292.

    Article  ADS  Google Scholar 

  • Antia, H. M., et al. (2001): Solar-cycle variation of the sound speed asphericity from GONG and MDI data 1995–2000. Monthly Notices of the Royal Astronomical Society 327, 1029–1040.

    Article  ADS  Google Scholar 

  • Antiochos, S. K. (1996): A model for coronal mass ejections. Bulletin of the American Astronomical Society 28, 1346.

    ADS  Google Scholar 

  • Antiochos, S. K. (1998): The magnetic topology of solar eruptions. The Astrophysical Journal (Letters) 502, L181.

    Article  ADS  Google Scholar 

  • Antiochos, S. K., De Vore, C.R., Klimchuk, J.A. (1999): A model for coronal mass ejections. Astrophysical Journal 510, 485–493.

    Article  ADS  Google Scholar 

  • Antiochos, S. K., et al. (2003): Constraints on active region coronal heating. The Astrophysical Journal 590, 54.

    Article  Google Scholar 

  • Antiochos, S. K., Noci, G. (1986): The structure of the static corona and transition region. The Astrophysical Journal 301, 440–447.

    Article  ADS  Google Scholar 

  • Antonucci, E. (2006): Wind in the solar corona: dynamics and composition. Space Science Reviews 124, 35–50.

    Article  ADS  Google Scholar 

  • Antonucci, E., Abbo, L., Dodero, M. A. (2005): Slow wind and magnetic topology in the solar minimum corona in 1996–1997. Astronomy and Astrophysics 435, 699–711.

    Article  ADS  Google Scholar 

  • Antonucci, E., Abbo, L., Teloni, D. (2006): Oxygen abundance and energy deposition in the slow coronal wind. The Astrophysical Journal 643, 1239–1244.

    Article  ADS  Google Scholar 

  • Antonucci, E., Dennis, B. R. (1983): Observations of chromospheric evaporation during the Solar Maximum Mission. Solar Physics 86, 67–77.

    Article  ADS  Google Scholar 

  • Antonucci, E., Dodero, M. A., Giordano, S. (2000): Fast solar wind velocity in a polar coronal hole during solar minimum. Solar Physics 197, 115.

    Article  ADS  Google Scholar 

  • Antonucci, E., et al. (1982): Impulsive phase of flares in soft X-ray emission. Solar Physics 78, 107–123.

    Article  ADS  Google Scholar 

  • Antonucci, E., Gabriel, A. H., Dennis, B. R. (1984): The energetics of chromospheric evaporation in solar flares. The Astrophysical Journal 287, 917–925.

    Article  ADS  Google Scholar 

  • Antonucci, E., Rosner, R. Tsinganos, K. (1986): On magnetic field stochasticity and nonthermal line broadening in solar flares. The Astrophysical Journal 301, 975–980.

    Article  ADS  Google Scholar 

  • Anzer, U., Pneuman, G. W. (1982): Magnetic reconnection and coronal transients. Solar Physics 79, 129–147.

    Article  ADS  Google Scholar 

  • Appleton, E. V. (1932): Wireless studies of the ionosphere. Proceedings of the Institute of Electrical Engineers 71, 642–650.

    Google Scholar 

  • Appleton, E. V., Barnett, M. A. F. (1925a): Local reflection of wireless waves from the upper atmosphere. Nature 115, 333–334.

    Article  ADS  Google Scholar 

  • Appleton, E. V., Barnett, M. A. F. (1925b): On some direct evidence for downward atmospheric reflection of electric rays. Proceedings of the Royal Society of London A 109, 621–641.

    Google Scholar 

  • Appleton, E. V., Hey, J. S. (1946): Solar radio noise. Philosophical Magazine 37, 73–84.

    ADS  Google Scholar 

  • Araki, T., et al. (2005): Measurement of neutrino oscillation with KamLAND: Evidence of spectral distortion. Physical Review Letters 94, 081801.

    Article  ADS  Google Scholar 

  • Aran, A., et al. (2007): Modeling and forecasting solar energetic particle events at Mars: the event on 6 March 1989. Astronomy and Astrophysics 469, 1123–1134.

    Article  ADS  Google Scholar 

  • Armstrong, A. H., Harrison, F. B., Heckman, H. H., Rosen, L. (1961): Charged particles in the inner Van Allen radiation belt. Journal of Geophysical Research 66, 351.

    Article  ADS  Google Scholar 

  • Arndt, M. B., Habbal, S. R., Karovska, M. (1994): The discrete and localized nature of the variable emission from active regions. Solar Physics 150, 165–178.

    Article  ADS  Google Scholar 

  • Arnoldy, R. L. (1971): Signature in the interplanetary medium for substorms. Journal of Geophysical Research 76, 5189–5201.

    Article  ADS  Google Scholar 

  • Arnoldy, R. L., Kane, S. R., Winckler, J. R. (1967): A study of energetic solar flare X-rays. Solar Physics 2, 171–178.

    Article  ADS  Google Scholar 

  • Arnoldy, R. L., Kane, S. R., Winckler, J. R. (1968): Energetic solar flare X-rays observed by satellite and their correlation with solar radio and energetic particle emission. Astrophysical Journal 151, 711–736.

    Article  ADS  Google Scholar 

  • Arrhenius, S. (1896): On the influence of carbonic acid in the air upon the temperature of the ground. Philosophical Magazine and Journal of Science 41, 237–268.

    Google Scholar 

  • Aschwanden, M. J. (1999): Do EUV nanoflares account for coronal heating? Solar Physics 190, 233–247.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J. (2001a): Revisiting the determination of the coronal heating function from Yohkoh data. The Astrophysical Journal (Letters) 559, L171–L174.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J. (2001b): An evaluation of coronal heating models for active regions based on Yohkoh, SOHO and TRACE observations. The Astrophysical Journal 560, 1035–1044.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J. (2002): The differential emission measure distribution in the multiloop corona. The Astrophysical Journal (Letters) 580, L79–L83.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J. (2004, 2006): Physics of the Solar Corona: An Introduction. New York: Springer-Verlag 2004, Second Edition 2006.

    Google Scholar 

  • Aschwanden, M. J. (2006a): Particle acceleration in solar flares and escape into interplanetary space. In: Solar Eruptions and Energetic Particles: Geophysical Monograph Series 165. (Eds. N. Gopalswamy, R. Mewaldt and J. Torsti) Washington: American Geophysical Union, pp. 189–197.

    Google Scholar 

  • Aschwanden, M. J. (2006b): The localization of particle acceleration sites in solar flares and CMEs. Space Science Reviews 124, 361–372.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J. (2008a): An observational test that disproves coronal nanoflare heating models. The Astrophysical Journal (Letters) 672, L135–L138.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J. (2008b): Understanding the overpressure in cooling coronal loops. The Astrophysical Journal – submitted.

    Google Scholar 

  • Aschwanden, M. J., Acton, L. W. (2001): Temperature tomography of the soft x-ray corona: Measurements of electron densities, temperatures and differential emission measure distributions above the limb. The Astrophysical Journal 550, 475–492.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J., Alexander, D. (2001): Flare plasma cooling from 30 MK down to 1 MK modeled from Yohkoh, GOES, and TRACE observations of the Bastille Day event (14 July 2000). Solar Physics 204, 91–120.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J., Benz, A. O. (1997): Electron densities in solar flare loops, chromospheric evaporation upflows, and acceleration sites. Astrophysical Journal 480, 825–839.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J., Charbonneau, P. (2002): Effects of temperature bias on nanoflare statistics. The Astrophysical Journal (Letters) 566, L59–L62.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J., De Pontieu, B., Schrijver, C.J., Title, A.M. (2002): Transverse oscillations in coronal loops observed with TRACE – II Measurements of geometric and physical parameters. Solar Physics 206, 99–132.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J., et al. (1996a): Electron time-of-flight distances and flare loop geometries compared from CGRO and Yohkoh observations. Astrophysical Journal 468, 398–417.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J., et al. (1996b): Electron time-of-flight measurements during the Masuda flare, 1992 January 13. Astrophysical Journal 464, 985–998.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J., et al. (1998): The scaling law between electron time-of-flight distances and loop lengths in solar flares. Astrophysical Journal 470, 1198–1217.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J., et al. (1999a): Coronal loop oscillations observed with the Transition Region and Coronal Explorer. Astrophysical Journal 520, 880–894.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J., et al. (1999b): Quadrupolar magnetic reconnection in solar flares three-dimensional geometry inferred from Yohkoh observations. The Astrophysical Journal 526, 1026–1045.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J., et al. (1999c): Three-dimensional stereoscopic analysis of solar active region loops I. SOHO/EIT observations at temperatures of (1.0–1.5)× 106 K. The Astrophysical Journal 515, 842–867.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J., et al. (1999d): Time variability of the “quiet” sun observed with TRACE. II. Physical parameters, temperature evolution, and energetics of euv nanoflares. The Astrophysical Journal 535, 1047–1065.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J., et al. (2000): Three-dimensional stereoscopic analysis of solar active region loops II. SOHO/EIT observations of temperatures of 1.5–2.5 MK. The Astrophysical Journal 531, 1129–1149.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J., et al. (2006): Theoretical modeling for the STEREO mission. Space Science Reviews 123, 127.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J., Lyndsay, F., Schrijver, C.J., David, A. (1999): Coronal loop oscillations observed with the Transition Region And Coronal Explorer. The Astrophysical Journal 520, 880–894.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J., Nightingale, R. W. (2005): Elementary loop structures of the solar corona analyzed from TRACE triple-filter images. The Astrophysical Journal 633, 499–517.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J., Nightingale, R. W., Alexander, D. (2000): Evidence for nonuniform heating of coronal loops inferred from multithread modeling of TRACE data. The Astrophysical Journal 541, 1059–1077.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J., Nitta, N., Wuelser, J.-P., Lement, J. (2008): First 3D reconstructions of coronal loops with the STEREO A+B spacecraft II. Electron density and temperature measurements. The Astrophysical Journal 680, 1477–1495.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J., Poland, A., Rabin, D. M. (2001): The new solar corona. Annual Review of Astronomy and Astrophysics 39, 175–210.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J., Schrijver, C. J., David, A. (2001): Modeling of coronal EUV loops observed with TRACE I. Hydrostatic solutions with nonuniform heating. The Astrophysical Journal 550, 1036–1050.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J., Tsiklauri, D. (2008): The non-equilibrium scaling law of cooling coronal loops. The Astrophysical Journal – submitted.

    Google Scholar 

  • Aschwanden, M. J., Winebarger, A., Tsiklauri, D., Peter, H. (2007): The coronal heating paradox. The Astrophysical Journal 659, 1673–1681.

    Article  ADS  Google Scholar 

  • Ashie, Y., et al. (2004): Evidence for an oscillatory signature in atmospheric neutrino oscillations. Physical Review Letters 93, 101801.

    Article  ADS  Google Scholar 

  • Asplund, M., et al. (2004): Line formation in solar granulation IV. [O I], O I and OH lines and the photospheric O abundance. Astronomy and Astrophysics 417, 751–768.

    Article  ADS  Google Scholar 

  • Aston, F. W. (1920): The mass-spectra of chemical elements. Philosophical Magazine and Journal of Science 39, 611–625.

    Google Scholar 

  • Aström, E. (1950): On waves in an ionized gas. Arkiv Fur Fysik 2, 443.

    Google Scholar 

  • Athay, R. G., Moreton, G. E. (1961): Impulsive phenomena of the solar atmosphere I. Some optical events associated with flares showing explosive phase. The Astrophysical Journal 133, 935–945.

    Article  ADS  Google Scholar 

  • Athay, R. G., White, O. R. (1978): Chromospheric and coronal heating by sound waves. The Astrophysical Journal 226, 1135–1139.

    Article  ADS  Google Scholar 

  • Athay, R. G., White, O. R. (1979): Chromospheric oscillations observed with OSO 8 IV. Power and phase spectra for CIV. The Astrophysical Journal 229, 1147–1162.

    Article  ADS  Google Scholar 

  • Atkinson, R. d’E. (1931): Atomic synthesis and stellar energy I, II. The Astrophysical Journal 73, 250–295, 308–347. Reproduced in A Source Book in Astronomy and Astrophysics 1900–1975 (Eds. K. R. Lang and O. Gingerich). Cambridge, Massachusetts: Harvard University Press 1979, 303–308.

    Google Scholar 

  • Atkinson, R. d’E., Houtermans, F. G. (1929): Zur frage de aufbaumöglichkeit der elements in sternen. Zeitschrift für Physik 54, 656.

    Google Scholar 

  • Aulanier, G., et al. (2000): The topology and evolution of the Bastille Day flare. Astrophysical Journal 540(2), 1126–1142.

    Article  ADS  Google Scholar 

  • Aulanier, G., et al. (2007): Slipping magnetic reconnection in coronal loops. Science 318, 1588–1590.

    Article  ADS  Google Scholar 

  • Avignon, Y., Martres, M. J., Pick, M. (1966): Etude de la “composante lentement variable” en relation avec la structure des centres d’activité solaire associés. Annales d’Astrophysique 29, 33–42.

    ADS  Google Scholar 

  • Axford, W. I. (1960): The modulation of galactic cosmic rays in the interplanetary medium. Planetary and Space Science 13, 115–130.

    Article  ADS  MathSciNet  Google Scholar 

  • Axford, W. I. (1962): The interaction between the solar wind and the Earth’s magnetosphere. Journal of Geophysical Research 67, 3791–3796.

    Article  ADS  Google Scholar 

  • Axford, W. I. (1972): The interaction of the Solar wind with the interstellar medium. In: Solar Wind: Proceedings of the Second International Conference (Eds. C.P. Sonnett, P.j. Coleman, Jr. and J.M. Wilcox). NASA SP-308., p. 609.

    Google Scholar 

  • Axford, W. I. (1980): Very hot plasmas in the solar system. Highlights of Astronomy 5, 351–359.

    ADS  Google Scholar 

  • Axford, W. I. (1985): The solar wind. Solar Physics 100, 575–586.

    Article  ADS  Google Scholar 

  • Axford, W. I. (1994): The good old days. Journal of Geophysical Research 99, 19199–19212.

    Article  ADS  Google Scholar 

  • Axford, W. I., Dessler, A. J., Gottlieb, B. (1963): Termination of solar wind and solar magnetic field. The Astrophysical Journal 137, 1268–1278.

    Article  ADS  Google Scholar 

  • Axford, W. I., et al. (1999): Acceleration of the high speed solar wind in coronal holes. Space Science Reviews 97, 25–41.

    Article  ADS  Google Scholar 

  • Axford, W. I., Hines, C. O. (1961): A unifying theory of high-latitude geophysical phenomena and geomagnetic storms. Canadian Journal of Physics 39, 1433–1464.

    ADS  MathSciNet  Google Scholar 

  • Axford, W. I., Mc Kenzie, J. F. (1997): Solar wind. In: Cosmic Winds and the Heliosphere (Eds. J. R. Jokipii, C. P. Sonett and M. S. Giampapa). Tucson: University of Arizona Press 1997, pp. 31–66.

    Google Scholar 

  • Axford, W. I., McKenzie, J. (1992): The origin of high speed solar wind streams. In: Solar Wind Seven (Eds. E. Marsch and R. Schwenn). New York: Elsevier, p. 1.

    Google Scholar 

  • Ayres, T. R. (1997): Evolution of the solar ionizing flux. Journal of Geophysical Research 102, 1641–1652.

    Article  ADS  Google Scholar 

B

  • Baade, W., Zwicky, F. (1934): Cosmic rays from super-novae. Proceedings of the National Academy of Sciences (Washington) 20, 259.

    Google Scholar 

  • Babcock, H. W. (1947): Zeeman effect in stellar spectra. The Astrophysical Journal 105, 105–119.

    Article  ADS  Google Scholar 

  • Babcock, H. W. (1961): The topology of the sun’s magnetic field and the 22-year cycle. The Astrophysical Journal 133, 572–587.

    Article  ADS  Google Scholar 

  • Babcock, H. W., Babcock, H. D. (1955): The sun’s magnetic field, 1952-1954. The Astrophysical Journal 121, 349–366.

    Article  ADS  Google Scholar 

  • Bahall, J. N., Davis, R., Wolfenstein, L. (1988): Solar neutrinos: a field in transition. Nature 334, 487–493.

    Article  ADS  Google Scholar 

  • Bahcall, J. N. (1964): Solar neutrinos I. Theoretical. Physical Review Letters 12, 300–302. Reproduced in A Source Book in Astronomy and Astrophysics, 1900–1975 (Eds. K. R. Lang, O. Gingerich). Cambridge, Massachusetts: Harvard University Press 1979, 389–395.

    Article  ADS  Google Scholar 

  • Bahcall, J. N. (1978): Solar neutrino experiments. Review of Modern Physics 50, 881–903.

    Article  ADS  Google Scholar 

  • Bahcall, J. N. (1996): Solar neutrinos: where we are, where we are going. The Astrophysical Journal 467, 475–484.

    Article  ADS  Google Scholar 

  • Bahcall, J. N., Basu, S., Kumar, P. (1997): Localized helioseismic constraints on solar structure. The Astrophysical Journal (Letters) 485, L91–L94.

    Article  ADS  Google Scholar 

  • Bahcall, J. N., Basu, S., Pinsonneault, M., Serenelli, A. M. (2005): Helioseismological implications of recent solar abundance determinations. The Astrophysical Journal 618, 1049–1056.

    Article  ADS  Google Scholar 

  • Bahcall, J. N., Basu, S., Serenelli, A. M. (2005): What is the neon abundance of the Sun? The Astrophysical Journal 631, 1281–1285.

    Article  ADS  Google Scholar 

  • Bahcall, J. N., Bethe, H. A. (1990): A solution to the solar neutrino problem. Physical Review Letters 65, 2233–2235.

    Article  ADS  Google Scholar 

  • Bahcall, J. N., et al. (1995): Progress and prospects in neutrino astrophysics. Nature 375, 29–34.

    Article  ADS  Google Scholar 

  • Bahcall, J. N., et al. (1997): Are standard solar models reliable? Physical Review Letters 78, 171–174.

    Article  ADS  Google Scholar 

  • Bahcall, J. N., Gonzalez-Garcia, M. C., Pena-Garay, C. (2003): Does the Sun shine by pp or CNO fusion reactions? Physical Review Letters 90, 131301–131305.

    Article  ADS  Google Scholar 

  • Bahcall, J. N., Pinsonneault, M. H. (2004): What do we (not) know theoretically about solar neutrino fluxes? Physical Review Letters 92, 121301.

    Article  ADS  Google Scholar 

  • Bahcall, J. N., Pinsonneault, M. H., Basu, S. (2001): Solar models: current epoch and time dependences, neutrinos and helioseismological properties. The Astrophysical Journal 555, 990–1012.

    Article  ADS  Google Scholar 

  • Bahcall, J. N., Pinsonneault, M. H., Basu, S., Christensen-Dalsgaard, J. (1997): Are standard solar models reliable? Physical Review Letters 78, 171–174.

    Article  ADS  Google Scholar 

  • Bahcall, J. N., Serenelli, A. M. (2005): How do uncertainties in the surface chemical composition of the Sun affect the predicted solar neutrino fluxes? The Astrophysical Journal 626, 530–542.

    Article  ADS  Google Scholar 

  • Bahcall, J. N., Serenelli, A. M., Basu, S. (2005): New solar opacities, abundances, helioseismology, and neutrino fluxes. The Astrophysical Journal (Letters) 621, L85–L88.

    Article  ADS  Google Scholar 

  • Bahcall, J. N., Serenelli, A. M., Basu, S. (2006): 10,000 standard solar models: a Monte Carlo simulation. Astrophysical Journal Supplement Series 165, 400–431.

    Article  ADS  Google Scholar 

  • Bailey, D. K. (1957): Disturbances in the lower ionosphere observed at VHF following the solar flare of 23 February 1956 with particular reference to auroral zone absorption. Journal of Geophysical Research 62, 431–463.

    Article  ADS  Google Scholar 

  • Bailey, F. (1842): Some remarks on the total eclipse of the Sun, on July 8^ th 1842. Monthly Notices of the Royal Astronomical Society 5, 208–214.

    ADS  Google Scholar 

  • Baker, D. N. (2000): The occurrence of operational anomalies in spacecraft and their relationship to space weather. IEEE Transactions of Plasma Science 28, 2007–2016.

    Article  ADS  Google Scholar 

  • Baker, D. N., Carovillano, R. (1997): IASTP and solar-terrestrial physics. Advances in Space Research 20, 531–538.

    Article  ADS  Google Scholar 

  • Baker, D. N., et al. (1987): Deep dielectric charging effects due to high energy electrons in Earth’s outer magnetosphere. Journal of Electrostatics 20, 3.

    Article  Google Scholar 

  • Baker, D. N., et al. (2001): The global efficiency of relativistic electron production in the Earth’s magnetosphere. Journal of Geophysical Research 106, 19169.

    Article  ADS  Google Scholar 

  • Baker, D. N., et al. (Eds., 2006): Solar dynamics and its effects on the heliosphere and earth. Space Science Reviews 124, issue 1–4, 1–372. Reprinted by: Springer and the International Space Science Institute.

    Google Scholar 

  • Balantekin, A. B., Yuksel, H. (2003): Constraints on neutrino parameters from neutral-current solar neutrino measurements. Physical Review D 68, 113002–113007.

    Article  ADS  Google Scholar 

  • Balasubrahmanyan, V. K., Serlemitsos, A. T. (1974): Solar energetic particle event with 3He/4He greater than 1. Nature 252, 460–462.

    Article  ADS  Google Scholar 

  • Baliunas, S. L. (1991): The past, present and future of solar magnetism: stellar magnetic activity. In: The Sun in Time (Eds. C. P. Sonett, M. S. Giampapa and M. S. Matthews). Tucson: The University of Arizona Press, pp. 809–831.

    Google Scholar 

  • Baliunas, S. L., et al. (1995): Chromospheric variations in main-sequence stars. II. The Astrophysical Journal 438, 269–287.

    Article  ADS  Google Scholar 

  • Baliunas, S. L., et al. (1996): A dynamo interpretation of stellar activity cycles. The Astrophysical Journal 460, 848–854.

    Article  ADS  Google Scholar 

  • Baliunas, S. L., Jastrow, R. (1990): Evidence for long-term brightness changes of solar-type stars. Nature 348, 520–523.

    Article  ADS  Google Scholar 

  • Baliunas, S. L., Soon, W. (1995): Are variations in the length of the activity cycle related to changes in brightness in solar-type stars? The Astrophysical Journal 450, 896–901.

    Article  ADS  Google Scholar 

  • Baliunas, S. L., Vaughan, A. H. (1985): Stellar activity cycles. Annual Review of Astronomy and Astrophysics 23, 379–412.

    Article  ADS  Google Scholar 

  • Balogh, A. (1998): Magnetic fields in the inner heliosphere. Space Science Reviews 83, 93–104.

    Article  ADS  Google Scholar 

  • Balogh, A., et al. (1992): The magnetic field investigation on the Ulysses mission – Instrumentation and preliminary scientific results. Astronomy and Astrophysics Supplement Series 92,No. 2, 221–236.

    ADS  MathSciNet  Google Scholar 

  • Balogh, A., et al. (1995): The heliospheric magnetic field over the south polar region of the sun. Science 268, 1007–1010.

    Article  ADS  Google Scholar 

  • Balogh, A., et al. (1999): The solar origin of corotating interaction regions and their formation in the inner heliosphere. Space Science Reviews 89, 141–178.

    Article  ADS  Google Scholar 

  • Balogh, A., et al. (Eds., 1999): Co-rotating interaction regions. Space Science Reviews 89, 1–410. Reprinted by: Kluwer Academic Publishers and the International Space Science Institute.

    Google Scholar 

  • Balogh, A., Marsden, R. G., Smith, E. J. (Eds., 2001): The Heliosphere Near Solar Minimum: The Ulysses Perspective. New York: Springer-Verlag 2001.

    Google Scholar 

  • Bame, S. J., Asbridge, J. R., Gosling, J. T. (1977): Evidence for a structure-free state at high solar wind speeds. Journal of Geophysical Research 82, 1487.

    Article  ADS  Google Scholar 

  • Bame, S. J., et al. (1974): The quiet corona: temperature and temperature gradient. Solar Physics 35, 137–152.

    Article  ADS  Google Scholar 

  • Bame, S. J., et al. (1975): Solar wind heavy ion abundances. Solar Physics 43: 463–473.

    Article  ADS  Google Scholar 

  • Bame, S. J., et al. (1976): Solar cycle evolution of high-speed solar wind streams. The Astrophysical Journal 207, 977–980.

    Article  ADS  Google Scholar 

  • Bame, S. J., et al. (1977a): A search for a general gradient in the solar wind speed at low solar latitudes. Journal of Geophysical Research 82, 173–176.

    Article  ADS  Google Scholar 

  • Bame, S. J., et al. (1977b): Evidence for a structure-free state at high solar wind speeds. Journal of Geophysical Research 82, 1487–1492.

    Article  ADS  Google Scholar 

  • Bame, S. J., et al. (1992): The Ulysses solar wind plasma experiment. Astronomy and Astrophysics Supplement Series 92, No. 2, 237–265.

    ADS  Google Scholar 

  • Bame, S. J., et al. (1993): Ulysses observations of a recurrent high speed solar wind stream and the heliomagnetic streamer belt. Geophysical Research Letters 20(21), 2323–2326.

    Article  ADS  Google Scholar 

  • Bame, S. J., Hundhausen, A. J., Asbridge, J. R., Strong, I. B. (1968): Solar wind ion composition. Physical Review Letters 20, 393.

    Article  ADS  Google Scholar 

  • Bamert, K., et al. (2004): Hydromagnetic wave excitation upstream of an interplanetary traveling shock. The Astrophysical Journal (Letters) 601, L99–L102.

    Article  ADS  Google Scholar 

  • Bard, E., et al. (1997): Solar modulation of cosmogenic nuclide production over the last millennium: comparison between 14C and 10Be records. Earth and Planetary Science Letters 150, 453–462.

    Article  ADS  Google Scholar 

  • Barnes, A. (1975): Plasma processes in the expansion of the solar wind and in the interplanetary medium. Reviews of Geophysics and Space Physics 13(3), 1049–1053.

    Article  ADS  Google Scholar 

  • Barnes, A. (1992): Acceleration of the solar wind. Reviews of Geophysics 30, 43–55.

    Article  ADS  Google Scholar 

  • Barnes, A., Gazis, P. R., Phillips, J. L. (1995): Constraints on solar wind acceleration mechanisms from Ulysses plasma observations: the first polar pass. Geophysical Research Letters 22(23), 3309–3311.

    Article  ADS  Google Scholar 

  • Barnett, T. P. (1989): A solar-ocean relation: fact or fiction? Geophysical Research Letters 16, 803–806.

    Article  ADS  Google Scholar 

  • Barnola, J. M., et al. (1987): Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329, 408–414.

    Article  ADS  Google Scholar 

  • Bartels, J. (1932): Terrestrial-magnetic activity and its relations to solar phenomena. Terrestrial Magnetism and Atmospheric Electricity 37, 1–52.

    Article  ADS  Google Scholar 

  • Bartels, J. (1934): Twenty-seven day recurrences in terrestrial magnetic and solar activity,1923–1933. Terrestrial Magnetism and Atmospheric Electricity 39, 201–202.

    Article  ADS  Google Scholar 

  • Bartels, J. (1940): Solar radiation and geomagnetism. Terrestrial Magnetism and Atmospheric Electricity 45, 339–343.

    Article  ADS  Google Scholar 

  • Bartels, J. (1963): Discussion of time-variations of geomagnetic activity indices KP and AP,1932–1961. Annales de Géophysique 19, 1–20.

    ADS  Google Scholar 

  • Bastian, T. S., Benz, A. O., Gary, D. E. (1998): Radio emission from solar flares. Annual Review of Astronomy and Astrophysics 36, 131–188.

    Article  ADS  Google Scholar 

  • Basu, S., Antia, H. M. (2003): Changes in solar dynamics from 1995 to 2002. The Astrophysical Journal 585, 553–565.

    Article  ADS  Google Scholar 

  • Basu, S., Antia, H. M., Bogart, R. S. (2007): Structure of the near-surface layers of the Sun:Asphericity and time variation. The Astrophysical Journal 654, 1146–1165.

    Article  ADS  Google Scholar 

  • Basu, S., et al. (1996): The Sun’s hydrostatic structure from LOWL data. The Astrophysical Journal 460, 1064–1070.

    Article  ADS  Google Scholar 

  • Battaglia, M., Grigis, P. C., Benz, O. (2006): Size dependence of solar X-ray flare properties. Astronomy and Astrophysics 439, 737–747.

    Article  ADS  Google Scholar 

  • Baumback, M. M., Kurth, W. S., Gurnett, D. A. (1976): Direction-finding measurements of type III radio bursts out of the ecliptic plane. Solar Physics 48, 361–380.

    Article  ADS  Google Scholar 

  • Beck, J. G., Giles, P. (2005): Helioseismic determination of the solar rotation axis. The Astrophysical Journal (Letters) 621, L153–L156.

    Article  ADS  Google Scholar 

  • Beck, J. G., Gizon, L., Duvall, T. L. Jr. (2002): A new component of solar dynamics: North-south diverging flows migrating toward the equator with an 11 year period. The Astrophysical Journal (Letters) 575, L47–L50.

    Article  ADS  Google Scholar 

  • Beckers, J. M. (2007): Effects of foreshortening on shallow sub-surface flows observed with local helioseismology. Solar Physics 240, 3–7.

    Article  ADS  Google Scholar 

  • Beer, J., et al. (1988): Information on past solar activity and geomagnetism from 10Be in the Camp Century ice core. Nature 331, 675–679.

    Article  ADS  MathSciNet  Google Scholar 

  • Beer, J., et al. (1990): Use of 10Be in polar ice to trace the 11-year cycle of solar activity: information on cosmic ray history. Nature 347, 164–166.

    Article  ADS  Google Scholar 

  • Belcher, J. W. (1971): Alfvénic wave pressures and the solar wind. The Astrophysical Journal 168, 509–524.

    Article  ADS  Google Scholar 

  • Belcher, J. W., Davis, L. Jr. (1971): Large-amplitude Alfvén waves in the interplanetary medium, 2. Journal of Geophysical Research 76, 3534–3563.

    Article  ADS  Google Scholar 

  • Belcher, J. W., Davis, L. Jr., Smith, E. J. (1969): Large-amplitude Alfvén waves in the interplanetary medium: Mariner 5. Journal of Geophysical Research 74, 2303–2308.

    Google Scholar 

  • Belcher, J. W., Olbert, S. (1975): Stellar winds driven by Alfvén waves. The Astrophysical Journal 200, 369–382.

    Article  ADS  Google Scholar 

  • Bell, B., Glazer, H. (1958): Some sunspot and flare statistics. Smithsonian Contributions to Astrophysics 3, 25–38.

    ADS  Google Scholar 

  • Bemporad, A., et al. (2006): Current sheet evolution in the aftermath of a CME event. The Astrophysical Journal 638, 1110–1128.

    Article  ADS  Google Scholar 

  • Bentley, R. D., et al. (1994): The correlation of solar flare hard X-ray bursts with Doppler blueshifted soft X-ray flare emission. The Astrophysical Journal (Letters) 421, L55–L58.

    Article  ADS  Google Scholar 

  • Bentley, R. D., Mariska, J. T. (Eds., 1996): Magnetic Reconnection in the Solar Atmosphere. San Francisco: Astronomical Society of the Pacific Conference Series, p. 111.

    Google Scholar 

  • Benz, A. O. (1986): Millisecond radio spikes. Solar Physics 104, 99–110.

    Article  ADS  Google Scholar 

  • Benz, A. O. (2008): Flare Observations. Living Reviews in Solar Physics 5, 1.

    ADS  Google Scholar 

  • Benz, A. O., Bernold, T. E. X., Dennis, B. R. (1983): Radio blips and hard X-rays in solar flares. Astrophysical Journal 271, 355–366.

    Article  ADS  Google Scholar 

  • Benz, A. O., Csillaghy, A., Aschwanden, M. J. (1996): Metric spikes and electron acceleration in the solar corona. Astronomy and Astrophysics 309, 291–300.

    ADS  Google Scholar 

  • Benz, A. O., et al. (1981): Solar radio blips and X-ray kernals. Nature 291, 210–211.

    Article  ADS  Google Scholar 

  • Benz, A. O., et al. (1992): Electron beams in the low corona. Solar Physics 141, 335–346.

    Article  ADS  Google Scholar 

  • Benz, A. O., et al. (1994): Particle acceleration in flares. Solar Physics 153, 33–53.

    Article  ADS  Google Scholar 

  • Benz, A. O., Krucker, S. (1998a): Energy distribution of heating processes in the quiet solar corona. The Astrophysical Journal (Letters) 501, L213–L216.

    Article  ADS  Google Scholar 

  • Benz, A. O., Krucker, S. (1998b): Heating events in the quiet solar corona. Solar Physics 182, 349–363.

    Article  ADS  Google Scholar 

  • Benz, A. O., Krucker, S. (1999): Heating events in the quiet solar corona: Multiwavelength correlations. Astronomy and Astrophysics 341, 286–295.

    ADS  Google Scholar 

  • Berger, A. (1977): Support for the astronomical theory of climatic change. Nature 2 68, 44–45.

    Article  Google Scholar 

  • Berger, A. (1978a): Long-term variations of caloric insolation resulting from the Earth’s orbital elements. Quaternary Research 9, 139–167.

    Article  ADS  Google Scholar 

  • Berger, A. (1978b): Long-term variations of daily insolation and Quaternary climatic changes. Journal of Atmospheric Science 35(2), 2362–2367.

    Article  ADS  Google Scholar 

  • Berger, A. (1980): The Milankovitch astronomical theory of paleoclimates: a modern review. Vistas in Astronomy 24, 103–122.

    Article  ADS  Google Scholar 

  • Berger, A. (1988): Milankovitch theory and climate. Review of Geophysics 26, 624–657.

    Article  ADS  Google Scholar 

  • Berger, A. (1991): Long-term history of climate ice ages and Milankovitch periodicity. In: The Sun in Time (Eds. C. P. Sonett, M. S. Giampapa and M. S. Mathews). Tucson: The University of Arizona Press, pp. 498–510.

    Google Scholar 

  • Berger, T. E., et al. (2004): Solar magnetic elements at 0.1 arcsec resolution. General appearance and magnetic structure. The Astronomy and Astrophysics 428, 613–628.

    Article  ADS  Google Scholar 

  • Berghmans, D., Clette, F. (1999): Active region EUV transient brightenings – first results by EIT of SOHO JOP 80. Solar Physics 186, 207–229.

    Article  ADS  Google Scholar 

  • Bertaux, J. L., et al. (1995): SWAN: A study of Solar Wind Anisotropies on SOHO with Lyman alpha sky mapping. Solar Physics 162, 403–439.

    Article  ADS  Google Scholar 

  • Bertaux, J. L., et al. (1997a): First results from SWAN Lyman-α solar wind mapper on SOHO. Solar Physics 175, 737–770. Reprinted in: The First Results From SOHO (Eds. B. Fleck andZ. Svestka). Boston: Kluwer Academic Publishers, 737–770.

    Article  ADS  Google Scholar 

  • Bertaux, J. L., et al. (1997b): The first 1.5 year of observations from SWAN Lyman- alpha solar wind mapper on SOHO. In: Proceedings of the Fifth SOHO Workshop. The Corona and Solar Wind Near Minimum Activity. ESA SP-404. Noorwidjk: ESA Publications Division, pp. 29–36.

    Google Scholar 

  • Bethe, H. A. (1939): Energy production in stars. Physical Review 55, 434–456. Reproduced inA Source Book in Astronomy and Astrophysics 1900–1975 (Eds. K. R. Lang and O. Gingerich). Cambridge, Massachusetts: Harvard University Press 1979, 320–338.

    Article  MATH  ADS  Google Scholar 

  • Bhattacharjee, A. (2004): Impulsive magnetic reconnection in the earth’s magnetotail and the solar corona. Annual Review of Astronomy and Astrophysics 42, 365–384.

    Article  ADS  Google Scholar 

  • Bieber, J. W., Rust, D. M. (1995): The escape of magnetic flux from the sun. Astrophysical Journal 453, 911.

    Article  ADS  Google Scholar 

  • Biermann, L. F. (1948): Über die Ursache der chromosphärischen Turbulenz und des UV-Exzesses der Sonnenstrahlung. Zeitschrift für Astrophysik 25, 161–177.

    MATH  ADS  Google Scholar 

  • Biermann, L. F. (1951): Kometenschweife und solare Korpuskularstrahlung. Zeitschrift für Astrophysik 29, 274–286.

    ADS  Google Scholar 

  • Biermann, L. F. (1953): Physical processes in comet tails and their relation to solar activity. La Physique des cometes. IAU Colloquium No. 4, 251–262.

    Google Scholar 

  • Biermann, L. F. (1957): Solar corpuscular radiation and the interplanetary gas. Observatory 77, 109–110. Reproduced in: A Source Book in Astronomy and Astrophysics, 1900–1975 (Eds. K. R. Lang and O. Gingerich). Cambridge, Massachusetts: Harvard University Press 1979, pp. 147–148.

    ADS  Google Scholar 

  • Biermann, L. F., Haxel, O., Schlüter, A. (1951): Neutrale ultrastrahlung von der sonne. Zeitschrift für Naturforschung A6, 47–48.

    ADS  Google Scholar 

  • Bigazzi, A., Biferale, L., Gama, S. M. A., Velli, M. (2006): Small-scale anisotropy and intermittence in high- and low-latitude solar wind. The Astrophysical Journal 638, 499–507.

    Article  ADS  Google Scholar 

  • Bigelow, F. H. (1889): The Solar Corona Discussed by Spherical Harmonics. Washington: The Smithsonian Institution 1889.

    Google Scholar 

  • Bigelow, F. H. (1890a): Further Study of the Solar Corona, New Haven.

    Google Scholar 

  • Bigelow, F. H. (1890b): The solar corona. Sidereal Messenger 9, 93.

    Google Scholar 

  • Bilenko, I. A. (2002): Longitudinal distribution of coronal holes during 1976–2002. Solar Physics 221, 261–282.

    Article  ADS  Google Scholar 

  • Billings, D. E. (1959): Distribution of matter with temperature in the emission corona. The Astrophysical Journal 130, 961–971.

    Article  ADS  Google Scholar 

  • Binns, W. R., et al. (2005): Cosmic-ray neon, wolf-rayet stars, and the superbubble origin of galactic cosmic rays. The Astrophysical Journal 634, 351–364.

    Article  ADS  Google Scholar 

  • Birch, A. C., Kosovichev, A. G. (1998): Latitudinal variation of solar subsurface rotation inferred from p-mode frequency splittings measured with SOI-MDI and GONG. The Astrophysical Journal (Letters) 503, L187–L190.

    Article  ADS  Google Scholar 

  • Bird, M. K., Edenhofer, P. (1990): Remote sensing observations of the solar corona. In: Physics of the Inner Heliosphere I. Large-Scale Phenomena (Eds. R. Schewenn and E. Marsch). Berlin: Springer-Verlag, pp. 13–87.

    Google Scholar 

  • Bird, M. K., et al. (1992): The coronal-sounding experiment. Astronomy and Astrophysics Supplement 92(2), 425–430.

    ADS  Google Scholar 

  • Birkeland, K. (1896): Sur les rayons cathodiques sons l’action de forces magnetiques. Archives des Sciences Physiques et Naturelles 1, 497.

    Google Scholar 

  • Birkeland, K. (1908, 1913): The Norwegian Aurora Polaris Expedition, 1902–1903, Vol. I., On the Cause of Magnetic Storms and the Origin of Terrestrial Magnetism Christinania, Denmark: H. Aschehoug & Co. 1908, 1st Section; 1913, 2nd Section.

    Google Scholar 

  • Blackett, P. M. S., Occhialini, G. P. S. (1933): Some photographs of the tracks of penetrating radiation. Proceedings of the Royal Society of London A 139, 699–718.

    Google Scholar 

  • Blackwell, D. E. (1960): The zodiacal light and its interpretation. Endeavor 19, 14–19.

    Google Scholar 

  • Blackwell, D. E., Ingham, M. F. (1961): Observations of the zodiacal light from a very high altitude station. Monthly Notices of the Royal Astronomical Society 122, 129–141.

    ADS  Google Scholar 

  • Bochsler, P., et al. (2000): Determination of the abundance of aluminum in the solar wind with SOHO/CELIAS/MTOF. Journal of Geophysical Research 105(A6), 12659–12666.

    Article  ADS  Google Scholar 

  • Bochsler, P., Geiss, J., Maeder, A. (1990): The abundance of 3He in the solar wind – a constraint for models of solar evolution. Solar Physics 128, 203–215.

    Article  ADS  Google Scholar 

  • Bogdan, T. J. (2000): Sunspot oscillations: a review. Solar Physics 192, 373–394.

    Article  ADS  Google Scholar 

  • Bogdan, T. J., et al. (2003): Waves in the magnetized solar atmosphere II. Waves from localized sources in magnetic flux concentrations. The Astrophysical Journal 599, 626–660.

    Article  ADS  Google Scholar 

  • Bohlin, J. D., Sheeley, N. R. Jr. (1978): Extreme ultraviolet observations of coronal holes. Solar Physics 56, 125–151.

    Article  ADS  Google Scholar 

  • Boischot, A. (1957): Caracteres d’un type d’émission hertzienne associé a certaines éruptions chromosphériques. Comptes Rendus de l’Academie des Sciences 244, 1326–1329.

    ADS  Google Scholar 

  • Boischot, A. (1958): Etude du rayonnement radioélectrique solaire sur 169 MHz a l’aide d’un grand interférometre a réseau. Annales d’Astrophysique 21, 273–344.

    ADS  Google Scholar 

  • Boischot, A., Denisse, J.-F. (1957): Les émissions de type IV et l’origine des rayons cosmiques associés aux éruptions chromosphériques. Comptes Rendus de l’Academie des Sciences 245, 2194–2197.

    Google Scholar 

  • Bond, G., et al. (1993): Correlations between climate records from north Atlantic sediments and Greenland ice. Nature 365, 143–147.

    Article  ADS  Google Scholar 

  • Bond, G., et al. (2001): Persistent solar influence on north Atlantic climate during the holocene. Science 294, 2130–2136.

    Article  ADS  Google Scholar 

  • Bondi, H. (1952): On spherically symmetrical accretion. Monthly Notices of the Royal Astronomical Society 112, 195–204.

    ADS  MathSciNet  Google Scholar 

  • Bondi, H., Hoyle, F. (1944): On the mechanism of accretion by stars. Monthly Notices of the Royal Astronomical Society 104, 273–282.

    ADS  Google Scholar 

  • Bone, N. (1991): The Aurora, Sun-Earth Interactions. New York: Ellis Norwood.

    Google Scholar 

  • Bonetti, A., et al. (1963): Explorer 10 plasma measurements. Journal of Geophysical Research 68, 4017–4062.

    ADS  Google Scholar 

  • Boothroyd, A. I., Sackmann, I.-J., Fowler, W. A. (1991): Our Sun. II. Early mass loss of 0.1 M and the case of the missing lithium. The Astrophysical Journal 377, 318–329.

    Article  ADS  Google Scholar 

  • Borrini, G., et al. (1982): Helium abundance enhancements in the solar wind. Journal of Geophysical Research 87, 7370–7378.

    Article  ADS  Google Scholar 

  • Boschler, P., Geiss, J. (1989): Composition of the solar wind. In: Solar System Plasma Physics Geophysical Monograph 54 (Eds. J. H. Waite Jr., J. L. Burch and R. L. Moore). Washington, D. C.: American Geophysical Union 1989, 133–141.

    Google Scholar 

  • Boteler, D. H., Pirjola, R. J., Nevanlinna, H. (1998): The effects of geomagnetic disturbances on electrical systems at the Earth’s surface. Advances in Space Research 26, 17–27.

    Article  ADS  Google Scholar 

  • Bothe, W., Kolhörster, W. (1929): The nature of the high-altitude radiation. Zeitschrift für Physik 56, 751–777. Reproduced in English in: Cosmic Rays (Ed. A. M. Hillas). New York: Pergamon Press 1972.

    Article  ADS  Google Scholar 

  • Bothmer, V., Daglis, I. A. (2006): Space Weather – Physics and Effects. New York: Springer.

    Google Scholar 

  • Bothmer, V., et al. (1996): Ulysses observations of open and closed magnetic field lines within a coronal mass ejection. Astronomy and Astrophysics 316, 493–498.

    ADS  Google Scholar 

  • Bothmer, V., et al. (1997): Solar energetic particle events and coronal mass ejections: new insights from SOHO. In: 31st ESLAB Symposium. Noordwijk: ESA/ESTEC, pp. 207–216.

    Google Scholar 

  • Bothmer, V., Schwenn, R. (1994): Eruptive prominences as sources of magnetic clouds in the solar wind. Space Science Reviews 70, 215–220.

    Article  ADS  Google Scholar 

  • Bothmer, V., Schwenn, R. (1998): The structure and origin of magnetic clouds in the solar wind. Annales Geophysicae 16, 1–24.

    Article  ADS  Google Scholar 

  • Bougeret, J. -L., et al. (2008): S/WAVES: The radio and plasma wave investigation on the STEREO mission. Space Science Reviews 136, No. 1–4, 487–528.

    Article  ADS  Google Scholar 

  • Bracewell, R. N. (1956): Strip integration in radio astronomy. Australian Journal of Physics 9, 198.

    MATH  ADS  MathSciNet  Google Scholar 

  • Bradley, R. S., Jones, P. D. (1993): “Little Ice Age” summer temperature variations: their nature and relevance to recent global warming trends. Holocene 3, 367–376.

    Article  Google Scholar 

  • Bradt, H. L., Peters, B. (1948): Investigation of the primary cosmic radiation with nuclear photographic emulsions. Physical Review 74, 1828–1837.

    Article  ADS  Google Scholar 

  • Bradt, H. L., Peters, B. (1950): The heavy nuclei of the primary cosmic radiation. Physical Review 77, 54–70.

    Article  ADS  Google Scholar 

  • Brandenburg, A. (2005): The case for a distributed solar dynamo shaped by near surface shear. The Astrophysical Journal 625, 539–547.

    Article  ADS  Google Scholar 

  • Brandt, J. C., et al. (1969): Interplanetary gas. A calculation of angular momentum of the solar wind. The Astrophysical Journal 156, 1117–1124.

    Article  ADS  Google Scholar 

  • Braun, D. C., Duvall, T. L. Jr., Labonte, B. J. (1987): Acoustic absorption by sunspots. The Astrophysical Journal (Letters) 319, L27–L31.

    Article  ADS  Google Scholar 

  • Braun, D. C., Duvall, T. L. Jr., La Bonte, B. J. (1988): The absorption of high- degree p-mode oscillations in and around sunspots. The Astrophysical Journal 335, 1015–1025.

    Article  ADS  Google Scholar 

  • Braun, D. C., Fay, Y. (1998): Helioseismic measurements of the subsurface meridional flow. The Astrophysical Journal (Letters) 508, L105–L108.

    Article  ADS  Google Scholar 

  • Braun, D. C., Lindsey, C. (1999): Helioseismic images of an active region complex. The Astrophysical Journal (Letters) 513, L79–L82.

    Article  ADS  Google Scholar 

  • Braun, D. C., Lindsey, C. (2000): Phase-sensitive holography of solar activity. Solar Physics 192, 307–319.

    Article  ADS  Google Scholar 

  • Braun, D. C., Lindsey, C. (2001): Seismic imaging of the far hemisphere of the sun. The Astrophysical Journal (Letters) 560, L189–L192.

    Article  ADS  Google Scholar 

  • Bravo, S., Stewart, G. A. (1997): Fast and slow wind from solar coronal holes. The Astrophysical Journal 489, 992–999.

    Article  ADS  Google Scholar 

  • Bray, R. J., Loughhead, R. E., Durrant, C. J. (1967): The Solar Granulation. First edition London: Chapman and Hall 1967 Second edition New York: Cambridge University Press 1984.

    Google Scholar 

  • Breen, A.R., et al. (1997) Ground and Space-based studies of solar wind acceleration. In: The Corona and Solar Wind Near Minimum Activity. Proceedings of the Fifth SOHO Workshop. ESA SP-404. Noordwijk, The Netherlands: ESA Publications, pp. 223–228.

    Google Scholar 

  • Breit, G., Tuve, M. A. (1926): A test of the existence of the conducting layer. Physical Review 28, 554–575.

    Article  ADS  Google Scholar 

  • Brekke, P., Hassler, D. M., Wilhelm, K. (1997a): Doppler shifts in the quiet-Sun transition region and corona observed with SUMER on SOHO. Solar Physics 175, 349–374. Reprinted in: The First Results From SOHO (Eds. B. Fleck and Z. Svestka). Boston: Kluwer Academic Publishers, pp. 349–374.

    Article  ADS  Google Scholar 

  • Brekke, P., Hassler, D. M., Wilhelm, K. (1997b): Systematic redshifts in the quiet Sun transition region and corona observed with SUMER on SOHO. In: The Corona and Solar Wind Near Minimum Activity. Proceedings of the Fifth SOHO Workshop. ESA SP-404. Noordwijk: ESA Publications Division, pp. 229–234.

    Google Scholar 

  • Bridge, H. S., et al. (1962): Direct observations of the interplanetary plasma. Journal of the Physical Society of Japan 17, Supplement A-II, 553–559.

    Google Scholar 

  • Broecker, W. S., Denton, G. H. (1990): What drives glacial cycles? Scientific American 262, 49–56.

    ADS  Google Scholar 

  • Brooks, D. H., et al. (2007): Hinode EUV imaging spectrometer observations of active region loop morphology: Implications for static heating models of coronal emission. Publications of the Astronomical Society of Japan 59, S691–S697.

    ADS  Google Scholar 

  • Brosius, J. W., Holman, G. D. (2007): Chromospheric evaporation in a remote solar flare-like transient observed at high time resolution with SOHO’s CDS and RHESSI. The Astrophysical Journal (Letters) 659, L73–L76.

    Article  ADS  Google Scholar 

  • Brosius, J. W., Phillips, K. J. H. (2004): Extreme-ultraviolet and X-ray spectroscopy of a solar flare loop observed at high time resolution: A case study in chromospheric evaporation. Astrophysical Journal 613, 580–591.

    Article  ADS  Google Scholar 

  • Brosius, J. W., White, S. M. (2006): Radio measurements of the height of strong coronal magnetic fields above sunspots at the solar limb. Astrophysical Journal (Letters) 641, L69–L72.

    Article  ADS  Google Scholar 

  • Brown, B. P., Haber, D. A., Hindman, B. W., Toomre, J. (2004): Variations of solar subsurface weather in the vicinity of active regions. In: Helio- and Asteroseismology: Towards a Golden Future (Ed. D. Dansey). ESA SP-559, 345.

    Google Scholar 

  • Brown, D. S., et al. (2003): Observations of rotating sunspots from TRACE. Solar Physics 216, 79–108.

    Article  ADS  Google Scholar 

  • Brown, J. C. (1971): The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of hard X-ray bursts. Solar Physics 18, 489–502.

    Article  ADS  Google Scholar 

  • Brown, J. C. (1972a): The decay characteristics of models of solar hard X-ray bursts. Solar Physics 25, 158–177.

    Article  ADS  Google Scholar 

  • Brown, J. C. (1972b): The directivity and polarization of thick target X-ray bremsstrahlung from solar flares. Solar Physics 26, 441–459.

    Article  ADS  Google Scholar 

  • Brown, J. C. (1973): Thick target X-ray bremsstrahlung from partially ionized targets in solar flares. Solar Physics 28, 151–158.

    Article  ADS  Google Scholar 

  • Brown, J. C. (1975): The interpretation of spectra, polarization, and directivity of solar hard X-rays. In: Solar gamma-, X-, and EUV radiation. Proceedings of IAU Symposium No. 68 (Ed. S. R. Kane). Boston: D. Reidel, pp. 245–282.

    Google Scholar 

  • Brown, J. C. (1991): Energetic particles in solar flares: theory and diagnostics. Philosophical Transactions of the Royal Society (London) A336, 413–424.

    Article  ADS  Google Scholar 

  • Brown, J. C., Emslie, A. G. (1989): Self-similar Lagrangian hydrodynamics of beam-heated solar flare atmospheres. The Astrophysical Journal 339, 1123–1131.

    Article  ADS  Google Scholar 

  • Brown, J. C., et al. (1990): Beam heating in solar flares: electrons or protons? The Astrophysical Journal Supplement 73, 343–348.

    Article  ADS  Google Scholar 

  • Brown, T. M. (1985): Solar rotation as a function of depth and latitude. Nature 317, 591–594.

    Article  ADS  Google Scholar 

  • Brown, T. M., Christensen-Dalsgaard, J. (1998): Accurate determination of the solar photospheric radius. The Astrophysical Journal (Letters) 500, L195–L198.

    Article  ADS  Google Scholar 

  • Brown, T. M., et al. (1989): Inferring the Sun’s internal angular velocity from observed p-mode frequency splittings. The Astrophysical Journal 343, 526–546.

    Article  ADS  Google Scholar 

  • Brown, T. M., Gilliland, R. L. (1994): Astroseismology. Annual Reviews of Astronomy and Astrophysics 32, 37–82.

    Article  ADS  Google Scholar 

  • Brown, T. M., Morrow, C. A. (1987): Depth and latitude dependence of solar rotation. The Astrophysical Journal (Letters) 314, L21–L26.

    Article  ADS  Google Scholar 

  • Brueckner, G. E. (1974): The behavior of the outer solar corona (3R_⊙ to 10 R_⊙ during a large solar flare observed from OSO-7 in white light. In: Coronal Disturbances, IAU Symposium No. 57 (Ed. G. Newkirk, Jr.). Boston: Reidel, pp. 333–334.

    Google Scholar 

  • Brueckner, G. E., Bartoe, J. -D. F. (1983): Observations of high-energy jets in the corona above the quiet sun, the heating of the corona, and the acceleration of the solar wind. The Astrophysical Journal 272, 329–348.

    Article  ADS  Google Scholar 

  • Brueckner, G. E., et al. (1995): The Large Angle Spectroscopic Coronagraph (LASCO). Solar Physics 162, 357–402.

    Article  ADS  Google Scholar 

  • Brun, A. S., Miesch, M. S., Toomre, J. (2004): Global-scale turbulent convection and magnetic dynamo action in the solar envelope. The Astrophysical Journal 614, 1073–1098.

    Article  ADS  Google Scholar 

  • Bruner, E. C. Jr. (1978): Dynamics of the solar transition zone. The Astrophysical Journal 226, 1140–1146.

    Article  ADS  Google Scholar 

  • Bruner, E. C. Jr. (1981): OSO 8 observational limits to the acoustic coronal heating mechanism. The Astrophysical Journal 247, 317–324.

    Article  ADS  Google Scholar 

  • Bruno, R., Carbone, V. (2005): The solar wind as a turbulence laboratory. Living Reviews in Solar Physics 2–4.

    Google Scholar 

  • Bruno, R., et al. (1986): In-situ observations of the latitudinal gradients of the solar wind parameters during 1976 and 1977. Solar Physics 104, 431–445.

    Article  ADS  Google Scholar 

  • Bruzek, A. (1964): On the association between loop prominences and flares. The Astrophysical Journal 140, 746–759.

    Article  ADS  Google Scholar 

  • Bryant, D. A., et al. (1962): Explorer 12 observations of solar cosmic rays and energetic storm particles after the solar flare of September 28, 1961. Journal of Geophysical Research 67, 4983.

    Article  ADS  Google Scholar 

  • Budyko, M. I. (1969): Effect of solar radiation variations on the climate of Earth. Tellus 21, 611–620.

    ADS  Google Scholar 

  • Bumba, V. (1958): Relation between chromospheric flares and magnetic fields of sunspot groups. Bulletin of the Crimean Astrophysical Observatory 19, 105–114.

    Google Scholar 

  • Bumba, V., Howard, R. (1965): Large-scale distribution of solar magnetic fields. The Astrophysical Journal 141, 1502–1512.

    Article  ADS  Google Scholar 

  • Bunsen, R. (1859): Letter to H. E. Roscoe in November 1859. Quoted by Roscoe in: The Life and Experiences of Sir Henry Enfield Roscoe, London 1906, p. 71. Reproduced by A. J. Meadows in: The origins of astrophysics, found in The General History of Astronomy, Vol. 1. Astrophysics and Twentieth-Century Astronomy to 1950, part A (Ed. O. Gingerich). New York: Cambridge University Press 1984, p. 5.

    Google Scholar 

  • Burchfield, J. D. (1990): Lord Kelvin and The Age of the Earth. Chicago: University of ChicagoPress.

    Google Scholar 

  • Bürgi, A., Geiss, J. (1986): Helium and minor ions in the corona and solar wind: dynamics and charge states. Solar Physics 103, 347–383.

    Article  ADS  Google Scholar 

  • Burkepile, J. T., et al. (2004): Role of projection effects on solar coronal mass ejection properties: 1. A study of CMEs associated with limb activity. Journal of Geophysical Research 109, A03103.

    Article  Google Scholar 

  • Burkepile, J. T., St. Cyr, O. C. (1993): A revised and expanded catalogue of mass ejections observed by the Solar Maximum Mission coronagraph. NCAR/TN-369+STR. Boulder, Colorado: National Center for Atmospheric Research.

    Google Scholar 

  • Burlaga, L. F. (1971): Hydromagnetic waves and discontinuities in the solar wind. Space Science Reviews 12, 600–657.

    Article  ADS  Google Scholar 

  • Burlaga, L. F. (1983): Understanding the heliosphere and its energetic particles. Proceedings of the 18th International Conference of Cosmic Rays, 12, 21–60.

    Google Scholar 

  • Burlaga, L. F. (1984): MHD processes in the outer heliosphere. Space Science Reviews 39, 255–316.

    Article  ADS  Google Scholar 

  • Burlaga, L. F. (1988): Magnetic clouds and force-free fields with constant alpha. Journal of Geophysical Research 93, 7217–7224.

    Article  ADS  Google Scholar 

  • Burlaga, L. F. (1990): Magnetic clouds. In: Physics of the Inner Heliosphere II. Particles, Waves and Turbulence (Eds. R. Schwenn and E. Marsch). New York: Springer-Verlag, pp. 1–22.

    Google Scholar 

  • Burlaga, L. F. (1991): Magnetic clouds. In Physics of the Inner Heliosphere, Vol. II: Particles, Waves and Turbulence (Eds. R. Schwenn and E. Marsch). New York: Springer, pp. 1–22.

    Google Scholar 

  • Burlaga, L. F. (1995): Interplanetary Magnetohydrodynamics, Vol. 3 of International Series on Astronomy and Astrophysics. New York, Oxford University Press.

    Google Scholar 

  • Burlaga, L. F., et al. (1978): Sources of magnetic fields in recurrent interplanetary streams. Journal of Geophysical Research 83, 4177–4185.

    Article  ADS  Google Scholar 

  • Burlaga, L. F., et al. (1981): Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations. Journal of Geophysical Research 86, 6673–6684.

    Article  ADS  Google Scholar 

  • Burlaga, L. F., et al. (1982): A magnetic cloud and a coronal mass ejection. Geophysical Research Letters 9, 1317–1320.

    Article  ADS  Google Scholar 

  • Burlaga, L. F., Behannon, K. W., Klein, L. W. (1987): Compound streams, magnetic clouds and major magnetic storms. Journal of Geophysical Research 92, 5725–5734.

    Article  ADS  Google Scholar 

  • Burlaga, L. F., et al. (1998): A magnetic cloud containing prominence material: January 1997. Journal of Geophysical Research 103(A1), 277–285.

    Article  ADS  Google Scholar 

  • Burlaga, L. F., et al. (2001): Fast ejecta during the ascending phase of solar cycle 23: ACE observations, 1998–1999. Journal of Geophysical Research 106, A10, 20957–20977.

    Article  ADS  Google Scholar 

  • Burlaga, L. F., et al. (2005a): Voyager 2 observations related to the October–November 2003 solar events. Geophysical Research Letters 32, L03S05.

    Article  Google Scholar 

  • Burlaga, L. F., et al. (2005b): Crossing the termination shock into the heliosheath: magnetic fields. Science 309, 2027–2029.

    Article  ADS  Google Scholar 

  • Burlaga, L. F., et al. (2008): Magnetic fields at the termination shock by Voyager 2. Nature 454, 75–77.

    Article  ADS  Google Scholar 

  • Burlaga, L. F., King, J. H. (1979): Intense interplanetary magnetic fields observed by geocentric spacecraft during 1963–1975. Journal of Geophysical Research 84, 6633–6640.

    Article  ADS  Google Scholar 

  • Burlaga, L. F., Lepping, R. P. (1977): The causes of recurrent geomagnetic storms. Planetary and Space Science 25, 1151–1160.

    Article  ADS  Google Scholar 

  • Burlaga, L. F., Ness, N. F., Belcher, J. W., Whang, Y. C. (1996): Pickup protons and pressure-balance structures from 39 to 43 AU: Voyager 2 observations during 1993 and 1994. Journal of Geophysical Research 101(A7), 15523–15254.

    Article  ADS  Google Scholar 

  • Burlaga, L. F., Sittler, E., Mariani, F., Schwenn, R. (1981): Magnetic loop behind an interplanetary shock – Voyager, Helios and IMP 8 observations. Journal of Geophysical Research 86, 6673–6684.

    Article  ADS  Google Scholar 

  • Burlaga, L. F., Viñas, A.-F. (2005): Tsallis distributions of the large-scale magnetic field strength fluctuations in the solar wind from 7 to 87 AU. Journal of Geophysical Research 110(A7), A07110.

    Article  Google Scholar 

  • Burnight, T. R. (1949): Soft X-radiation in the upper atmosphere. Physical Review 76, 165.

    Google Scholar 

  • Burroughs, W. J. (1992): Weather Cycles: Real or Imaginary. New York: Cambridge University Press.

    Google Scholar 

  • Burton, M. E., et al. (1996): Ulysses out-of-ecliptic observations of interplanetary shocks. Astronomy and Astrophysics 316, 313–322.

    ADS  Google Scholar 

  • Burton, R. K., Mcpherron, R. L., Russell, C. T. (1975): An empirical relationship between interplanetary conditions and Dst. Journal of Geophysical Research 80, 4204–4214.

    Article  ADS  Google Scholar 

  • Byram, E. T., Chubb, T. A., Friedman, H. (1953): The contribution of solar X- rays to E-layer ionization. Physical Review 92, 1066–1067.

    Article  ADS  Google Scholar 

  • Byram, E. T., Chubb, T. A., Friedman, H. (1954): Solar X-ray emission. Physical Review 96, 860.

    Google Scholar 

  • Byram, E. T., Chubb, T. A., Friedman, H. (1956): The solar X-ray spectrum and the density of the upper atmosphere. Journal of Geophysical Research 61, 251–263.

    Article  ADS  Google Scholar 

C

  • Cahill, L. J., Patel, V. L. (1967): The boundary of the geomagnetic field, August to November 1961. Planetary and Space Science 15, 997–1033.

    Article  ADS  Google Scholar 

  • Cane, H. V. (1985a): The evolution of interplanetary shocks. Journal of Geophysical Research 90, 191–197.

    Article  ADS  Google Scholar 

  • Cane, H. V. (1985b): The evolution of interplanetary transients, type II bursts and interplanetary shocks. Astronomy and Astrophysics 140, 205–209.

    ADS  Google Scholar 

  • Cane, H. V. (1997): The current status of our understanding of energetic particles, coronal mass ejections and flares. In: Coronal Mass Ejections. Geophysical Monograph 99 (Eds. N. Crooker, J. A. Joselyn and J. Feynman). Washington: American Geophysical Union, pp. 205–215.

    Google Scholar 

  • Cane, H. V., Erickson, W. C. (2005): Solar type II radio bursts and IP type II events. The Astrophysical Journal 623, 1180–1194.

    Article  ADS  Google Scholar 

  • Cane, H. V., Lario, D. (2006): An introduction to CMEs and energetic particles. Space Science Reviews 123, 45–56.

    Article  ADS  Google Scholar 

  • Cane, H. V., McGuire, R. E., Von Rosenvinge, T. T. (1986): Two classes of solar energetic particle events associated with impulsive and long duration soft X- ray events. The Astrophysical Journal 301, 448–459.

    Article  ADS  Google Scholar 

  • Cane, H. V., Reames, D. V. (1988a): Soft X-ray emissions, meter-wavelength radio bursts, and particle acceleration in solar flares. The Astrophysical Journal 325, 895–900.

    Article  ADS  Google Scholar 

  • Cane, H. V., Reames, D. V. (1988b): Some statistics of solar radio bursts of spectral types II and IV. The Astrophysical Journal 325, 901–904.

    Article  ADS  Google Scholar 

  • Cane, H. V., Richardson, I. G., Cyr, O. C. St. (2000): Coronal mass ejections, interplanetary eject and geomagnetic storms. Geophysical Research Letters 27, Issue 21, 3591–3594.

    Article  ADS  Google Scholar 

  • Cane, H. V., Sheeley, N. R. Jr., Howard, R. A. (1987): Energetic interplanetary shocks, radio emission, and coronal mass ejections. Journal of Geophysical Research 92, 9869–9874.

    Article  ADS  Google Scholar 

  • Canfield, R. C., et al. (2007): Yohkoh SXT full-resolution observations of sigmoids: Structure, formation, and eruption. Astrophysical Journal (Letters) 671, L81–L84.

    Article  ADS  Google Scholar 

  • Canfield, R. C., Hudson, H. S., McKenzie, D. E. (1999): Sigmoidal morphology and eruptive solar activity. Geophysical Research Letters 26(6), 627–630.

    Article  ADS  Google Scholar 

  • Canuto, V. M., et al. (1983): The young Sun and the atmosphere and photochemistry of the early Earth. Nature 305, 281–286.

    Article  ADS  Google Scholar 

  • Cargill, P. J. (1994): Some implications of the nanoflare concept. The Astrophysical Journal 422, 381–393.

    Article  ADS  Google Scholar 

  • Cargill, P. J., Klimchuk, J. A. (1997): A nanoflare explanation for the heating for coronal loops observed by Yohkoh. The Astrophysical Journal 478, 799–806.

    Article  ADS  Google Scholar 

  • Cargill, P. J., Klimchuk, J. A. (2004): Nanoflare heating of the corona revisited. The Astrophysical Journal 605, 911–920.

    Article  ADS  Google Scholar 

  • Cargill, P. J., Priest, E. R. (1983): The heating of post-flare loops. The Astrophysical Journal 266, 383–389.

    Article  ADS  Google Scholar 

  • Carloqwicz, M., Lopez, R. (2002): Storms from the Sun: The Emerging Science of Space Weather. Washington, D.C.: Joseph Henry Press.

    Google Scholar 

  • Carlqvist, P. (1969): Current limitation and solar flares. Solar Physics 7, 377–392.

    Article  ADS  Google Scholar 

  • Carlsson, M., et al. (2007): Can high frequency acoustic waves heat the quiet sun chromosphere? Publications of the Astronomical Society of Japan 59, S663–S668.

    ADS  Google Scholar 

  • Carlsson, M., Judge, P. G., Wilhelm, K. (1997): SUMER observations confirm the dynamic nature of the quiet solar outer atmosphere: the internetwork chromosphere. The Astrophysical Journal (Letters) 486, L63.

    Article  ADS  Google Scholar 

  • Carlsson, M., Stein, R. F. (1992): Non-LTE radiating acoustic shocks and Ca II K2V bright points. The Astrophysical Journal (Letters) 397, L59–L62.

    Article  ADS  Google Scholar 

  • Carlsson, M., Stein, R. F. (1995): Does a nonmagnetic solar chromosphere exist? The Astrophysical Journal (Letters) 440, L29–L32.

    Article  ADS  Google Scholar 

  • Carlsson, M., Stein, R. F. (1997): Formation of solar calcium H and K bright grains. The Astrophysical Journal 481, 500.

    Article  ADS  Google Scholar 

  • Carlsson, M., Stein, R. F. (2002): Dynamic hydrogen ionization. The Astrophysical Journal 572, 626–635.

    Article  ADS  Google Scholar 

  • Carmichael, H. (1964): A process for flares. In: AAS-NASA Symposium on the Physics of Solar Flares NASA SP-50 (Ed. W. N. Hess). Washington: National Aeronautics and Space Administration, pp. 451–456.

    Google Scholar 

  • Carovillano, R. L., Siscoe, G. L. (1969): Co-rotating structure in the solar wind. Solar Physics 8, 401–414.

    Article  ADS  Google Scholar 

  • Carrington, R. C. (1858): On the distribution of the solar spots in latitude since the beginning of the year 1854. Monthly Notices of the Royal Astronomical Society 19, 1–3. Reproduced in: Early Solar Physics (Ed. A. J. Meadows). Oxford: Pergamon Press 1970, pp. 169–172.

    ADS  Google Scholar 

  • Carrington, R. C. (1860): Description of a singular appearance seen in the Sun on September 1, 1859. Monthly Notices of the Royal Astronomical Society 20, 13–15. Reproduced in: Early Solar Physics (Ed. A. J. Meadows). Oxford, England: Pergamon Press 1970, pp. 181–183.

    ADS  Google Scholar 

  • Carrington, R. C. (1863): Observations of the Spots on the Sun. London: Williams and Norgate.

    Google Scholar 

  • Cavendish, H. (1790): On the height of the luminous arch which was seen on Feb. 23, 1784. Philosophical Transactions of the Royal Society (London) 80, 101–105.

    Article  Google Scholar 

  • Celsius, A. (1747): Bemerkungen über der Magnetnadel Stündliche Veränderungen in ihrer Abweichung. Svenska Ventensk. Handl. 8, 296.

    Google Scholar 

  • Cess, R. D., Ramanathan, V., Owen, T. (1980): The Martian paleoclimate and enhanced atmospheric carbon dioxide. Icarus 41, 159–165.

    Article  ADS  Google Scholar 

  • Chae, J., et al. (1998): Chromospheric upflow events associated with transition region explosive events. The Astrophysical Journal (Letters) 504, L123–L126.

    Article  ADS  Google Scholar 

  • Chae, J., et al. (1998): Photospheric magnetic field changes associated with transition region explosive events. The Astrophysical Journal Letters 497, L109.

    Article  ADS  Google Scholar 

  • Chamberlain, J. W. (1960): Interplanetary gas II. Expansion of a model corona. The Astrophysical Journal 131, 47–56.

    Article  ADS  Google Scholar 

  • Chamberlain, J. W. (1963): Planetary coronae and atmospheric evaporation. Planetary and Space Science 11, 901–960.

    Article  ADS  Google Scholar 

  • Chamberlin, P., Woods, T. N., Eparvier, F. G. (2006): Flare Irradiance Spectral Model (FISM) use for space weather applications. Proceedings of the ILWS Workshop (Eds. N. Gopalswamy and A. Bhattacharyya), p. 153.

    Google Scholar 

  • Chamberlin, T. C. (1899): An attempt to frame a working hypothesis of the cause of the glacial periods on an atmospheric basis. The Journal of Geology 7, 545–584.

    ADS  Google Scholar 

  • Chandra, S. (1991): The solar UV related changes in total ozone from a solar rotation to a solar cycle. Geophysical Research Letters 18, 837–840.

    Article  ADS  Google Scholar 

  • Chandran, B. D. G. (2004): A review of the theory of incompressible MHD turbulence. Astrophysics and Space Science 292, 17–28.

    Article  MATH  ADS  Google Scholar 

  • Chandran, B. D. G. (2005): Weak compressible magnetohydrodynamic turbulence in the solar corona. Physical Review Letters 95, 265004–265300.

    Article  ADS  Google Scholar 

  • Chapman, G. A. (1984): On the energy balance of solar active regions. Nature 308, 252–254.

    Article  ADS  Google Scholar 

  • Chapman, G. A. (1987): Variations of solar irradiance due to magnetic activity. Annual Review of Astronomy and Astrophysics 25, 633–667.

    Article  ADS  Google Scholar 

  • Chapman, G. A., Cookson, A. M., Dobias, J. J. (1996): Variations in total solar irradiance during solar cycle 22. Journal of Geophysical Research 101, 13541–13548.

    Article  ADS  Google Scholar 

  • Chapman, G. A., Cookson, A. M., Dobias, J. J. (1997): Solar variability and the relation of facular to sunspot areas during solar cycle 22. The Astrophysical Journal 482, 541–545.

    Article  ADS  Google Scholar 

  • Chapman, G. A., et al. (1984): Solar luminosity fluctuations and active region photometry. The Astrophysical Journal (Letters) 282, L99–L101.

    Article  ADS  Google Scholar 

  • Chapman, S. (1918): An outline of a theory of magnetic storms. Proceedings of the Royal Society of London A 95, 61–83.

    Google Scholar 

  • Chapman, S. (1918): The energy of magnetic storms. Monthly Notices of the Royal Astronomical Society 79, 70–83.

    ADS  Google Scholar 

  • Chapman, S. (1929): Solar streams of corpuscles – their geometry, absorption of light and penetration. Monthly Notices of the Royal Astronomical Society 89, 456–470.

    ADS  Google Scholar 

  • Chapman, S. (1950): Corpuscular influences upon the upper atmosphere. Journal of Geophysical Research 55, 361–372. Reproduced in: A Source Book in Astronomy and Astrophysics, 1900–1975 (Eds. K. R. Lang and O. Gingerich). Cambridge: Harvard University Press 1979,pp. 125–131.

    Article  ADS  Google Scholar 

  • Chapman, S. (1954): The viscosity and thermal conductivity of a completely ionized gas. The Astrophysical Journal 120, 151–155.

    Article  ADS  Google Scholar 

  • Chapman, S. (1957): Notes on the solar corona and the terrestrial atmosphere. Smithsonian Contributions to Astrophysics 2(1), 1–14.

    ADS  Google Scholar 

  • Chapman, S. (1958): Thermal diffusion in ionized gases. Proceedings of the Physical Society of London 72, 353–362.

    Google Scholar 

  • Chapman, S. (1959a): Interplanetary space and the earth’s outermost atmosphere. Proceedings of the Royal Society (London) A253, 462–481.

    Google Scholar 

  • Chapman, S. (1959b): The outermost ionosphere. Journal of Atmospheric and Terrestrial Physics 15, 43–47.

    Article  Google Scholar 

  • Chapman, S., Bartels, J. (1940): Geomagnetism. Oxford: Clarendon Press.

    Google Scholar 

  • Chapman, S., Ferraro, V. C. A. (1929): The electrical state of solar streams of corpuscles. Monthly Notices of the Royal Astronomical Society 89, 470–479.

    ADS  Google Scholar 

  • Chapman, S., Ferraro, V. C. A. (1931): A new theory of magnetic storms, I, The initial phase. Terrestrial Magnetism and Atmospheric Electricity 36, 77–97, 171–186; 37, 147–156,421–429 (1932).

    Google Scholar 

  • Chapman, S., Ferraro, V. C. A. (1933): A new theory of magnetic storms, II, The main phase. Terrestrial Magnetism and Atmospheric Electricity 38, 79–86.

    Article  ADS  Google Scholar 

  • Chapman, S., Ferraro, V. C. A. (1940): A theory of the first phase of geomagnetic storms. Terrestrial Magnetism and Atmospheric Electricity 45, 245–268.

    Article  MathSciNet  ADS  Google Scholar 

  • Chappellaz, J., et al. (1990): Ice-core record of atmospheric methane over the past 160,000 years. Nature 345, 127–131.

    Article  ADS  Google Scholar 

  • Chappellaz, J., et al. (1993): Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyr BP. Nature 366, 443–445.

    Article  ADS  Google Scholar 

  • Charbonneau, P. (2005): Dynamo models of the solar cycle. Living Reviews in Solar Physics 2, 2.

    ADS  Google Scholar 

  • Charlson, R. J., Wigley, T. M. L. (1994): Sulfate aerosol and climate change. Scientific American 270, 48–57.

    Google Scholar 

  • Chen, J. (1989): Effects of toroidal forces in current loops embedded in a background plasma. The Astrophysical Journal 338, 453–470.

    Article  ADS  MathSciNet  Google Scholar 

  • Chen, J. (1996): Theory of prominence eruption and propagation: interplanetary consequences. Journal of Geophysical Research 101(A12), 27499–27519.

    Article  ADS  Google Scholar 

  • Chen, J. (2001): Physics of coronal mass ejections: a new paradigm of solar eruptions. Space Science Reviews 95, 165–190.

    Article  ADS  Google Scholar 

  • Chen, J., et al. (1995): Simulation of geomagnetic storms during the passage of magnetic clouds. Geophysical Research Letters 22(13), 1749–1752.

    Article  ADS  Google Scholar 

  • Chen, J., et al. (1997): Evidence of an erupting magnetic flux rope: LASCO coronal mass ejection of 1997 April 13. The Astrophysical Journal (Letters) 490, L191–L194.

    Article  ADS  Google Scholar 

  • Chen, J., et al. (2000): Magnetic geometry and dynamics of the fast coronal mass ejection of 1997 September 9. The Astrophysical Journal 533, 481–500.

    Article  ADS  Google Scholar 

  • Chen, J., et al. (2006): The flux-rope scaling of the acceleration of coronal mass ejections and eruptive prominences. The Astrophysical Journal 649, 452–463.

    Article  ADS  Google Scholar 

  • Chen, J., Garren, D. A. (1993): Interplanetary magnetic clouds: topology and driving mechanism. Geophysical Research Letters 20(21), 2319–2322.

    Article  ADS  Google Scholar 

  • Chen, Y., Esser, R., Strachan, L., Hu, Y. (2004): Stagnated outflow of O5 ions in the source region of the slow solar wind at solar minimum. The Astrophysical Journal 602, 415–421.

    Article  ADS  Google Scholar 

  • Chen, Y., Li, X. (2004): An ion-cyclotron resonance-driven three-fluid model of the slow wind near the Sun. The Astrophysical Journal (Letters) 609, L41–L44.

    Article  ADS  Google Scholar 

  • Cheng, C.-C., Doschek, G. A., Feldman, U. (1979): The dynamical properties of the solar corona from intensities and line widths of EUV forbidden lines. The Astrophysical Journal 227, 1037–1046.

    Article  ADS  Google Scholar 

  • Cheng, C.-C., et al. (1981): Spatial and temporal structures of impulsive bursts from solar flares observed in UV and hard X-rays. The Astrophysical Journal (Letters) 248, L39–L43.

    Article  ADS  Google Scholar 

  • Cheng, C.-C., Pallavicini, R. (1987): Analysis of ultraviolet and X-ray observations of three homologous solar flares from SMM. The Astrophysical Journal 318, 459–473.

    Article  ADS  Google Scholar 

  • Chiang, W. H., Foukal, P. V. (1985): The influence of faculae on sunspot heat blocking. Solar Physics 97, 9–20.

    Article  ADS  Google Scholar 

  • Chitre, S. M., Gokhale, M. H. (1975): The five-minute oscillations in the solar atmosphere. Solar Physics 43, 49–55.

    Article  ADS  Google Scholar 

  • Chou, D. -Y., Dai, D. -C. (2001): Solar cycle variations of subsurface meridional flows in the Sun. The Astrophysical Journal (Letters) 559, L175–L178.

    Article  ADS  Google Scholar 

  • Chou, D.-Y., et al. (1995): Taiwan oscillation network. Solar Physics 160, 237–243.

    Article  ADS  Google Scholar 

  • Chou, D.-Y., Ladenkov, O. (2005): Evolution of solar subsurface meridional flows in the declining phase of cycle 23. The Astrophysical Journal 630, 1206–1212.

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J. (2002): Helioseismology. Reviews of Modern Physics 74, 1073–1129.

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J., et al. (1985): Speed of sound in the solar interior. Nature 315, 378–382.

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J., et al. (1996): The current state of solar modeling. Science 272,1286–1292.

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Gough, D. O., Thompson, M. J. (1991): The depth of the solar convection zone. The Astrophysical Journal 378, 413–437.

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Gough, D. O., Toomre, J. (1985): Seismology of the Sun. Science 229, 923–931.

    Article  ADS  Google Scholar 

  • Christiansen, W. N. (1984): The first decade of solar radio astronomy in Australia. In: The Early Years of Radio Astronomy (Ed. W. T. Sullivan III). New York: Cambridge University Press.

    Google Scholar 

  • Chubb, T. A., Friedman, H., Kreplin, R. W. (1960): Measurements made of high-energy X-rays accompanying three class 2+ solar flares. Journal of Geophysical Research 65, 1831–1832.

    Article  ADS  Google Scholar 

  • Chupp, E. L. (1971): Gamma ray and neutron emissions from the Sun. Space Science Reviews 12, 486–525.

    Article  ADS  Google Scholar 

  • Chupp, E. L. (1976): Gamma-ray Astronomy. Dordrecht: D. Reidel.

    Google Scholar 

  • Chupp, E. L. (1984): High energy neutral radiation from the Sun. Annual Review of Astronomy and Astrophysics 22, 359–387.

    Article  ADS  Google Scholar 

  • Chupp, E. L. (1987): High-energy particle production in solar flares (SEP, gamma-ray and neutron emissions). Physica Scripta T18, 5–19.

    Article  ADS  Google Scholar 

  • Chupp, E. L. (1990): Emission characteristics of three intense solar flares observed in cycle 21. The Astrophysical Journal Supplement 73, 213–226.

    Article  ADS  Google Scholar 

  • Chupp, E. L. (1990): Transient particle acceleration with solar flares. Science 250, 229–236.

    Article  ADS  Google Scholar 

  • Chupp, E. L., Benz, A. O. (Eds., 1994): Particle Acceleration Phenomena in Astrophysical Plasmas. Proceedings of the International Astronomical union (IAU) Colloquium 142. The Astrophysical Journal Supplement 90, 511–983.

    Google Scholar 

  • Chupp, E. L., et al. (1973): Solar gamma ray lines observed during the solar activity of August 2 to August 11, 1972. Nature 241, 333–334.

    Article  ADS  Google Scholar 

  • Chupp, E. L., et al. (1982): A direct observation of solar neutrons following the 0118 UT flare on 1980 June 21. Astrophysical Journal (Letters) 263, L95–L99.

    Google Scholar 

  • Chupp, E. L., et al. (1987): Solar neutron emissivity during the large flare on 1982 June 3. Astrophysical Journal 318, 913–929.

    Article  ADS  Google Scholar 

  • Ciaravella, A., et al. (1997): Ultraviolet coronagraph spectrometer observation of the 1996 December 23 coronal mass ejection. The Astrophysical Journal (Letters) 491, L59.

    Article  ADS  Google Scholar 

  • Ciaravella, A., et al. (2002): Elemental abundances and post-coronal mass ejection current sheet in a very hot active region. Astrophysical Journal 575, 1116–1130.

    Article  ADS  Google Scholar 

  • Ciaravella, A., et al. (2005): Detection and diagnostics of a coronal shock wave driven by a partial-halo coronal mass ejection on 2000 June 28. Astrophysical Journal 621, 1121–1128.

    Article  ADS  Google Scholar 

  • Ciaravella, A., Raymond, J. C., Kahler, S. W. (2006): Ultraviolet properties of halo coronal mass ejections: Doppler shifts, angles, shocks, and bulk morphology. Astrophysical Journal 652, 774–792.

    Article  ADS  Google Scholar 

  • Cinicastagoli, G., et al. (1984): Solar cycles in the last centuries in 10Be and O18 in polar ice and in thermoluminescence signals of a sea sediment. Nuovo Cimento 7C, 235–244.

    ADS  Google Scholar 

  • Cinicastagoli, G., Lal, D. (1980): Solar modulation effects in terrestrial production of carbon-14. Radiocarbon 22, 133–158.

    Google Scholar 

  • Cirtain, J. W., et al. (2007): Evidence for Alfvén waves in solar polar jets. Science 318, 1580–1582.

    Article  ADS  Google Scholar 

  • Cirtain, J. W., et al. (2007a): Active region loops: Temperature measurements as a function of time from joint TRACE and SOHO CDS observations. The Astrophysical Journal 655, 598–605.

    Article  ADS  Google Scholar 

  • Cirtain, J. W., et al. (2007b): Evidence for Alfvén waves in solar polar jets. Science 318, 1580–1582.

    Article  ADS  Google Scholar 

  • Claverie, A., et al. (1979): Solar structure from global studies of the five-minute oscillation. Nature 282, 591–594.

    Article  ADS  Google Scholar 

  • Clay, J. (1927): Penetrating radiation. Koninklijke Nederlandse Akademie van Wetenschappen te Amsterdam, Proceedings of the Section of Sciences 30, 1115.

    Google Scholar 

  • Clay, J. (1932): The Earth-magnetic effect and the corpuscular nature of (cosmic) ultra-radiation. IV. Koninklijke Nederlandse Akademie van Wetenschappen te Amsterdam, Proceedings of the Section of Sciences 35, 1282–1290. Reproduced in: Cosmic Rays (Ed. A. M. Hillas). New York: Pergamon Press 1972.

    Google Scholar 

  • Cleveland, B. T., et al. (1998): Measurement of the solar electron neutrino flux with the Homestake chlorine detector. The Astrophysical Journal 496, 505–526.

    Article  ADS  Google Scholar 

  • Cline, T. L., McDonald, F. B. (1968): Relativistic electrons from solar flares. Solar Physics 5, 507–530.

    Article  ADS  Google Scholar 

  • Cliver, E. W. (1994a): Solar activity and geomagnetic storms: the corpuscular hypothesis. EOS 75, 609, 612–613.

    ADS  Google Scholar 

  • Cliver, E. W. (1994b): Solar activity and geomagnetic storms: the first 40 years. EOS 75, 569,574–575.

    Google Scholar 

  • Cliver, E. W. (1995a): Solar activity and geomagnetic storms: from M regions and flares to coronal holes and CMEs. EOS 76, 75, 83–84.

    ADS  Google Scholar 

  • Cliver, E. W. (1995b): Solar flare nomenclature. Solar Physics 157, 285–293.

    Article  ADS  Google Scholar 

  • Cliver, E. W., Boriakoff, V., Feynman, J. (1998): Solar variability and climate change: geomagnetic a index and global surface temperature. Geophysical Research Letters 25, 1035–1038.

    Article  ADS  Google Scholar 

  • Cliver, E. W., Cane, H. V. (2002): Gradual and impulsive solar energetic particle events. EOS Transactions of the American Geophysical Union 83, 61–68.

    ADS  Google Scholar 

  • Cliver, E. W., et al. (1989): Solar flare nuclear gamma-rays and interplanetary proton events. The Astrophysical Journal 343, 953–970.

    Article  ADS  Google Scholar 

  • Cliver, E. W., Kahler, S. W., Reames, D. V. (2004): Coronal shocks and solar energetic proton events. The Astrophysical Journal 605, 902–910.

    Article  ADS  Google Scholar 

  • Cliver, E. W., Webb, D. F., Howard, R. A. (1999): On the origin of solar metric type II bursts. Solar Physics 187, 89–114.

    Article  ADS  Google Scholar 

  • Close, R. M., Parnell, C. E., Mackay, D. M., Priest, E. R. (2003): Statistical flux-tube properties of 3D magnetic carpet fields. Solar Physics 212, 251–275.

    Article  ADS  Google Scholar 

  • Cocconi, G., et al. (1958): The cosmic ray flare effect. Nuovo Cimento Supplement Series 8(2), 161–168.

    Article  Google Scholar 

  • Cohen, C. M. S., et al. (1999): New observations of heavy-ion-rich solar particle events from ACE. Geophysical Research Letters 26(17), 2697–2700.

    Google Scholar 

  • Colburn, D. S., Sonett, C. P. (1966): Discontinuities in the solar wind. Space Science Reviews 5, 439–506.

    Article  ADS  Google Scholar 

  • Coleman, P. J. Jr. (1968): Turbulence, viscosity, and dissipation in the solar wind plasma. Astrophysical Journal 153, 371–388.

    Article  ADS  Google Scholar 

  • Coleman, P. J. Jr., et al. (1966): Measurements of magnetic fields in the vicinity of the magnetosphere and in interplanetary space: preliminary results from Mariner 4. Space Research 6, 907–928.

    Google Scholar 

  • Coles, W. A., et al. (1980): Solar cycle changes in the polar solar wind. Nature 286, 239–241.

    Article  ADS  Google Scholar 

  • Coles, W. A., Rickett, B. (1976): IPS observations of solar wind speed out of the ecliptic. Journal of Geophysical Research 77, 4797–4799.

    Article  ADS  Google Scholar 

  • Compton, A. H. (1932): Variation of the cosmic rays with latitude. Physical Review 41, 111–113.

    Article  ADS  Google Scholar 

  • Compton, A. H. (1933): A geographic study of the cosmic rays. Physical Review 43, 387–403.

    Article  ADS  Google Scholar 

  • Contarino, L., Romano, P., Zuccarello, F. (2006): RHESSI and TRACE observations of an M 2.5 flare: A direct application of the Kopp and Pneuman model. Astronomy and Astrophysics 458, 297–300.

    Article  ADS  Google Scholar 

  • Cook, W. R., et al. (1979): Elemental composition of solar energetic particles in 1977 and 1978. Proceedings of the 16th International Cosmic Ray Conference 12, 265.

    Google Scholar 

  • Cook, W. R., Stone, E. C., Vogt, R. (1984): Elemental composition of solar energetic particles. Astrophysical Journal 279, 827–838.

    Article  ADS  Google Scholar 

  • Coplan, M. A., Ogilvie, K. W., Bochsler, P., Geiss, J. (1984): Interpretation of 3He abundance variations in the solar wind. Solar Physics 93, 415–434.

    Article  ADS  Google Scholar 

  • Corbard, T., Thompson, J. (2002): The subsurface radial gradient of solar angular velocity from MDI f-mode observations. Solar Physics 205, 211–229.

    Article  ADS  Google Scholar 

  • Cormack, A. M. (1963): Representation of a function by its line integrals, with some radiological applications. Journal of Applied Physics 34, 2722–2727.

    Article  MATH  ADS  Google Scholar 

  • Corti, G., et al. (1997): Physical parameters in plume and interplume regions from UVCS observations. In: The Corona and Solar Wind Near Minimum Activity. Proceedings of the Fifth SOHO Workshop. ESA SP-404. Noordwijk: ESA Publications Division, pp. 289–294.

    Google Scholar 

  • Couvidat, S., et al (2003a): The rotation of the deep solar layers. The Astrophysical Journal(Letters) 597, L77–L79.

    Article  ADS  Google Scholar 

  • Couvidat, S., Turck-Chièze, S., Kosovichev, A. G. (2003b): Solar seismic models and the neutrino predictions. The Astrophysical Journal 599, 1434–1448.

    Article  ADS  Google Scholar 

  • Covington, A. E. (1951): Some characteristics of 10.7 cm solar noise. Journal of the Royal Astronomical Society of Canada 45, 15–22.

    ADS  Google Scholar 

  • Covington, A. E., Harvey, G. A. (1958): Impulsive and long-enduring sudden enhancements of solar radio emission at 10-cm wave-length. Journal of the Royal Astronomical Society of Canada 52, 161–166.

    ADS  Google Scholar 

  • Cowan, C. L. Jr., et al. (1956): Detection of the free neutrino: a confirmation. Science 124, 103.

    Article  ADS  Google Scholar 

  • Cox, A. (1969): Geomagnetic reversals. Science 163, 237–245.

    Article  ADS  Google Scholar 

  • Cox, A. N., Livingston, W. C., Matthews, M. S. (Eds., 1991): Solar Interior and Atmosphere. Tucson: The University of Arizona Press.

    Google Scholar 

  • Craig, I. J. D., McClymont, A. N., Underwood, J. H. (1978): The temperature and density structure of active region coronal loops. Astronomy and Astrophysics 70, 1–11.

    ADS  Google Scholar 

  • Cranmer, S. R. (2000): Ion cyclotron wave dissipation in the solar corona; the summed effect of more than 2000 ion species. Astrophysical Journal 532, 1197–1208.

    Article  ADS  Google Scholar 

  • Cranmer, S. R. (2002): Coronal holes and the high-speed solar wind. Space Science Reviews 101, 229–294.

    Article  ADS  Google Scholar 

  • Cranmer, S. R. (2004): New views of the solar wind with the Lambert W function. American Journal of Physics 72, 1397–1403.

    Article  ADS  Google Scholar 

  • Cranmer, S. R., et al. (1999): An empirical model of a polar coronal hole at solar minimum. The Astrophysical Journal 511, 481–501.

    Article  ADS  Google Scholar 

  • Cranmer, S. R., Field, G. B., Kohl, J. L. (1998): Spectroscopic constraints on models of ion-cyclotron resonance heating in the polar solar corona and fast solar wind. EOS Transactions AGU 79, F722.

    ADS  Google Scholar 

  • Cranmer, S. R., Van Ballegooijen, A. A. (2003): Alfvénic turbulence in the extended solar corona: kinetic effects and proton heating. The Astrophysical Journal 594, 573–591.

    Article  ADS  Google Scholar 

  • Cranmer, S. R., Van Ballegooijen, A. A. (2005): On the generation, propagation and reflection of Alfvén waves from the photosphere to the distant heliosphere. Astrophysical Journal Supplement Series 156, 265–293.

    Article  ADS  Google Scholar 

  • Cranmer, S. R., Van Ballegooijen, A. A., Edgard, R. J. (2007): Self consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence. Astrophysical Journal Supplement 171, 520–551.

    Article  ADS  Google Scholar 

  • Crawford, H. J., et al. (1975): Solar flare particles: energy-dependent composition and relationship to solar composition. The Astrophysical Journal 195, 213–221.

    Article  ADS  Google Scholar 

  • Crawford, H. J., Price, P., Sullivan, J. D. (1972): Composition and energy spectra of heavy nuclei with .5 less than E less than 40 MeV per nucleon in the 1971 January 24 and September 1 solar flares. The Astrophysical Journal (Letters) 175, L149.

    Article  ADS  Google Scholar 

  • Croll, J. (1875): Climate and Time in their Geological Relations. New York: Appleton and London: David Bogue (1876).

    Google Scholar 

  • Crommelynck, D., et al. (1995): First realization of the space absolute radiometric reference (SARR) during the ATLAS 2 flight period. Advances in Space Research 16(8), 17–23.

    Article  ADS  Google Scholar 

  • Crooker, N. U. (2000): Solar and heliospheric geoeffective disturbances. Journal of Atmospheric and Solar-Terrestrial Physics 62, 1071–1085.

    Article  ADS  Google Scholar 

  • Crooker, N. U., Cliver, E. W. (1994): Postmodern view of M-regions. Journal of Geophysical Research 99, 23383–23390.

    Article  ADS  Google Scholar 

  • Crooker, N. U., et al. (1999): CIR morphology, turbulence, discontinuities and energetic particles. Space Science Reviews 89, 179–220.

    Article  ADS  Google Scholar 

  • Crooker, N. U., et al. (2004): Heliospheric plasma sheets. Journal of Geophysical Research 109(A3), A03107.

    Article  Google Scholar 

  • Crooker, N. U., Goslling, J. T., Kahler, S. W. (2002): Reducing heliospheric magnetic flux from coronal mass ejections without disconnection. Journal of Geophysical Research (Space Physics) 107(A2), SSH 3–1.

    Google Scholar 

  • Crooker, N. U., Joselyn, J. A., Feynman, J. (Eds., 1997): Coronal Mass Ejections, Geophysical Monograph Series 99. Washington: American Geophysical Union.

    Google Scholar 

  • Crooker, N. U., Kahler, S. W., Larson, D. E., Lin, R. P. (2004): Large-scale magnetic field inversions at sector boundaries. Journal of Geophysical Research 109(A3), A03108.

    Article  Google Scholar 

  • Crooker, N. U., Kahler, S. W., Larson, D. E., Lin, R. P. (2004): Large-scale magnetic field inversions at sector boundaries. Journal of Geophysical Research 109, A3, A03108.

    Article  Google Scholar 

  • Crosby, N. B., Aschwanden, M. J., Dennis, B. R. (1993): Frequency distributions and correlations of solar X-ray flare parameters. Solar Physics 143, 275–299.

    Article  ADS  Google Scholar 

  • Crowley, T. J. (1983): The geologic record of climatic change. Review of Geophysics and Space Physics 21, 828–877.

    Article  ADS  Google Scholar 

  • Crowley, T. J. (2000): Causes of climate change over the past 1000 years. Science 289, 270–277.

    Article  ADS  Google Scholar 

  • Crowley, T. J., Kim, K.-Y. (1996): Comparison of proxy records of climate change and solar forcing. Geophysical Research Letters 23, 359–362.

    Article  ADS  Google Scholar 

  • Crowley, T. J., Kim, K.-Y. (1999): Modeling the temperature response to forced climate change over the last six centuries. Geophysical Research Letters 26, 1901–1904.

    Article  ADS  Google Scholar 

  • Crutzen, P. J., Isaksen, I. S. A., Reid, G. C. (1975): Solar proton events: stratospheric sources of nitric oxide. Science 189, 457–459.

    Article  ADS  Google Scholar 

  • Cubasch, U., et al. (1997): Simulation of the influence of solar radiation variations on the global climate with an ocean-atmosphere general circulation model. Climate Dynamics 13, 757–767.

    Article  ADS  Google Scholar 

  • Culhane, J. L., et al. (1991): The Bragg Crystal Spectrometer for SOLAR-A. Solar Physics 136, 89–104.

    Article  ADS  Google Scholar 

  • Culhane, J. L., et al. (2007): Hinode EUV study of jets in the Sun’s south polar corona. Publications of the Astronomical Society of Japan 59, S751–S756.

    ADS  Google Scholar 

  • Culhane, J. L., et al. (2007): The UV imaging spectrometer for Solar-B. Solar Physics 243, 19–61.

    Article  ADS  Google Scholar 

  • Culhane, J. L., Jordan, C. (Eds., 1991): The Physics of Solar Flares. London: The Royal Society.

    Google Scholar 

  • Cummings, A. C., Stone, E. C., Webber, W. R. (1993): Estimate of the distance to the solar wind termination shock from gradients of anomalous cosmic ray oxygen. Journal of Geophysical Research 98, 15165–15168.

    Article  ADS  Google Scholar 

  • Currie, R. G. (1974): Solar cycle signal in surface air temperature. Journal of Geophysical Research 79, 5657–5660.

    Article  ADS  Google Scholar 

  • Cushman, G. W., Rense, W. A. (1976): Evidence of outward flow of plasma in a coronal hole. The Astrophysical Journal (Letters) 207, L61–L62.

    Article  ADS  Google Scholar 

  • Czaykowska, A., De Pontieu, B., Alexander, D., Rank, G. (1999): Evidence for chromospheric evaporation in the late gradual flare phase from SOHO/CDS observations. The Astrophysical Journal (Letters) 521, L75–L78.

    Article  ADS  Google Scholar 

D

  • Daglis, I. A., et al. (1999): The terrestrial ring current: origin, formation, and decay. Review of Geophysics 37, 407–438.

    Article  ADS  Google Scholar 

  • Dahlburg, R. B., Klimchuk, J. A., Antiochos, S. K. (2005): An explanation of the “switch-on” nature of magnetic energy release and its application to coronal heating. The Astrophysical Journal 622, 1191–1201.

    Article  ADS  Google Scholar 

  • Damon, P. E., Jirikowic, J. L. (1994): Solar forcing of global climate change. In: The Sun as a Variable Star (Eds. J. Pap, H. Hudson and S. Solanki). New York: Cambridge University Press, pp. 301–314.

    Google Scholar 

  • Damon, P. E., Peristykh, A. N. (1999): Solar cycle length and twentieth century northern hemisphere warming. Geophysical Research Letters 26, 2469–2472.

    Article  ADS  Google Scholar 

  • Damon, P. E., Sonett, C. P. (1991): Solar and terrestrial components of the atmospheric 14C variation spectrum. In: The Sun in Time (Eds. C. P. Sonett, M. S. Giampapa and M. S. Matthews). Tucson: University of Arizona Press, pp. 360–388.

    Google Scholar 

  • Danesy, D. (Ed., 2004): SOHO-14/GONG 2004: Helio- and Asteroseismology: Towards a Golden Future. ESA SP-559 2004.

    Google Scholar 

  • Dansgaard, W., et al. (1980): Climatic record revealed by the Camp Century ice core. In: The Late-Glacial Ages (Ed. K. Turekian). New Haven: Yale University Press, pp. 37–46.

    Google Scholar 

  • Dansgaard, W., et al. (1984): North Atlantic climate oscillations revealed by deep Greenland ice cores. In: Climate Processes and Climate Sensitivity. American Geophysical Union Geophysical Monograph 29 (Eds. J. E. Hansen and T. Takahashi). Washington: American Geophysical Union, pp. 288–298.

    Google Scholar 

  • Dansgaard, W., et al. (1989): A new Greenland deep ice core. Science 218, 1273–1277.

    Article  ADS  Google Scholar 

  • Dasso, S., Milano, L. J., Matthaeus, W. H., Smith, C. W. (2005): Anisotropy in fast and slow wind fluctuations. The Astrophysical Journal (Letters) 635, L181–L184.

    Article  ADS  Google Scholar 

  • David, C., et al. (1998): Measurement of the electron temperature gradient in a solar coronal hole. Astronomy and Astrophysics 336, L90–L94.

    ADS  Google Scholar 

  • David, C., Gabriel, A. H., Bely-Dubau, F. (1997): Temperature structure in coronal holes. In: The Corona and Solar Wind Near Minimum Activity Proceedings of the Fifth SOHO Workshop. ESA SP-404. Noordwijk: ESA Publications Division, pp. 319–322.

    Google Scholar 

  • Davis, L. Jr. (1955): Interplanetary magnetic fields and cosmic rays. Physical Review 100, 1440–1444.

    Article  ADS  Google Scholar 

  • Davis, L. Jr. (1972): The interplanetary magnetic field. In: Solar Wind: The Proceedings of a Conference Sponsored by the National Aeronautics and Space Administration. NASA SP-308 (Eds. C. P. Sonett, P. J. Coleman, Jr., J. M. Wilcox) Washington: NASA, pp. 73–103.

    Google Scholar 

  • Davis, R. Jr. (1964): Solar neutrinos II. Experimental. Physical Review Letters 12, 303 305.

    Article  ADS  Google Scholar 

  • Davis, R. Jr., Harmer, D. S., Hoffman, K. C. (1968): Search for neutrinos from the Sun. Physical Review Letters 20, 1205–1209. Reproduced in: A Source Book in Astronomy and Astrophysics 1900–1975 (Eds. K. R. Lang and O. Gingerich). Cambridge: Harvard University Press 1979, pp. 389–395.

    Article  ADS  Google Scholar 

  • Davis, J. A., et al. (2008): First observation of a CME from the Sun to a distance greater than 1 AU using the Heliospheric Imager aboard STEREO A. Geophysical Research Letters – submitted.

    Google Scholar 

  • De Forest, C. E. (2004): High-frequency waves detected in the solar atmosphere. The Astrophysical Journal (Letters) 617, L89–L92.

    Article  ADS  Google Scholar 

  • De Forest, C. E., et al. (1997): Polar plume anatomy: results of a coordinated observation. Solar Physics 175, 393–410. Reproduced in: The First Results from SOHO (Eds. B. Fleck andZ. Svestka). Dordrecht: Kluwer Academic Publishers, pp. 393–410.

    Article  ADS  Google Scholar 

  • De Forest, C. E., Gurman, J. B. (1998): Observation of quasi-periodic compressive waves in solar polar plumes. The Astrophysical Journal (Letters) 501, L217–L220.

    Article  ADS  Google Scholar 

  • De Jager, C. (1986): Solar flares and particle acceleration. Space Science Reviews 44, 43–90.

    Article  ADS  Google Scholar 

  • De Jager, C., Kundu, M. R. (1963): A note on bursts of radio emission and high energy(>20 keV) X-rays from solar flares. Space Research 3, 836–838.

    Google Scholar 

  • De Jong, A. F. M., Mook, W. G., Becker, B. (1979): Confirmation of the Suess wiggles. Nature 280, 48–49.

    Article  ADS  Google Scholar 

  • De Keyser, J., Roth, M., Forsyth, R., Reisenfeld, D. (2000): Ulysses observations of sector boundaries at aphelion. Journal of Geophysical Research 105(A7), 15689–15698.

    Article  ADS  Google Scholar 

  • De Mairan, J. J. D. (1733): Traité Physique et Historique de l’Aurore Boréale. Paris: Imprimerie Royale.

    Google Scholar 

  • De Moortel, I., Hood, A. W., Ireland, J., Walsh, R. W. (2002): Longitudinal intensity oscillations in coronal loops observed with TRACE II. Discussion of measured parameters. Solar Physics 209, 89–108.

    Article  ADS  Google Scholar 

  • De Moortel, I., Ireland, J., Walsh, R. W. (2000): Observation of oscillations in coronal loops. Astronomy and Astrophysics 355, L23–L26.

    ADS  Google Scholar 

  • De Pontieu, B., Berger, T. E., Schrijver, C. J., Title, A. M. (1999): Dynamics of transition region moss at high time resolution. Solar Physics 190, 419–435.

    Article  ADS  Google Scholar 

  • De Pontieu, B., Erdélyi, R., De Moortel, I. (2005): How to channel photospheric oscillations into the corona. The Astrophysical Journal (Letters) 624, L61–L64.

    Article  ADS  Google Scholar 

  • De Pontieu, B., Erdélyi, R., Stewart, J. P. (2004): Solar chromospheric spicules from the leakage of photospheric oscillations and flows. Nature 430, 536–539.

    Article  Google Scholar 

  • De Pontieu, B., et al. (2007a): A tale of two spicules: the impact of spicules on the magnetic chromosphere. Publications of the Astronomical Society of Japan 59, S655–S662.

    Google Scholar 

  • De Pontieu, B., et al. (2007b): Chromospheric Alfvenic waves strong enough to power the solar wind. Science 318, 1574–1576.

    Article  ADS  Google Scholar 

  • De Pontieu, B., Martens, P. C. H., Hudson, H. S. (2001): Chromospheric damping of Alfvén waves. The Astrophysical Journal 558, 859–871.

    Article  ADS  Google Scholar 

  • De Pontieu, B., Tarbell, T., Erdelyi, R. (2003): Correlations on arcsecond scales between chromospheric and transition region emission in active regions. The Astrophysical Journal 590,502–518.

    Article  ADS  Google Scholar 

  • De Rosa, M. L., Gilman, P. A., Toomre, J. (2002): Solar multiscale convection and rotation gradients studied in shallow spherical shells. The Astrophysical Journal 581, 1356–1374.

    Article  ADS  Google Scholar 

  • De Rosa, M. L., Toomre, J. (2004): Evolution of solar supergranulation. The Astrophysical Journal 616, 1242–1260.

    Article  ADS  Google Scholar 

  • De Vorkin, D. H. (1992): Science with a Vengeance: How the Military Created the US Space Sciences after World War II. New York: Springer-Verlag.

    Google Scholar 

  • De Vries, H. L. (1958): Variation in concentration of radiocarbon with time and location on Earth. Proceedings Koninlijke Nederlandse Akademie Wetenschappen B, 61, 94–102.

    Google Scholar 

  • Dearborn, D. S. P., Blake, J. R. (1980a): Is the Sun constant? The Astrophysical Journal 237,616–619.

    Article  ADS  Google Scholar 

  • Dearborn, D. S. P., Blake, J. R. (1980b): Magnetic fields and the solar constant. Nature 287,365–366.

    Article  ADS  Google Scholar 

  • Dearborn, D. S. P., Blake, J. R. (1982): Surface magnetic fields and the solar luminosity. The Astrophysical Journal 257, 896–900.

    Article  ADS  Google Scholar 

  • Debrunner, H., et al. (1983): The solar cosmic ray neutron event on June 3, 1982. Proceedings 18th International Cosmic Ray Conference 4, 75–78.

    Google Scholar 

  • Debrunner, H., Flückiger, E. O., Lockwood, J. A. (1990): Signature of the solar cosmic-ray event on 1982 June 3. The Astrophysical Journal Supplement 73, 259–262.

    Article  ADS  Google Scholar 

  • Decker, R. B., et al. (2005): Voyager 1 in the foreshock, termination shock, and heliosheath. Science 309, 2020–2024.

    Article  ADS  Google Scholar 

  • Decker, R. B., et al. (2008): Mediation of the solar wind termination shock by non-thermal ions. Nature 454, 67–70.

    Article  ADS  Google Scholar 

  • Delaboudinière, J. -P., et al. (1995): EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission. Solar Physics 162, 291–312.

    Article  ADS  Google Scholar 

  • Dellinger, J. H. (1935): A new radio transmission phenomenon. Physical Review 48, 705.

    Article  ADS  Google Scholar 

  • Dellinger, J. H. (1937): Sudden ionospheric disturbances. Terrestrial Magnetism and Atmospheric Electricity 42, 49–53.

    Article  ADS  Google Scholar 

  • Delmas, R. J., et al. (1992): 1000 years of explosive volcanism recorded at South Pole. Tellus 44B, 335–350.

    ADS  Google Scholar 

  • Denisse, J. F. (1984): The early years of radio astronomy in France. In: The Early Years of Radio Astronomy (Ed. W. T. Sullivan III). New York: Cambridge University Press, pp. 303–316.

    Google Scholar 

  • Denisse, J. F., Boischot, A., Pick, M. (1960): Propiétes deséruptions chromospheriques assoiciées a la production de rayons cosmiques par le soliel. In: Space Research, Proceedings of the First International Space Science Symposium. Amsterdam: North Holland Publishing Co.,pp. 637–648.

    Google Scholar 

  • Dennis, B. R. (1985): Solar hard X-ray bursts. Solar Physics 100, 465–490.

    Article  ADS  Google Scholar 

  • Dennis, B. R. (1988): Solar flare hard X-ray observations. Solar Physics 118, 49–94.

    Article  ADS  MathSciNet  Google Scholar 

  • Dennis, B. R., Zarro, D. M. (1993): The Neupert effect: what can it tell us about the impulsive and gradual phases of solar flares? Solar Physics 146, 177–190.

    Article  ADS  Google Scholar 

  • Dennison, P. A., Hewish, A. (1967): The solar wind outside the plane of the ecliptic. Nature 213, 343–346.

    Article  ADS  Google Scholar 

  • Denskat, K. U., Neubauer, F. M. (1983): Observations of hydromagnetic turbulence in the solar wind. In: Solar Wind Five (Ed. M. Neugebauer). Washington, D.C.: NASA CP-2280, pp. 81–91.

    Google Scholar 

  • Dere, K. P. (1994): Explosive events, magnetic reconnection, and coronal heating. Advances in Space Research 14(4), 13–22.

    Article  ADS  Google Scholar 

  • Dere, K. P., et al. (1991): Explosive events and magnetic reconnection in the solar atmosphere. Journal of Geophysical Research 96, 9399–9407.

    Article  ADS  Google Scholar 

  • Dere, K. P., et al. (1997): EIT and LASCO observations of the initiation of a coronal mass ejection. Solar Physics 175, 601–612. Reproduced in: The First Results from SOHO (Eds. B. Fleck and Z. Svestka). Dordrecht: Kluwer Academic Publishers, pp. 601–612.

    Article  ADS  Google Scholar 

  • Dere, K. P., et al. (1999): LASCO and EIT observations of helical structure in coronal mass ejections. Astrophysical Journal 516, 465–474.

    Article  ADS  Google Scholar 

  • Dere, K. P., et al. (2007): The structure and dynamics of the quiet corona from observations with the extreme ultraviolet imaging spectrometer on Hinode. Publications of the Astronomical Society of Japan 59, S721–S726.

    ADS  Google Scholar 

  • Dere, K. P., Mason, H. E. (1993): Nonthermal velocities in the solar transition zone observed with the high-resolution telescope and spectrograph. Solar Physics 144, 217–242.

    Article  ADS  Google Scholar 

  • Dere, K. P., Wang, D., Howard, R. (2005): Three-dimensional structure of coronal mass ejections from LASCO polarization measurements. The Astrophysical Journal (Letters) 620,L119–L122.

    Article  ADS  Google Scholar 

  • Desai, M. I., et al. (2003): Evidence for a suprathermal seed population of heavy ions accelerated by interplanetary shocks near 1 AU. The Astrophysical Journal 588, 1149–1162.

    Article  ADS  Google Scholar 

  • Desai, M. I., et al. (2006): Heavy-ion elemental abundances in large solar energetic particle events and their implications for the seed population. Astrophysical Journal 649, 470–489.

    Article  ADS  Google Scholar 

  • Desai, M. I., et al. (2006): The seed population for energetic particles accelerated by CME-driven shocks. Space Science Reviews 124, 261–275.

    Article  ADS  Google Scholar 

  • Dessler, A. J. (1967): Solar wind and interplanetary magnetic field. Reviews of Geophysics 5, 1–41.

    Article  ADS  Google Scholar 

  • Deubner, F. -L. (1975): Observations of low wave number nonradial eigenmodes of the Sun. Astronomy and Astrophysics 44, 371–375.

    ADS  Google Scholar 

  • Deubner, F. -L., Ulrich, R. K., Rhodes, E. J. Jr. (1979): Solar p-mode oscillations as a tracer of radial differential rotation. Astronomy and Astrophysics 72, 177–185.

    ADS  Google Scholar 

  • Deubner, F.-L., Gough, D. (1984): Helioseismology – oscillations as a diagnostic of the solar interior. Annual Review of Astronomy and Astrophysics 22, 593–619.

    Article  ADS  Google Scholar 

  • Dicke, R. H. (1978): Is there a chronometer hidden deep in the Sun? Nature 276, 676–680.

    Article  ADS  Google Scholar 

  • Dickinson, R. E. (1975): Solar variability and the lower atmosphere. Bulletin of the American Meteorological Society 56, 1240–1248.

    Article  ADS  Google Scholar 

  • Dickinson, R. W., Cicerone, R. J. (1986): Future global warming from atmospheric trace gases. Nature 319, 109–115.

    Article  ADS  Google Scholar 

  • Dietrich, W. F. (1973): The differential energy spectra of solar-flare 1H, 3He and 4He. The Astrophysical Journal 180, 955–973.

    Article  ADS  Google Scholar 

  • Dikpati, M. (2005): Solar magnetic fields and the dynamo theory. Advances in Space Research 35(3), 322–328.

    Article  ADS  Google Scholar 

  • Dikpati, M., De Toma, G., Gilman, P. A. (2006): Predicting the strength of solar cycle 24 using a flux-transport dynamo-based tool. Geophysical Research Letters 33, L5102.

    Article  Google Scholar 

  • Dikpati, M., Gilman, P. A. (2005): A shallow-water theory for the Sun’s active longitudes. The Astrophysical Journal (Letters) 635, L193–L196.

    Article  ADS  Google Scholar 

  • Dikpati, M., Gilman, P. A., Mac Gregor, K. B. (2005): Constraints on the applicability of an interface dynamo to the Sun. The Astrophysical Journal 631, 647–652.

    Article  ADS  Google Scholar 

  • Dilke, F. W. W., Gough, D. O. (1972): The solar spoon. Nature 240, 262–264, 293, 294.

    Article  Google Scholar 

  • Dirac, P. A. M. (1931): Quantized singularities in the electromagnetic field. Proceedings of the Royal Society of London A 133, 60–72.

    Google Scholar 

  • Dobrzycka, D., et al. (2003): Ultraviolet spectroscopy of narrow coronal mass ejections. The Astrophysical Journal 588, 586–595.

    Article  ADS  Google Scholar 

  • Dobrzycka, D., Raymond, J. C., Cranmer, S. R. (2000): Ultraviolet spectroscopy of polar coronal jets. The Astrophysical Journal 538, 922–931.

    Article  ADS  Google Scholar 

  • Dobson, G. M. B. (1968): Forty years’ research on atmospheric ozone at Oxford: a history. Applied Optics 7, 387–405.

    Article  ADS  Google Scholar 

  • Dodson, H. W., Hedeman, E. R. (1970): Major Hα flares in centers of activity with very small or no spots. Solar Physics 13, 401–419.

    Article  ADS  Google Scholar 

  • Dodson, H. W., Hedeman, E. R., Owren, L. (1953): Solar flares and associated 200 Mc/sec radiation. The Astrophysical Journal 118, 169–196.

    Article  ADS  Google Scholar 

  • Domínguez Cerdeña, I., Kneer, F., Sánchez Almeida, J. (2003): Quiet-Sun magnetic fields at high spatial resolution. The Astrophysical Journal (Letters) 582, L55–L58.

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A. I. (1995): The SOHO mission: An overview. Solar Physics 162, 1–37.

    Article  ADS  Google Scholar 

  • Donea, A.-C., Lindsey, C. (2005): Seismic emission from the solar flares of 2003 October 28 and 29. Astrophysical Journal 630, 1168–1183.

    Article  ADS  Google Scholar 

  • Dones, L., et al. (2004): Oort cloud formation and dynamics. In: Comets II (Eds. M. C. Festou, H. U. Keller and H. A. Weaver). Tucson: University of Arizona Press, pp. 153–174. Also in Astronomical Society of the Pacific Conference Proceedings 323, 371.

    Google Scholar 

  • Donnelly, R. F. (1967): The solar flare radiations responsible for sudden frequency deviations. Journal of Geophysical Research 72, 5247–5256.

    Article  ADS  Google Scholar 

  • Doschek, G. A. (1983a): Solar flare X-ray spectra from the P78–1 spacecraft. Solar Physics 86, 49–58.

    Article  ADS  Google Scholar 

  • Doschek, G. A. (1983b): Solar instruments on the P78–1 spacecraft. Solar Physics 86, 9–17.

    Article  ADS  Google Scholar 

  • Doschek, G. A. (1990): Soft X-ray spectroscopy of solar flares – an overview. Astrophysical Journal Supplement 73, 117–130.

    Article  ADS  Google Scholar 

  • Doschek, G. A. (1991): High-temperature plasma in solar flares. Philosophical Transactions of the Royal Society (London) A336, 451–460.

    Article  ADS  Google Scholar 

  • Doschek, G. A., et al. (1980): High-resolution X-ray spectra of solar flares III. General spectral properties of X1 –X5 type flares. The Astrophysical Journal 239, 725–737.

    Article  ADS  Google Scholar 

  • Doschek, G. A., et al. (1993): The 1992 January 5 flare at 13.3 UT: observations from Yohkoh. The Astrophysical Journal 416, 845–856.

    Article  ADS  Google Scholar 

  • Doschek, G. A., et al. (2007a): Nonthermal velocities in solar active regions observed with the extreme-ultraviolet imaging spectrometer on Hinode. The Astrophysical Journal (Letters) 667, L109–L112.

    Article  ADS  Google Scholar 

  • Doschek, G. A., et al. (2007b): The temperature and density structure of an active region observed with the extreme-ultraviolet imaging spectrometer on Hinode. Publications of the Astronomical Society of Japan 59, S707–S712.

    ADS  Google Scholar 

  • Doschek, G. A., Feldman, U., Bohlin, J. D. (1976): Doppler wavelength shifts of transition zone lines measured in Skylab solar spectra. The Astrophysical Journal (Letters) 205, L177–L180.

    Article  ADS  Google Scholar 

  • Doschek, G. A., Kreplin, R. W., Feldman, U. (1979): High-resolution solar flare X-ray spectra. The Astrophysical Journal (Letters) 233, L157–L160.

    Article  ADS  Google Scholar 

  • Doschek, G. A., Mariska, J. T., Sakao, T. (1996): Soft X-ray flare dynamics. The Astrophysical Journal 459, 823–835.

    Article  ADS  Google Scholar 

  • Doschek, G. A., Strong, K. T., Tsuneta, S. (1995): The bright knots at the tops of soft X-ray flare loops. Quantitative results from Yohkoh. The Astrophysical Journal 440, 370–385.

    Article  ADS  Google Scholar 

  • Doschek, G. A., Warren, H. P. (2005): Chromospheric evaporation in solar flares revisited. Astrophysical Journal 629, 1150–1163.

    Article  ADS  Google Scholar 

  • Dowdy, J. F. Jr., Rabin, D., Moore, R. L. (1986): On the magnetic structure of the quiet transition region. Solar Physics 105, 35–45.

    Article  ADS  Google Scholar 

  • Dröge, F. (1977): Millisecond fine-structures of solar burst radiation in the range 0.2–1.4 GHz. Astronomy and Astrophysics 57, 285–290.

    ADS  Google Scholar 

  • Dröge, W., Kartavykh, Y. Y., Klecker, B., Mason, G. M. (2006): Acceleration and transport modeling of solar energetic particle charge sates for the event of 1998 September 9. The Astrophysical Journal 645, 1516–1524.

    Article  ADS  Google Scholar 

  • Drake, J. J., Testa, P. (2005): The ‘solar model problem’ solved by the abundance of neon in nearby stars. Nature 436, 525–528.

    Article  ADS  Google Scholar 

  • Dreschhoff, G., Zeller, E. J. (1998): Ultra-high nitrate in polar ice as indicator of past solar activity. Solar Physics 177, 365–374.

    Article  ADS  Google Scholar 

  • Dryer, M. (1974): Interplanetary shock waves generated by solar flares. Space Science Reviews 15, 403–468.

    Article  ADS  Google Scholar 

  • Dryer, M. (1982): Coronal transient phenomenon. Space Science Reviews 33, 233–275.

    Article  ADS  Google Scholar 

  • Dryer, M. (1994): Interplanetary studies: propagation of disturbances between the Sun and the magnetosphere. Space Science Reviews 67, 363–419.

    Article  ADS  Google Scholar 

  • Dryer, M. (1996): Comments on the origins of coronal mass ejections. Solar Physics 169, 421–429.

    Article  ADS  Google Scholar 

  • Dryer, M. (1998): Multidimensional, magnetohydrodynamic simulation of solar generated disturbances: space weather forecasting of geomagnetic storms. American Institute of Aeronautics and Astronautics Journal 36(3), 365–370.

    Google Scholar 

  • Dryer, M., et al. (2004): Real-time shock arrival predictions during the “Halloween 2003 epoch”. Space Weather 2, S09001.

    Article  ADS  Google Scholar 

  • Dryer, M., Jones, D. L. (1968): Energy deposition in the solar wind by flare-generated shock waves. Journal of Geophysical Research, Space Physics 73, 4875–4881.

    Article  Google Scholar 

  • Dryer, M., McIntosh, P. S. (1972): Preface to solar activity and predictions. American Institute of Aeronautics and Astronautics Proceedings 30, 1–3.

    Google Scholar 

  • Dryer, M., Wu, C.-C., Smith, Z. K. (1997): Three-dimensional MHD simulation of the April 14, 1994 interplanetary coronal mass ejection and its propagation to Earth and Ulysses. Journal of Geophysical Research 102(A7), 14065–14074.

    Article  ADS  Google Scholar 

  • D’silva, S. (1998): Computing travel time in time-distance helioseismology. The Astrophysical Journal (Letters) 498, L79–L82.

    Article  ADS  Google Scholar 

  • Duijveman, A., Hoyng, P., Machado, M. E. (1982): X-ray imaging of three flares during the impulsive phase. Solar Physics 81, 137–157.

    Article  ADS  Google Scholar 

  • Dulk, G. A. (1985): Radio emission from the Sun and other stars. Annual Review of Astronomy and Astrophysics 23, 169–224.

    Article  ADS  Google Scholar 

  • Dungey, J. W. (1953): Conditions for the occurrence of electrical discharges in astrophysical systems. Philosophical Magazine 44, 725–738.

    Google Scholar 

  • Dungey, J. W. (1958): The neutral point discharge theory of solar flares. A reply to Cowling’s criticism. In: Electromagnetic Phenomena in Cosmical Physics. Proceedings of IAU Symposium No. 6 (Ed. B. Lehnert). Cambridge: Cambridge at the University Press 1958, pp. 135–140.

    Google Scholar 

  • Dungey, J. W. (1961): Interplanetary magnetic field and the auroral zones. Physical Review Letters 6, 47–48.

    Article  ADS  Google Scholar 

  • Dungey, J. W. (1979): First evidence and early studies of the Earth’s bow shock. Nuovo Cimento C 2, 655–660.

    Article  ADS  Google Scholar 

  • Dungey, J. W. (1994): Memories, maxims, and motives. Journal of Geophysical Research 99, 19189–19197.

    Article  ADS  Google Scholar 

  • Duvall, T. L. Jr. (1979): Large-scale solar velocity fields. Solar Physics 63, 3–15.

    Article  ADS  Google Scholar 

  • Duvall, T. L. Jr. (1980): The equatorial rotation rate of the supergranulation cells. Solar Physics 66, 213–221.

    Article  ADS  Google Scholar 

  • Duvall, T. L. Jr. (1982): A dispersion law for solar oscillations. Nature 300, 242–243.

    Article  ADS  Google Scholar 

  • Duvall, T. L. Jr., Birch, A. C., Gizon, L. (2006): Direct measurement of travel-time kernels for helioseismology. The Astrophysical Journal 646, 553–559.

    Article  ADS  Google Scholar 

  • Duvall, T. L. Jr., et al. (1984): Internal rotation of the Sun. Nature 310, 22–25.

    Article  ADS  Google Scholar 

  • Duvall, T. L. Jr., et al. (1996): Downflows under sunspots detected by helioseismic tomography. Nature 379, 235–237.

    Article  ADS  Google Scholar 

  • Duvall, T. L. Jr., et al. (1997): Time-distance helioseismology with the MDI instrument. Solar Physics 170, 63–73. Reprinted in: The First Results from SOHO (Eds. B. Fleck and Z. Svestka). Boston: Kluwer Academic Publishers, pp. 63–73.

    Article  ADS  Google Scholar 

  • Duvall, T. L. Jr., Harvey, J. W. (1983): Observations of solar oscillations of low and intermediate degree. Nature 302, 24–27.

    Article  ADS  Google Scholar 

  • Duvall, T. L. Jr., Harvey, J. W. (1984): Rotational frequency splitting of solar oscillations. Nature 310, 19–22.

    Article  ADS  Google Scholar 

  • Duvall, T. L. Jr., Harvey, J. W., Kosovichev, A. G., Svestka, Z. (Eds., 2000) SOHO 9: Helioseismic Diagnostics of Solar Convection and Activity. Solar Physics 192, Nos. 21–22, 1–478.

    Google Scholar 

  • Duvall, T. L. Jr., Harvey, J. W., Pomerantz, M. A. (1986): Latitude and depth variation of solar rotation. Nature 321, 500–501.

    Article  ADS  Google Scholar 

  • Duvall, T. L. Jr., Jeffries, S. M., Harvey, J. W., Pomerantz, M. A. (1993): Time-distance helioseismology. Nature 362, 430–432.

    Article  ADS  Google Scholar 

  • Dziembowski, W. A., Goode, P. R. (2004): Helioseismic probing of solar variability: The formation and simple assessments. The Astrophysical Journal 600, 464–479.

    Article  ADS  Google Scholar 

E

  • Earl, J. A. (1961): Cloud-chamber observations of primary cosmic-ray electrons. Physical Review Letters 6, 125–128.

    Article  ADS  Google Scholar 

  • Eather, R. H. (1980): Majestic Lights. The Aurora in Science, History, and the Arts. Washington: American Geophysical Union.

    Google Scholar 

  • Eddington, A. S. (1920): The internal constitution of the stars. Nature 106, 14–20.

    Article  ADS  Google Scholar 

  • Eddy, J. A. (1974): A nineteenth-century coronal transient. Astronomy and Astrophysics 34, 235–240.

    ADS  Google Scholar 

  • Eddy, J. A. (1976): The Maunder minimum. The reign of Louis XIV appears to have been a time of real anomaly in the behavior of the sun. Science 192, 1189–1202.

    Article  ADS  Google Scholar 

  • Eddy, J. A. (1977a): Climate and the changing Sun. Climate Change 1, 173–190.

    Article  Google Scholar 

  • Eddy, J. A. (1977b): The case of the missing sunspots. Scientific American 236, 80–95, May.

    ADS  Google Scholar 

  • Eddy, J. A. (1977c): Historical evidence for the existence of the solar cycle. In: The Solar Output and Its Variation (Ed. Oran R. White). Boulder: Colorado Associated University Press, pp. 51–71.

    Google Scholar 

  • Eddy, J. A. (1979): A New Sun: The Solar Results From Skylab. Washington: National Aeronautics and Space Administration SP-402 1979.

    Google Scholar 

  • Eddy, J. A. (1983a): The Maunder minimum: a reappraisal. Solar Physics 89, 195–207.

    Article  ADS  Google Scholar 

  • Eddy, J. A. (1983b): Keynote address: an historical review of solar variability, weather, and climate. In: Weather and Climate Responses to Solar Variations (Ed. B. M. McCormac). Boulder: Colorado Associated University Press, pp. 1–23.

    Google Scholar 

  • Eddy, J. A. (1990): Some thoughts on Sun-weather relations. Philosophical Transactions of the Royal Society of London A 330, 543–545.

    Article  ADS  Google Scholar 

  • Eddy, J. A., Gilliland, R. L., Hoyt, D. V. (1982): Changes in the solar constant and climatic effects. Nature 300, 689–693.

    Article  ADS  Google Scholar 

  • Eddy, J. A., Stephenson, F. R., Yau, K. K. C. (1989): On pre-telescopic sunspot records. Quarterly Journal of the Royal Astronomical Society 30, 60–73.

    ADS  Google Scholar 

  • Edlén, B. (1994): An attempt to identify the emission lines in the spectrum of the solar corona. Arkiv för Matematik, Astronomi och Fysik 28B, 1–4. Reproduced in: A Source Book in Astronomy and Astrophysics, 1900-1975 (Eds. K. R. Lang and O. Gingerich). Cambridge, MA: Harvard University Press 1975, pp. 120–124.

    Google Scholar 

  • Edlén, B. (1942): Die Deutung der Emissionslinien im Spektrum der Sonnenkorona. Zeitschrift für Astrophysik 22, 30–64.

    ADS  Google Scholar 

  • Edlén, B. (1945): The identification of the coronal lines. Monthly Notices of the Royal Astronomical Society 105, 323–333.

    ADS  Google Scholar 

  • Eguci, K., et al. (2003): First results from KamLAND: evidence for reactor anti-neutrino disappearance. Physical Review Letters 90, 021802.

    Article  ADS  Google Scholar 

  • Einaudi, G., et al. (1999): Formation of the slow solar wind in a coronal streamer. Journal of Geophysical Research 104(A1), 521–534.

    Article  ADS  Google Scholar 

  • Einaudi, G., et al. (2001): Plasmoid formation and acceleration in the solar streamer belt. The Astrophysical Journal 547, 1167–1177.

    Article  ADS  Google Scholar 

  • Einstein, A. (1905): Ist die Trägheit eines Körpers von seinem Energeieinhalt abhängig? (Does the inertia of a body depend upon its energy content?), Annalen der Physik 18, 639–641. English translation given in A Source Book in Astronomy and Astrophysics 1900–1975 (Eds. K. R. Lang and O. Gingerich). Cambridge, Massachusetts: Harvard University Press 1979, pp. 276–278.

    Article  ADS  Google Scholar 

  • Einstein, A. (1906): Das Prinzip von der Erhaltung der Schwerpunktsbewegung und die Trägheit der Energie. (The principle of the conservation of the motion of the center of gravity and the inertia of energy), Annalen der Physik 20, 627–633. English translation given in A Source Book in Astronomy and Astrophysics 1900–1975 (Eds. K. R. Lang and O. Gingerich). Cambridge, Massachusetts: Harvard University Press 1979, pp. 276–280.

    Article  ADS  Google Scholar 

  • Elliott, H. A., McComas, D. J., Riley, P. (2003): Latitudinal extent of large-scale structures in the solar wind. Annales Geophysicae 21(6), 1331–1339.

    ADS  Google Scholar 

  • Elliott, J. R., Kosovichev, A. G. (1998): The adiabatic exponent in the solar core. The Astrophysical Journal (Letters) 500, L199–L202.

    Article  ADS  Google Scholar 

  • Ellison, M. A. (1942): Some studies of the motions of hydrogen flocculi by Doppler displacements of the Hα line. Monthly Notices of the Royal Astronomical Society 102, 11–21.

    ADS  Google Scholar 

  • Ellison, M. A. (1946): Visual and spectrographic observations of a great solar flare 1946 July 25. Monthly Notices of the Royal Astronomical Society 106, 500–508.

    ADS  Google Scholar 

  • Ellison, M. A. (1948): Distinction between flares and prominences. Observatory 68, 69–70.

    ADS  Google Scholar 

  • Ellison, M. A. (1949): Characteristic properties of chromospheric flares. Monthly Notices of the Royal Astronomical Society 109, 1–27.

    ADS  Google Scholar 

  • Elphinstone, R. E., Murphree, J. S., Cogger, L. L. (1996): What is a global auroral substorm? Reviews of Geophysics 34, 169–232.

    Article  ADS  Google Scholar 

  • Elsworth, Y. P., et al. (1990): Variation of low-order acoustic solar oscillations over the solar cycle. Nature 345, 322–324.

    Article  ADS  Google Scholar 

  • Elsworth, Y. P., et al. (1995): Slow rotation of the Sun’s interior. Nature 376, 669–672.

    Article  ADS  Google Scholar 

  • Emiliani, C. (1966): Isotopic paleotemperatures. Science 154, 851–857.

    Article  ADS  Google Scholar 

  • Emslie, A. G., et al. (2004): Energy partition in two solar flare/CME events. Journal of Geophysical Research 109(A10), A10104.

    Article  ADS  Google Scholar 

  • Endeve, E., et al. (2005): Release of helium from closed-field regions of the Sun. The Astrophysical Journal 624, 02.

    Article  Google Scholar 

  • Evans, J. V. (1982): The Sun’s influence on the Earth’s atmosphere and interplanetary space. Science 216, 467–474.

    Article  ADS  Google Scholar 

  • Evenson, P. Meyer, P. Pyle, K. R. (1983): Protons from the decay of solar flare neutrons. The Astrophysical Journal 274, 875–882.

    Article  ADS  Google Scholar 

  • Evershed, J. (1948): Spectrum lines in chromospheric flares. Observatory 68, 67–68.

    ADS  Google Scholar 

F

  • Fabian, P., Pyle, J. A., Wells, R. J. (1979): The August 72 proton event and the atmospheric ozone layer. Nature 277, 458–460.

    Article  ADS  Google Scholar 

  • Fainberg, J., Stone, R. G. (1974): Satellite observations of type III radio bursts at low frequencies. Space Science Reviews 16, 145–188.

    Article  ADS  Google Scholar 

  • Fairfield, D. H., Cahill, L. J. Jr. (1966): Transition region magnetic field and polar magnetic disturbances. Journal of Geophysical Research 71, 155–169.

    ADS  Google Scholar 

  • Falconer, D. A., et al. (1997): Neutral-line magnetic shear and enhanced coronal heating in solar active regions. The Astrophysical Journal 482, 519–534.

    Article  ADS  Google Scholar 

  • Falconer, D. A., Moore, R. L., Gary, G. A. (2002): Correlation of the coronal mass ejection productivity of solar active regions with measures of their global nonpotentiality from vector magnetograms: baseline results. Astrophysical Journal 569, 1016–1025.

    Article  ADS  Google Scholar 

  • Falconer, D. A., Moore, R. L., Porter, J. G., Hathaway, D. H. (1998): Network coronal bright points: coronal heating concentrations found in the solar magnetic network. The Astrophysical Journal 501, 386–396.

    Article  ADS  Google Scholar 

  • Fan, Y. (2004): Magnetic fields in the solar convection zone. Living Reviews in Solar Physics 1, 1.

    ADS  Google Scholar 

  • Fan, Y. (2005): Coronal mass ejections as loss of confinement of kinked magnetic flux ropes. Astrophysical Journal 630, 543–551.

    Article  ADS  Google Scholar 

  • Fan, Y., Gibson, S. E. (2004): Numerical simulations of three-dimensional coronal magnetic fields resulting from the emergence of twisted magnetic flux tubes. Astrophysical Journal 609, 1123–1133.

    Article  ADS  Google Scholar 

  • Fan, Y., Gibson, S. E. (2006): On the nature of the x-ray bright core in a stable filament channel. Astrophysical Journal (Letters) 641, L149–L152.

    Article  ADS  Google Scholar 

  • Fan, Y., Gibson, S. E. (2007): Onset of coronal mass ejections due to loss of confinement of coronal flux ropes. The Astrophysical Journal 668, 1232–1245.

    Article  ADS  Google Scholar 

  • Farrugia, C. J., Burlaga, L. F., Lepping, R. P. (1997): Magnetic clouds and the quiet storm effect at Earth. In: Magnetic Storms: Geophysical Monograph 98 (Eds. B. T. Tsurutani, et al.). Washington: American Geophysical Union, pp. 91–106.

    Google Scholar 

  • Farrugia, C. J., et al. (1993): The Earth’s magnetosphere under continued forcing: substorm activity during the passage of an interplanetary magnetic cloud. Journal of Geophysical Research 98, 7657–7671.

    Article  ADS  Google Scholar 

  • Feldman, U. (1992): Elemental abundances in the upper solar atmosphere. Physica Scripta 46, 202–220.

    Article  ADS  Google Scholar 

  • Feldman, U., et al. (1980): High-resolution X-ray spectra of solar flares IV. General spectral properties of M-type flares. The Astrophysical Journal 241, 1175–1185.

    Article  ADS  Google Scholar 

  • Feldman, U., et al. (1994): The morphology of the 107 plasma in solar flares I. Nonimpulsive flares. Astrophysical Journal 424, 444–458.

    Article  ADS  Google Scholar 

  • Feldman, U., et al. (1996a): Electron temperature, emission measure, and X-ray flux in A2 to X2 X-ray class solar flares. Astrophysical Journal 460, 1034–1041.

    Article  ADS  Google Scholar 

  • Feldman, U., Widing, K. G. (1993): Elemental abundances in the upper solar atmosphere of quiet and coronal hole regions (Te is approximately equal to 4.3× 10 exp 5 K). Astrophysical Journal 414, 381–388.

    Article  ADS  Google Scholar 

  • Feldman, W. C., et al. (1976): High-speed solar wind parameters at 1 AU. Journal of Geophysical Research 81, 5054–5060.

    Article  ADS  Google Scholar 

  • Feldman, W. C., et al. (1977): Plasma and magnetic fields from the Sun. In: The Solar Output and its Variations (Ed. O. R. White). Boulder: Colorado Associated University Press, pp. 351–381.

    Google Scholar 

  • Feldman, W. C., et al. (1981): The solar origins of solar wind interstream flows: near-equatorial coronal streamers. Journal of Geophysical Research 86(A7), 5408–5416.

    Article  ADS  Google Scholar 

  • Feldman, W. C., et al. (1996b): Constraints on high-speed solar wind structure near its coronal base: a Ulysses perspective. Astronomy and Astrophysics 316, 355–367.

    ADS  Google Scholar 

  • Feldman, W. C., et al. (1997): Experimental constraints on pulsed and steady state models of the solar wind near the Sun. Journal of Geophysical Research 102, 26, 905.

    Google Scholar 

  • Feng, L. B., et al. (2007): First stereoscopic coronal loop reconstructions from STEREO SECCHI images. The Astrophysical Journal Letters 671, 205.

    Article  ADS  Google Scholar 

  • Fermi, E. (1934): Versuch einer theorie de beta-strahlen I. (An attempt at the theory of beta-rays.), Zeitschrift fur Physik 88, 161. English translation in American Journal of Physics 36, 1150 (1968).

    Google Scholar 

  • Fichtel, C. E., Guss, D. E. (1961): Heavy nuclei in solar cosmic rays. Physical Review 6,495–497.

    ADS  Google Scholar 

  • Fireman, E. L. (1980): Solar activity during the past 10,000 years from radionuclides in lunar samples. In: The Ancient Sun:Fossil Record in the Earth, Moon and Meteorites (Eds. R. O. Pepin, J. A. Eddy and R. B. Merrill). New York: Pergamon Press, pp. 365–386.

    Google Scholar 

  • Fischer, H., et al. (1999): Ice core records of atmospheric CO2 around the last three glacial terminations. Science 283, 1712–1714.

    Article  ADS  Google Scholar 

  • Fishman, G. J., et al. (1994): Discovery of intense gamma-ray flashes of atmospheric origin. Science 264, 1313–1316.

    Article  ADS  Google Scholar 

  • Fisk, L. A. (1978): He-3 rich flares – a possible explanation. The Astrophysical Journal 224, 1048–1055.

    Article  ADS  Google Scholar 

  • Fisk, L. A. (1996): Motion of the footpoints of heliospheric magnetic field lines at the Sun: Implications for recurrent energetic particle events at high heliographic latitudes. Journal of Geophysical Research, 101, A7, 15547–15554.

    Article  ADS  Google Scholar 

  • Fisk, L. A. (2001): On the global structure of the heliospheric magnetic field. Journal of Geophysical Research 106(A8), 15849–15858.

    Article  ADS  Google Scholar 

  • Fisk, L. A. (2003): Acceleration of the solar wind as a result of the reconnection of open magnetic flux with coronal loops. Journal of Geophysical Research 108, A4, SSH 7-1, 1157.

    Article  ADS  MathSciNet  Google Scholar 

  • Fisk, L. A. (2005): The open magnetic flux of the Sun 1. Transport by reconnections with coronal loops. The Astrophysical Journal 626, 563–573.

    Article  ADS  Google Scholar 

  • Fisk, L. A., et al. (2003): Acceleration of the solar wind as a result of the reconnection of open magnetic flux with coronal loops. American Institute of Physics Proceedings 679, 287–292.

    Google Scholar 

  • Fisk, L. A., Gloeckler, G. (2006): The common spectrum for accelerated ions in the quiet-time solar wind. The Astrophysicla Journal (Letters) 640, L79–L82.

    Article  ADS  Google Scholar 

  • Fisk, L. A., Jokipii, J. R. (1999): Mechanisms for latitudinal transport of energetic particles in the heliosphere. Space Science Reviews 89, 115–124.

    Article  ADS  Google Scholar 

  • Fisk, L. A., Kozlovsky, B., Ramaty, R. (1974): An interpretation of the observed oxygen and nitrogen enhancements in low-energy cosmic rays. Astrophysical Journal (Letters) 190, L35–L37.

    Article  ADS  Google Scholar 

  • Fisk, L. A., Lee, M. A. (1980): Shock acceleration of energetic particles in co-rotating interaction regions in the solar wind. The Astrophysical Journal 237, 620–626.

    Article  ADS  Google Scholar 

  • Fisk, L. A., Schwadron, N. A. (2001a): Origin of the solar wind theory. Space Science Reviews 97, 221.

    Article  Google Scholar 

  • Fisk, L. A., Schwadron, N. A. (2001b): The behavior of open magnetic field of the sun. The Astrophysical Journal 560, 425–438.

    Article  ADS  Google Scholar 

  • Fisk, L. A., Schwadron, N. A., Zurbuchen, T. H. (1999): Acceleration of the fast solar wind by the emergence of new magnetic flux. Journal of Geophysical Research 104, A9, 19765–19772.

    Article  ADS  Google Scholar 

  • Fisk, L. A., Schwadron, N. A., Zuruchen, T. H. (1998): On the slow solar wind. Space Science Reviews 86, 51–60.

    Article  ADS  Google Scholar 

  • Fisk, L. A., Zurbuchen, T. H. (2006): Distribution and properties of open magnetic flux outside of coronal holes. Journal of Geophysical Research 111, A09115.

    Article  Google Scholar 

  • Fisk, L. A., Zurbuchen, T. H., Schwadron, N. A. (1999): On the coronal magnetic field: consequences of large-scale motion. The Astrophysical Journal 521, 868–877.

    Article  ADS  Google Scholar 

  • Fitzenreiter, R. J., et al. (2003): Modification of the solar wind electron velocity distribution at interplanetary shocks. Journal of Geophysical Research 108(A12), SSH 1–1.

    Article  Google Scholar 

  • Fitzgerald, G. F. (1892): Sunspots and magnetic storms. The Electrician 30, 48.

    Google Scholar 

  • Fitzgerald, G. F. (1900): Sunspots, magnetic storms, comets’ tails, atmospheric electricity and aurorae. The Electrician 46, 249, 287–288.

    Google Scholar 

  • Fleck, B. (2005): Eight years of SOHO: some highlights. In: Solar Magnetic Phenomena Astrophysics and Space Science Library 320, (Eds. A. Hanslmeier, A. Veronig, M. Messerotti) New York: Springer, 139–166.

    Google Scholar 

  • Fleck, B., Domingo, V., Poland, A. I. (Eds., 1995): The SOHO mission. Solar Physics 162, Nos. 1, 2. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Fleck, B., Gurman, J. B., Hochedez, J. -F., Robbrecht, E. (Eds., 2008): SOHO-20: transient events on the sun and in the heliosphere. Annales Geophysicae.

    Google Scholar 

  • Fleck, B., Noci, G., Poletto, G. (Eds., 1994): SOHO-2: Mass supply and flows in the solar corona. Space Science Reviews 70(1–2).

    Google Scholar 

  • Fleck, B., Svestka, Z., (Eds., 1997): The First Results from SOHO. Solar Physics 170(1), 175(2). Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Fleck, B., Zurbuchen, T. H. (Eds., 2005): Solar Wind 11/SOHO 16: Connecting Sun and Heliosphere. ESA SP-592 2005 Noordwijk, the Netherlands.

    Google Scholar 

  • Fleishman, G. D., Nita, G. M., Gary, D. E. (2005): Evidence for resonant transition radiation in decimetric continuum solar bursts. Astrophysical Journal 620, 506–516.

    Article  ADS  Google Scholar 

  • Fletcher, K., Thompson, M. (Eds., 2006): SOHO-18/GONG 2006: Beyond the Spherical Sun. ESA SP-624 2006.

    Google Scholar 

  • Fletcher, L. Hannah, I. G., Hudson, H. S., Metcalf, T. R. (2007): A TRACE white light and RHESSI hard X-ray study of flare energetics. Astrophysical Journal 656, 1187–1196.

    Article  ADS  Google Scholar 

  • Fletcher, L., Huber, M. C. E. (1997): O5+ acceleration by turbulence in polar coronal holes. In: The Corona and Solar Wind Near Minimum Activity. Proceedings of the Fifth SOHO Workshop. ESA SP-404. Noordwijk: ESA Publications Division, pp. 379–384.

    Google Scholar 

  • Fletcher, L., Hudson, H. (2001): The magnetic structure and generation of EUV flare ribbons. Solar Physics 204, 69–89.

    Article  ADS  Google Scholar 

  • Fletcher, L., Hudson, H. (2002): Spectral and spatial variations of flare hard x-ray footpoints. Solar Physics 210, 307–321.

    Article  ADS  Google Scholar 

  • Fletcher, L., Pollock, J. A., Potts, H. E. (2004): Tracking of TRACE ultraviolet flare footpoints. Solar Physics 222, 279–298.

    Article  ADS  Google Scholar 

  • Fludra, A., et al. (1989): Turbulent and directed plasma motions in solar flares. The Astrophysical Journal 344, 991–1003.

    Article  ADS  Google Scholar 

  • Fludra, A., et al. (1997): Active regions observed in extreme ultraviolet light by the coronal diagnostic spectrometer on SOHO. Solar Physics 175, 487–509.

    Article  ADS  Google Scholar 

  • Fludra, A., Ireland, J. (2003): Inversion of the intensity-magnetic field relationship in solar active regions. Astronomy and Astrophysics 398, 297–303.

    Article  ADS  Google Scholar 

  • Fogli, G. L., et al. (2003a): Addendum to “solar neutrino oscillation parameters after first KamLAND results. Physical Review D 69, 017301.

    Article  ADS  Google Scholar 

  • Fogli, G. L., et al. (2003b): Solar neutrino oscillation parameters after first KamLAND results. Physical Review D 67, 073002–073012.

    Article  ADS  Google Scholar 

  • Foley, C. R., Culhane, J. L., Acton, L. W. (1997): Yohkoh soft X-ray determination of plasma parameters in a polar coronal hole. The Astrophysical Journal 491, 933–938.

    Article  ADS  Google Scholar 

  • Foley, C. R., et al. (2001): Eruption of a flux rope on the disk of the Sun: evidence for the coronal mass ejection trigger? The Astrophysical Journal (Letters) 560, L91–L94.

    Article  ADS  Google Scholar 

  • Folland, C. K., Karl, T. R., Vinikov, K. Y. (1990): Observed climate variations and change. In: Climate Change, the IPCC Scientific Assessment (Eds. J. T. Houghton, G. J. Jenkins and J. J. Ephraums). Cambridge: Cambridge University Press, pp. 195–218.

    Google Scholar 

  • Forbes, T. G. (1986): Fast-shock formation in line-tied magnetic reconnection models of solar flares. The Astrophysical Journal 305, 553–563.

    Article  ADS  Google Scholar 

  • Forbes, T. G. (2000) A review on the genesis of coronal mass ejections. Journal of Geophysical Research 105, A10, 23153–23166.

    Article  ADS  Google Scholar 

  • Forbes, T. G., Acton, L. W. (1996): Reconnection and field line shrinkage in solar flares. Astrophysical Journal 459, 330–341.

    Article  ADS  Google Scholar 

  • Forbes, T. G., et al. (2006): CME theory and models. Space Science Reviews 123, 251–302.

    Article  ADS  Google Scholar 

  • Forbes, T. G., Isenberg, P. A. (1991): A catastrophe mechanism for coronal mass ejections. The Astrophysical Journal 373, 294–307.

    Article  ADS  Google Scholar 

  • Forbes, T. G., Malherbe, J. M., Priest, E. R. (1989): The formation of flare loops by magnetic reconnection and chromospheric ablation. Solar Physics 120, 285–307.

    Article  ADS  Google Scholar 

  • Forbes, T. G., Priest, E. R. (1987): A comparison of analytical and numerical models for steadily driven reconnection. Review of Geophysics 25, 1583–1607.

    Article  ADS  Google Scholar 

  • Forbush, S. E. (1937): On diurnal variation in cosmic-ray intensity. Terrestrial Magnetism and Atmospheric Electricity 42, 1–16.

    Article  ADS  Google Scholar 

  • Forbush, S. E. (1938a): On cosmic-ray effects associated with magnetic storms. Terrestrial Magnetism and Atmospheric Electricity 43, 203–218.

    Article  ADS  Google Scholar 

  • Forbush, S. E. (1938b): On the world-wide changes in cosmic ray intensity. Physical Review 54, 975–988.

    Article  ADS  Google Scholar 

  • Forbush, S. E. (1946): Three unusual cosmic-ray increases possibly due to charged particles from the Sun. Physical Review 70, 771–772.

    Article  ADS  Google Scholar 

  • Forbush, S. E. (1950): Cosmic-ray intensity variations during two solar cycles. Journal of Geophysical Research 63, 651–669.

    Article  ADS  Google Scholar 

  • Forbush, S. E. (1954): World-wide cosmic-ray variations, 1937-1952. Journal of Geophysical Research 59, 525–542.

    Article  ADS  Google Scholar 

  • Forbush, S. E., Stinchcomb, T. B., Schein, M. (1950): The extraordinary increase of cosmic-ray intensity on November 19, 1949. Physical Review 79, 501–504.

    Article  ADS  Google Scholar 

  • Forrest, D. J., Chupp, E. L. (1983): Simultaneous acceleration of electrons and ions in solar flares. Nature 305, 291–292.

    Article  ADS  Google Scholar 

  • Forrest, D. J., et al. (1985): Neutral pion production in solar flares. Proceedings of the 19th International Cosmic Ray Conference 4, 146–149.

    Google Scholar 

  • Forsyth, R. J., et al. (1996): The heliospheric magnetic field at solar minimum: Ulysses observations from pole to pole. Astronomy and Astrophysics 316, 287–295.

    ADS  Google Scholar 

  • Forsyth, R. J., et al. (2006): ICMEs in the inner heliosphere: origin, evolution and propagation effects. Space Science Reviews 123, 383–416.

    Article  ADS  Google Scholar 

  • Fossat, E., Grec, G., Pomerantz, M. A. (1981): Solar pulsations observed from the geographic south pole – initial results. Solar Physics 74, 59–63.

    Article  ADS  Google Scholar 

  • Fossum, A., Carlsson, M. (2005a): High-frequency acoustic waves are not sufficient to heat the solar chromosphere. Nature 435, 919–921.

    Article  ADS  Google Scholar 

  • Fossum, A., Carlsson, M. (2005b): Response functions of the ultraviolet filters of TRACE and the detection of high-frequency acoustic waves. The Astrophysical Journal 625, 556–562.

    Article  ADS  Google Scholar 

  • Foukal, P. (1990a): Solar luminosity variations over timescales of days to the past few solar cycles. Philosophical Transactions of the Royal Society of London A 330, 591–599.

    Article  ADS  Google Scholar 

  • Foukal, P. (1990b): The variable Sun. Scientific American 262, 34–41.

    ADS  Google Scholar 

  • Foukal, P. (1994): Stellar luminosity variations and global warming. Science 264, 238–239.

    Article  ADS  Google Scholar 

  • Foukal, P., Fröhlich, C., Spruit, H., Wigley, T. M. L. (2006): Variations in solar luminosity and their effect on the earth’s climate. Nature 443, 161–166.

    Article  ADS  Google Scholar 

  • Foukal, P., Lean, J. (1986): The influence of faculae on total irradiance and luminosity. The Astrophysical Journal 302, 826–835.

    Article  ADS  Google Scholar 

  • Foukal, P., Lean, J. (1988): Magnetic modulation of solar luminosity by photospheric activity. The Astrophysical Journal 328, 347–357.

    Article  ADS  Google Scholar 

  • Foukal, P., Lean, J. (1990): An empirical model of total solar irradiance variation between 1874 and 1988. Science 247, 556–558.

    Article  ADS  Google Scholar 

  • Foukal, P., North, G., Wigley, T. (2004): A stellar view on solar variations and climate. Science 306, 68–69.

    Article  Google Scholar 

  • Frank, L. A., Craven, J. D. (1988): Imaging results from Dynamics Explorer 1. Review of Geophysics and Space Physics 26, 249–283.

    Article  ADS  Google Scholar 

  • Frank, L. A., et al. (1986): The theta aurora. Journal of Geophysical Research 91, 3177–3224.

    Article  ADS  Google Scholar 

  • Fraunhofer, J. (1814–1815): Bestimmung des Brechungs - und Farbenzerstreutuungs – Vermögens Verschiedener Glassarten. Denkschriften (Munich Academy of Sciences) 5, 195, 202. Auszug davon in Gilb. Annalen der Physik 56, 264 (1817).

    Google Scholar 

  • Frazier, E. N. (1968): A spatio-temporal analysis of velocity fields in the solar photosphere. Zeitschrift für Astrophysik 68, 345–358.

    ADS  Google Scholar 

  • Frazin, R. A., Cranmer, S. R., Kohl, J. L. (2003): Empirically determined anisotropic velocity distributions and outflows of O5+ ions in a coronal streamer at solar minimum. Astrophysical Journal 597, 1145–1157.

    Article  ADS  Google Scholar 

  • Freier, P., et al. (1948a): Evidence for heavy nuclei in the primary cosmic radiation. Physical Review 74, 213–217.

    Article  ADS  Google Scholar 

  • Freier, P., et al. (1948b): The heavy component of primary cosmic rays. Physical Review 74, 1818–1827.

    Article  ADS  Google Scholar 

  • Freier, P., Ney, E. P., Winckler, J. R. (1959): Balloon observations of solar cosmic rays on March 26, 1958. Journal of Geophysical Research 64, 685–688.

    Article  ADS  Google Scholar 

  • Frick, P., et al. (1997): Wavelet analysis of stellar chromospheric activity variations. The Astrophysical Journal 483, 426–434.

    Article  ADS  Google Scholar 

  • Friedlander, M. W. (1989): Cosmic Rays. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Friedman, H. (1961): X-ray and extreme ultraviolet observations of the Sun. In: Space Research II (Eds. H. C. Van De Hulst, C. De Jager and A. F. Moore). Amsterdam: North-Holland Pub. Co. Reproduced in: A Source Book in Astronomy and astrophysics 1900–1975 (Eds. K. R. Lang and O. Gingerich). Cambridge: Harvard University Press 1979, pp. 56–61.

    Google Scholar 

  • Friedman, H. (1963): Solar X-ray emission. In: The Solar Corona. Proceedings of International Astronomical Union Symposium No. 16 (Ed. J. W. Evans). New York: Academic Press,pp. 45–48.

    Google Scholar 

  • Friedman, H. (1986): Sun and Earth. New York: Scientific American Library.

    Google Scholar 

  • Friedman, H., Lichtman, S. W., Byram, E. T. (1951): Photon counter measurements of solar X-rays and extreme ultraviolet light. Physical Review 83, 1025–1030.

    Article  ADS  Google Scholar 

  • Friis-Christensen, E., Lassen, K. (1991): Length of the solar cycle: an indicator of solar activity closely associated with climate. Science 254, 698–700.

    Article  ADS  Google Scholar 

  • Friis-Christensen, E., Lassen, K. (1994): Solar activity and global temperature. In: The Sun as a Variable Star: Solar and Stellar Luminosity Variations (Eds. J. Pap, C. Fröhlich, H. Hudson, S. K. Solanki). New York: Cambridge University Press, pp. 339–347.

    Google Scholar 

  • Fröhlich, C. (1987): Variability of the solar “constant” on time scales of minutes to years. Journal of Geophysical Research 92, 796–800.

    Article  ADS  Google Scholar 

  • Fröhlich, C. (2006): Solar irradiance variability since 1978. Space Science Reviews 125, 53–65.

    Article  ADS  Google Scholar 

  • Fröhlich, C., et al. (1995): VIRGO: Experiment for helioseismology and solar irradiance monitoring. Solar Physics 162, 101–128.

    Article  ADS  Google Scholar 

  • Fröhlich, C., et al. (1997a): First results from VIRGO, the experiment for helioseismology and solar irradiance monitoring in SOHO. Solar Physics 170, 1–25. Reprinted in: The First Results from SOHO (Eds. B. FLECK and Z. SVESTKA). Boston: Kluwer Academic Publishers 1997, pp. 1–25.

    Article  ADS  Google Scholar 

  • Fröhlich, C., et al. (1997b): In-flight performances of VIRGO solar irradiance instruments on SOHO. Solar Physics 175, 267–286.

    Article  ADS  Google Scholar 

  • Fröhlich, C., Lean, J. (1998): The sun’s total irradiance: cycles, trends and related climate change uncertainties since 1976. Geophysical Research Letters 25, 4377–4380.

    Article  ADS  Google Scholar 

  • Fröhlich, C., Lean, J. (1999): Total solar irradiance variations: The construction of a composite and its comparison with models. In: New Eyes to See Inside the Sun and Stars. IAU Symposium 185 (Eds. F. L. Deubner, J. Christensen-Dalsgaard and D. Kurtz). Dordrecht: Kluwer Academic Publications, pp. 89–102. Space Science Reviews 88(3–4).

    Google Scholar 

  • Fröhlich, C., Lean, J. (2002): Solar irradiance variability and climate. Astronomische Nachrichten 323, 203–212.

    Article  ADS  Google Scholar 

  • Fröhlich, C., Lean, J. (2004): Solar radiative output and its variability: evidence and mechanisms. Astronomy and Astrophysics Review 12(4), 273–320.

    Article  ADS  Google Scholar 

  • Fukuda, Y., et al. (1996): Solar neutrino data covering solar cycle 22, Physical Review Letters 77, 1683–1686.

    Google Scholar 

  • Fukuda, Y., et al. (1998): Evidence for oscillation of atmospheric neutrinos. Physical Review Letters 81, 1562–1567.

    Article  ADS  Google Scholar 

  • Fukuda, Y., et al. (2001): Solar boron 8 and hep neutrino measurements from 1258 days of super-kamiokande data. Physical Review Letters 86, 5651–5655.

    Article  ADS  Google Scholar 

  • Furth, H. P., Kileen, J., Rosenbluth, M. N. (1963): Finite-resistivity instabilities of a sheet pinch. Physics of Fluids 6(4), 459–484.

    Article  ADS  Google Scholar 

  • Fürst, E., Benz, A. O., Hirth, W. (1982). About the relation between radio and soft X-ray emission in case of very weak solar activity. Astrnomy and Astrophysics 107, 178–185.

    ADS  Google Scholar 

G

  • Gabriel, A. H. (1971): Measurements on the Lyman alpha corona. Solar Physics 21, 392–400.

    Article  ADS  Google Scholar 

  • Gabriel, A. H. (1976): A magnetic model of the solar transition region. Philosophical Transactions of the Royal Society (London) A281, 339–352.

    Article  ADS  Google Scholar 

  • Gabriel, A. H. (1977): Structure of the quiet chromosphere and corona. In: The Energy Balance and Hydrodynamics of the Solar Chromosphere and Corona. Proceedings of IAU Colloquium No. 36 (Eds. R.-M. Bonnet and P. H. Delache). Paris: G. de Bussac Clermont-Ferrand, pp. 375–399.

    Google Scholar 

  • Gabriel, A. H., Bely-Dubau, F., Lemaire, P. (2003): The contribution of polar plumes to the fast solar wind. The Astrophysical Journal 589, 623–634.

    Article  ADS  Google Scholar 

  • Gabriel, A. H., et al. (1971): Rocket observations of the ultraviolet solar spectrum during the total eclipse of 1970 March 7. The Astrophysical Journal 169, 595–614.

    Article  ADS  Google Scholar 

  • Gabriel, A. H., et al. (1995): Global Oscillations at Low Frequency from the SOHO mission (GOLF). Solar Physics 12, 61–99.

    Article  ADS  Google Scholar 

  • Gabriel, A. H., et al. (1997): Performance and early results from the GOLF instrument flown in the SOHO mission. Solar Physics 175, 207–226. Reprinted in: The First Results from SOHO (Eds. B. Fleck and Z. Svestka). Boston: Kluwer Academic Publishers, pp. 207–226.

    Article  ADS  Google Scholar 

  • Gabriel, A. H., et al. (2002): A search for solar g modes in the golf data. Astronomy and Astrophysics 390, 111–113.

    Article  Google Scholar 

  • Gabriel, A. H., et al. (2005): Solar wind outflow in polar plumes form 1.05 to 2.4 Rsolar. Astrophysical Journal (Letters) 635, L185–188.

    Article  ADS  Google Scholar 

  • Galileo G. (1613): Istoria e Dimostrazioni Intorno alle Macchie Solari e Loro Accidenti. Rome.

    Google Scholar 

  • Gallagher, P. T., et al. (2002): RHESSI and TRACE observations of the 21 April 2002 X1.5 flare. Solar Physics 210, 312–356.

    Article  Google Scholar 

  • Galloway, D. J., Weiss, N. O. (1981): Convection and magnetic fields in stars. The Astrophysical Journal 243: 945–953.

    Article  ADS  Google Scholar 

  • Galvin, A. B., et al. (2008): The Plasma and Suprathermal Ion Composition (PLASTIC) investigation on the STEREO observatories. Space Science Reviews, 136, No. 1–4, 437–486.

    Article  ADS  Google Scholar 

  • Gamow, G. (1928): Zur quanten theorie der atomzertrümmerung (On the quantum theory of the atomic nucleus). Zeitschrift fur Physik 52, 510.

    Article  ADS  Google Scholar 

  • García, R. A., et al. (2007): Tracking solar gravity modes: The dynamics of the solar core. Science 316, 1591–1597.

    Article  ADS  Google Scholar 

  • García, H. A. (2000): Thermal-spatial analysis of medium and large solar flares, 1976 to. 1996. The Astrophysical Journal Supplement 127, 189–210.

    Article  ADS  Google Scholar 

  • Garrett, H. B. (1981): The charging of spacecraft surfaces. Review of Geophysics 19, 577.

    Article  ADS  Google Scholar 

  • Gary, D. E., Hurford, G. J. (1994): Coronal temperature, density, and magnetic field maps of a solar active region using the Owens Valley Solar Array. The Astrophysical Journal 420, 903–912.

    Article  ADS  Google Scholar 

  • Gary, D. E., Keller, C. U. (2004): Solar and Space Weather Radiophysics – Current Status and Future Developments. Dordrecht: Kluwer.

    Google Scholar 

  • Gary, G. A. (2001): Plasma beta above a solar active region: Rethinking the paradigm. Solar Physics 203, 71–86.

    Article  ADS  Google Scholar 

  • Gary, G. A., et al. (1987): Nonpotential features observed in the magnetic field of an active region. The Astrophysical Journal 314, 782–794.

    Article  ADS  Google Scholar 

  • Gary, G. A., Moore, R. L. (2004): Eruption of a multiple-turn helical magnetic flux tube in a large flare: Evidence for external and internal reconnection that fits the breakout model of solar magnetic eruption. Astrophysical Journal 611, 545–556.

    Article  ADS  Google Scholar 

  • Gauss, C. F. (1841): Allgemeine Theorie des Erdmagnetismus, Resultate aus den Beobachtungen des Magnetischen Verein im Jarhre. Translated by Mrs. Sabine, revised by Sir John Herschel in Scientific Memoirs Selected From Transactions of Foreign Academies and Learned Societies and From Foreign Journals 2, 184–251.

    Google Scholar 

  • Gavaghan, H. (1998): Something New Under the Sun: Satellites and the Beginning of the Space Age. New York: Springer-Verlag.

    Google Scholar 

  • Gazis, P. R., et al. (2006): ICMEs at high latitudes and in the outer heliosphere. Space Science Reviews 123, 417–451.

    Article  ADS  Google Scholar 

  • Geiss, J., Bochsler, P. (1991): Long time variations in solar wind properties – Possible causes versus observations”. In: The Sun in Time (Eds. C. P. Sonett, M. S. Giampapa and M. S. Matthews). Tucson, University of Arizona Press, pp. 98–117.

    Google Scholar 

  • Geiss, J., et al. (1970): Apollo 11 and 12 solar wind composition experiments: fluxes of He and Ne isotopes. Journal of Geophysical Research 75, 5972–5979.

    Article  ADS  Google Scholar 

  • Geiss, J., et al. (1995b): The southern high-speed stream – results from the SWICS instrument on Ulysses. Science 268, 1033–1036.

    Article  ADS  Google Scholar 

  • Geiss, J., Gloeckler, G. (2001): Heliospheric and interstellar phenomena deduced from pickup ion observations. Space Science Reviews 97, 169–181.

    Article  ADS  Google Scholar 

  • Geiss, J., Gloeckler, G., Fisk, L. A., von Steiger, R. (1995): C+ pickup ions in the heliosphere and their origin. Journal of Geophysical Research 100(A12), 23373–23378.

    Article  ADS  Google Scholar 

  • Geiss, J., Gloeckler, G., Von Steiger, R. (1996a): Origin of C+ ions in the heliosphere. Space Science Reviews 78, 43–52.

    Article  ADS  Google Scholar 

  • Geiss, J., Gloeckler, G., Von Steiger, R. (1996b): Origin of the solar wind from composition data. Space Science Reviews 72, 49–60.

    Article  ADS  Google Scholar 

  • Geiss, J., Reeves, H. (1972): Cosmic and solar system abundances of deuterium and helium-3. Astronomy and Astrophysics 18, 126–132.

    ADS  Google Scholar 

  • Geiss, J., Witte, M. (1996): Properties of the interstellar gas inside the heliosphere. Space Science Reviews 78, 229–238.

    Article  ADS  Google Scholar 

  • Genthon, C., et al. (1987): Vostok ice core: climatic response to CO2 and orbital forcing changes over the last climatic cycle. Nature 329, 414–418.

    Article  ADS  Google Scholar 

  • Georges, T. M. (1967): Ionospheric effects of atmospheric waves. ESSA Technical Report IER 57-ITSA 54. Institute for telecommunication and aeronomy, Boulder, Colorado, p. 3.

    Google Scholar 

  • Giacalone, J., Jokipii, J. R. (2004): Magnetic footpoint diffusion at the Sun and its relation to the heliospheic magnetic field. The Astrophysical Journal 616, 573–577.

    Article  ADS  Google Scholar 

  • Gibson, S. E., et al. (2004): Observational consequences of a magnetic flux rope emerging into the corona. The Astrophysical Journal 617, 600–613.

    Article  ADS  Google Scholar 

  • Gibson, S. E., et al. (2006): The evolving sigmoid: evidence for magnetic flux ropes in the corona before, during, and after CMEs. Space Science Reviews 124, 131–144.

    Article  ADS  Google Scholar 

  • Gibson, S. E., Fan, Y. (2006): Coronal prominence structure and dynamics: a magnetic flux rope interpretation. Journal of Geophysical Research 111, A12103.

    Article  ADS  Google Scholar 

  • Gibson, S. E., Low, B. C. (1998): A time-dependent three-dimensional magnetohydrodynamic model of coronal mass ejection. Astrophysical Journal 493, 460.

    Article  ADS  Google Scholar 

  • Gilbert, W. (1600): De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure: Physiologia Nova, Plurimis and Argumentis, and Experimentis Demonstrata. London. English translation by P. Fleury Mottelay, William Gilbert of Colchesteron the great magnet of the earth. Ann Arbor 1893 and Silvanus P. Thompson, reprinted from the 1900 edition by Basic Books, New York 1958.

    Google Scholar 

  • Gilbert, W.: De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure: Physiologia Nova, Plurimis and Argumentis, and Experimentis Demonstrata London 1600. English translation by P. Fleury Mottelay, William Gilbert of Colchesteron the great magnet of the earth. Ann Arbor 1893 and Silvanus P. Thompson, reprinted from the 1900 edition by Basic Books, New York 1958.

    Google Scholar 

  • Giles, P. M., Duvall, T. L. Jr., Scherrer, P. H., Bogart, R. S. (1997): A subsurface flow of material from the Sun’s equator to its pole. Nature 390, 52–54.

    Article  ADS  Google Scholar 

  • Gille, J. C., Smythe, C. M., Heath, D. F. (1984): Observed ozone response to variations in solar ultraviolet radiation. Science 225, 315–317.

    Article  ADS  Google Scholar 

  • Gilliland, R. L. (1980): Solar luminosity variations. Nature 286, 838–839.

    Article  ADS  Google Scholar 

  • Gilliland, R. L. (1981): Solar radius variations over the past 265 years. The Astrophysical Journal 248, 1144–1155.

    Article  ADS  Google Scholar 

  • Gilliland, R. L. (1982): Modeling solar variability. The Astrophysical Journal 253, 399–405.

    Article  ADS  Google Scholar 

  • Gilliland, R. L. (1989): Solar evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 75, 35–55.

    Article  Google Scholar 

  • Gilman, P. A. (1974): Solar rotation. Annual Review of Astronomy and Astrophysics 12, 47–70.

    Article  ADS  Google Scholar 

  • Gilman, P. A. (2000): Fluid dynamics and MHD of the solar convection zone and tachocline: Current understanding and unresolvcd problems. Solar Physics 192, 27–48.

    Article  ADS  Google Scholar 

  • Gilman, P. A., Miesch, M. S. (2004): Limits to penetration of meridional circulation below the solar convection zone. The Astrophysical Journal 611, 568–574.

    Article  ADS  Google Scholar 

  • Ginzburg, V. L. (1946): On solar radiation in the radio spectrum. Comptes Rendus (Doklady) de l’Académie des Sciences de l’ URSS 52, 487.

    Google Scholar 

  • Ginzburg, V. L. (1956): The nature of cosmic radio emission and the origin of cosmic rays. Nuovo Cimento Supplement 3, 38–48. Reproduced in: A Source Book in Astronomy and Astrophysics 1900–1975. Cambridge: Harvard University Press 1977, pp. 677–684.

    Article  Google Scholar 

  • Giordano, S., et al. (2000): Identification of he coronal sources of the fast solar wind. The Astrophysical Journal (Letters) 531, L79–L82.

    Article  ADS  Google Scholar 

  • Giovanelli, R. G. (1939): The relations between eruptions and sunspots. The Astrophysical Journal 89, 555–567.

    Article  ADS  Google Scholar 

  • Giovanelli, R. G. (1940): Solar eruptions. The Astrophysical Journal 91, 344–349.

    ADS  Google Scholar 

  • Giovanelli, R. G. (1946): A theory of chromospheric flares. Nature 158, 81–82.

    Article  ADS  Google Scholar 

  • Giovanelli, R. G. (1947): Magnetic and electric phenomena in the Sun’s atmosphere associated with sunspots. Monthly Notices of the Royal Astronomical Society 107, 338–355.

    MATH  ADS  Google Scholar 

  • Giovanelli, R. G. (1948): Chromospheric flares. Monthly Notices of the Royal Astronomical Society 108, 163–176.

    ADS  Google Scholar 

  • Giovanelli, R. G. (1949): A note on heat transfer in the upper chromosphere and corona. Monthly Notices of the Royal Astronomical Society 109, 372.

    ADS  Google Scholar 

  • Giovanelli, R. G., McCabe, M. K. (1958): The flare-surge event. Australian Journal of Physics 11, 191–200.

    ADS  Google Scholar 

  • Giovanni, L., Knoll, D. A. (2005): Effect of a converging flow at the streamer cusp on the genesis of the slow solar wind. The Astrophysical Journal 624, 1049–1056.

    Article  Google Scholar 

  • Gizon, L. (2004): Helioseismology of time-varying flows through the solar cycle. Solar Physics 224, 217.

    Article  ADS  Google Scholar 

  • Gizon, L., Birch, A. C. (2002): Time-distance helioseismology: the forward problem for random distributed sources. The Astrophysical Journal 571, 966–986.

    Article  ADS  Google Scholar 

  • Gizon, L., Birch, A. C. (2004): Time-distance helioseismoogy: noise estimation. The Astrophysical Journal 614, 472–489.

    Article  ADS  Google Scholar 

  • Gizon, L., Birch, A. C. (2005): Local helioseismology. Living Reviews in Solar Physics 2, 6.

    ADS  Google Scholar 

  • Gizon, L., Duvall, T. L. Jr., Schou, J. (2003): Wave-like properties of solar supergranulations. Nature 421, 43–44.

    Article  ADS  Google Scholar 

  • Gleeson, L. J., Axford, W. I. (1968): Solar modulation of galactic cosmic rays. The Astrophysical Journal 154, 1011–1019.

    Article  ADS  Google Scholar 

  • Gleissberg, W. (1943): Predictions for the coming sunspot-cycle. Terrestrial Magnetism and Atmospheric Electricity 48, 243–244.

    Article  ADS  Google Scholar 

  • Gleissberg, W. (1958): The eighty-year sunspot cycle. Journal of the British Astronomical Association 68, 148–152.

    Google Scholar 

  • Gleissberg, W. (1965): The 80-year solar cycle in auroral frequency number. Journal of the British Astronomical Association 75, 227–231.

    Google Scholar 

  • Gleissberg, W. (1966): Ascent and descent in the eighty-year cycles of solar activity. Journal of the British Astronomical Association 76, 265–270.

    Google Scholar 

  • Gloeckler, G. (1999): Observation of injection and pre-acceleration processes in the slow solar wind. Space Science Reviews 89, 91–104.

    Article  ADS  Google Scholar 

  • Gloeckler, G. (2003): Ubiquitous suprathermal tails on the soar wind and pickup ion distributions. Astronomical Society of the Pacific Conference Proceedings 679, 583–588.

    Google Scholar 

  • Gloeckler, G. et al. (1999): Unusual composition of the solar wind in the 2–3 May 1998 CME observed with SWICS on ACE. Geophysical Research Letters 26, 157–160.

    Article  ADS  Google Scholar 

  • Gloeckler, G., et al. (1986): Solar wind carbon, nitrogen and oxygen abundances measured in the Earth’s magnetosheath with AMPTE/CCE. Geophysical Research Letters 13, 793–796.

    Article  ADS  Google Scholar 

  • Gloeckler, G., et al. (1989): Heavy ion abundances in coronal hole solar wind flows. EOS 70, 424.

    Google Scholar 

  • Gloeckler, G., et al. (1992): The solar wind ion composition spectrometer. Astronomy and Astrophysics Supplement 92(2), 267–289.

    ADS  Google Scholar 

  • Gloeckler, G., et al. (1993): Detection of interstellar pick-up hydrogen in the solar system. Science 261, 70–73.

    Article  ADS  Google Scholar 

  • Gloeckler, G., et al. (1994): Acceleration of interstellar pickup ions in the disturbed solar wind observed on Ulysses. Journal of Geophysical Research 99(A9), 17637–17643.

    Article  ADS  Google Scholar 

  • Gloeckler, G., et al. (1999): Unusual composition of the solar wind in the 2–3 May 1998 CME observed with SWICS on ACE. Geophysical Research Letters 26, 157–160.

    Article  ADS  Google Scholar 

  • Gloeckler, G., et al. (2000): Interception of comet Hyakutake’s ion tail at a distance of 500 million kilometers. Nature 404, 576–578.

    Article  ADS  Google Scholar 

  • Gloeckler, G., et al. (2004a): Cometary ions trapped in a coronal mass ejection The Astrophysical Journal (Letters) 604, L121–L124.

    Article  ADS  Google Scholar 

  • Gloeckler, G., et al. (2004b): Observations of the helium focusing cone with pickup ions. Astronomy and Astrophysics 426, 845–854.

    Article  ADS  Google Scholar 

  • Gloeckler, G., Fisk, L. A., Geiss, J. (1997): Anomalously small magnetic field in the local interstellar cloud. Nature 386, 374–377.

    Article  ADS  Google Scholar 

  • Gloeckler, G., Fisk, L. A., Zurbuchen, T. H., Schwadron, N. A. (2000): Acceleration and transport of energetic particles observed in the heliosphere. American Institute of Physics Conference Proceedings 528, 221–228.

    Google Scholar 

  • Gloeckler, G., Geiss, J. (1989): The abundances of elements and isotopes in the solar wind. American Institute of Physics Conference Proceedings 183, 49–71.

    Google Scholar 

  • Gloeckler, G., Geiss, J. (1996): Abundance of 3He in the local interstellar cloud. Nature 381,210–212.

    Article  ADS  Google Scholar 

  • Gloeckler, G., Geiss, J. (1998): Interstellar and inner source pickup ions observed with SWICS on Ulysses. Space Science Reviews 86, 127–159.

    Article  ADS  Google Scholar 

  • Gloeckler, G., Geiss, J. (1998): Measurement of the abundance of helium-3 in the Sun and in the local interstellar cloud with SWICS on Ulysses. Space Science Reviews 84, 275–284.

    Article  ADS  Google Scholar 

  • Gloeckler, G., Geiss, J. (2004): Composition of the local interstellar medium as diagnosed with pickup ions. Advances in Space Research 34(1), 53–60.

    Article  ADS  Google Scholar 

  • Gloeckler, G., Zurbuchen, T. H., Geiss, J. (2003): Implications of the observed anticorrelation between solar wind speed and coronal electron temperature. Journal of Geophysical Research (Space Physics) 108(A4), SSH 8–1.

    Google Scholar 

  • Gold, T. (1955): Discussion of shock waves and rarefied gases. In: Gas Dynamics of Cosmic Clouds (Eds. J. C. van de Hulst and J. M. Burgers). New York: North-Holland 1955, p. 103.

    Google Scholar 

  • Gold, T. (1959a): Magnetic field in the solar system. Nuovo Cimento Supplemento 13, 318–323.

    Article  Google Scholar 

  • Gold, T. (1959b): Plasma and magnetic fields in the solar system. Journal of Geophysical Research 64, 1665–1674.

    Article  ADS  Google Scholar 

  • Gold, T. (1960): Energetic particle fluxes in the solar system and near the Earth. The Astrophysical Journal Supplement 4, 406–426.

    Google Scholar 

  • Gold, T. (1962): Magnetic storms. Space Science Review 1, 100–114.

    ADS  Google Scholar 

  • Gold, T. (1964): Magnetic energy shedding in the solar atmosphere. In: AAS-NASA Symposium on the Physics of Solar Flares NASA SP-50 (Ed. W. N. Hess). Washington, DC: National Aeronautics and Space Administration 1964, pp. 389–395.

    Google Scholar 

  • Gold, T., Hoyle, F. (1960): On the origin of solar flares. Monthly Notices of the Royal Astronomical Society 120, 89–105.

    ADS  Google Scholar 

  • Goldreich, P. Murrray, N., Kumar, P. (1994): Excitation of solar p modes. The Astrophysical Journal 424, 466–479.

    Article  ADS  Google Scholar 

  • Goldreich, P., Keeley, D. A. (1977a): Solar seismology I. The stability of the solar p-modes. The Astrophysical Journal 211, 934–942.

    Article  ADS  Google Scholar 

  • Goldreich, P., Keeley, D. A. (1977b): Solar seismology II. The stochastic excitation of the solar p-modes by turbulent convections. The Astrophysical Journal 212, 243–251.

    Article  ADS  Google Scholar 

  • Goldreich, P., Kumar, P. (1990): Wave generation by turbulent convection. The Astrophysical Journal 363, 694–704.

    Article  ADS  Google Scholar 

  • Goldstein, B. E. (1993): The solar wind as we know it today. EOS Transactions of the American Geophysical Union 74(20), 229.

    Article  ADS  Google Scholar 

  • Goldstein, B. E., et al. (1996): Ulysses plasma parameters: latitudinal, radial, and temporal variations. Astronomy and Astrophysics 316, 296–303.

    ADS  Google Scholar 

  • Goldstein, M. L., Roberts, D. A., Matthaeus, W. H. (1995): Magnetohydrodynamic turbulence in the solar wind. Annual Review of Astronomy and Astrophysics 33, 283–326.

    Article  ADS  Google Scholar 

  • Goldstein, M. L., Roberts, D. A., Matthaeus, W. H. (1997): Magnetohydrodynamic turbulence in cosmic winds. In: Cosmic Winds and the Heliosphere (Eds. J. R. Jokipii, C. P. Sonett and M. S. Giampapa). Tuscon, University of Arizona Press, pp. 521–580.

    Google Scholar 

  • Golub, L., et al. (1974): Solar x-ray bright points. Astrophysical Journal (Letters) 189, L93–L97.

    Article  ADS  Google Scholar 

  • Golub, L., et al. (1980): Magnetic fields and coronal heating. Astrophysical Journal 238, 343–348.

    Article  ADS  Google Scholar 

  • Golub, L., et al. (2007): The X-ray telescope (XRT) for the Hinode mission. Solar Physics 243,63–86.

    Article  ADS  Google Scholar 

  • Golub, L., Krieger, A. S., Harvey, J. W., Vaiana, G. S. (1977): Magnetic properties of X-ray bright points. Solar Physics 53, 111–121.

    Article  ADS  Google Scholar 

  • Golub, L., Krieger, A. S., Vaiana, G. S. (1976a): Distribution of lifetimes for coronal soft X-ray bright points. Solar Physics 49, 79–90.

    Article  ADS  Google Scholar 

  • Golub, L., Krieger, A. S., Vaiana, G. S. (1976b): Observation of spatial and temporal variations in X-ray bright point emergence patterns. Solar Physics 50, 311–327.

    Article  ADS  Google Scholar 

  • Golub, L., Pasachoft J. M. (1997): The Solar Corona. New York: Cambridge University Press.

    Google Scholar 

  • Gonzalez, W. D., et al. (1994): What is a geomagnetic storm? Journal of Geophysical Research 99, 5771–5792.

    Article  ADS  Google Scholar 

  • Gonzalez, W. D., et al. (2004): Prediction of peak-Dst from halo CME/magnetic cloud speed observations. Journal of Atmospheric and Solar-Terrestrial Physics 66, 161–165.

    Article  ADS  Google Scholar 

  • Gonzalez, W. D., Tsurutani, B. T. (1987): Criteria of interplanetary parameters causing intense magnetic storms (Dst<-100 nT). Planetary and Space Science 35, 1101–1108.

    Article  ADS  Google Scholar 

  • Gonzalez, W. D., Tsurutani, B. T., de Gonzalez, A. L. C. (1999): Interplanetary origin of geomagnetic storms. Space Science Reviews 88, 529–582.

    Article  ADS  Google Scholar 

  • Goode, P. R., et al. (1991): What we know about the Sun’s internal rotation from oscillations. Astrophysical Journal 367, 649–657.

    Article  ADS  Google Scholar 

  • Gopalswamy, et al. (1998): Origin of coronal and interplanetary shocks – A new look with Wind spacecraft data. Journal of Geophysical Research 103, 307.

    Google Scholar 

  • Gopalswamy, N. (2006): Properties of interplanetary coronal mass ejections. Space Science Reviews 124, 145–168.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., et al. (1999): Microwave enhancement and variability in the elephant’s trunk coronal hole: Comparison with SOHO observations. Journal of Geophysical Research 104(A5), 9767–9779.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., et al. (2001): Radio signatures of coronal mass ejection interaction: coronal mass ejection cannibalism? Astrophysical Journal (Letters) 548, L91–L94.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., et al. (2002): Interacting coronal mass ejections and solar energetic particles. Astrophysical Journal (Letters) 572, L103–L107.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., et al. (2003): Coronal mass ejection activity during solar cycle 23. In: Solar Variability as an Input to the Earth’s Environment. International Solar Cycle Studies Symposium. ESA SP-535 (Ed. A. Wilson), pp. 403–414.

    Google Scholar 

  • Gopalswamy, N., et al. (2005): Coronal mass ejections and other extreme characteristics of the 2003 October–November solar eruptions. Journal of Geophysical Research 110(A9), A09S15.

    Article  Google Scholar 

  • Gopalswamy, N., et al. (2006): The pre-CME Sun. Space Science Reviews 123, 303–339.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Hanaoka, Y. (1998): Coronal dimming associated with a giant prominence eruption. Astrophysical Journal (Letters) 498, L179–L182.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Mewaldt, R., Torsti, J. (Eds., 2006): Solar Eruptions and Energetic Particles: Geophysical Monograph Series 165, Washington: American Geophysical Union 2006.

    Google Scholar 

  • Gorney, D. J. (1990): Solar cycle effects on the near-earth space environment. Reviews of Geophysics 28, 315–336.

    Article  ADS  Google Scholar 

  • Gosling, J. T. (1990): Coronal mass ejections and magnetic flux ropes in interplanetary space. In: Physics of Magnetic Flux Ropes: Geophysical Monograph 58 (Eds. C. T. Russell et al.). Washington, DC: American Geophysical Union 1990, pp. 343–364.

    Google Scholar 

  • Gosling, J. T. (1993): The solar flare myth. Journal of Geophysical Research 98, 18937–18949.

    Article  ADS  Google Scholar 

  • Gosling, J. T. (1994): The solar flare myth in solar-terrestrial physics. In: Solar System Plasmas in Space and Time. Geophysical Monograph 84 (Eds. J. L. Burch and J. H. Waite, Jr.) Washington, DC: American Geophysical Union 1994, pp. 65–69.

    Google Scholar 

  • Gosling, J. T. (1996): Corotating and transient solar wind flows in three dimensions. Annual Review of Astronomy and Astrophysics 34, 35–74.

    Article  ADS  Google Scholar 

  • Gosling, J. T. (1997): Coronal mass ejections – an overview. In: Coronal Mass Ejections Geophysical Monograph 99 (Eds. N. Crooker, J. A. Joselyn and J. Feynman). Washington, DC: American Geophysical Union 1997, pp. 9–16.

    Google Scholar 

  • Gosling, J. T., et al. (1974): Mass ejections from the Sun: A view from Skylab. Journal of Geophysical Research 79, 4581–4587.

    Article  ADS  Google Scholar 

  • Gosling, J. T., et al. (1975): Direct observations of a flare related coronal and solar wind disturbance. Solar Physics 40, 439–448.

    Article  ADS  Google Scholar 

  • Gosling, J. T., et al. (1976a): Solar wind speed variations 1962–1974. Journal of Geophysical Research 81, 5061–5070.

    Article  ADS  Google Scholar 

  • Gosling, J. T., et al. (1976b): The speeds of coronal mass ejection events. Solar Physics 48, 389–397.

    Article  ADS  Google Scholar 

  • Gosling, J. T., et al. (1980): Observations of large fluxes of He+ in the solar wind following an interplanetary shock. Journal of Geophysical Research 85, 3431–3434.

    Article  ADS  Google Scholar 

  • Gosling, J. T., et al. (1981): Coronal streamers in the solar wind at 1 AU. Journal of Geophysical Research 86, A7, 5438–5448.

    Article  ADS  Google Scholar 

  • Gosling, J. T., et al. (1987): Bidirectional solar wind electron heat flux events. Journal of Geophysical Research 92, 8519–8535.

    Article  ADS  Google Scholar 

  • Gosling, J. T., et al. (1990): Coronal mass ejections and large geomagnetic storms. Geophysical Research Letters 17, 901–904.

    Article  ADS  Google Scholar 

  • Gosling, J. T., et al. (1991): Geomagnetic activity associated with Earth passsage of interplanetary shock disturbances and coronal mass ejections. Journal of Geophysical Research 96,7831–7839.

    Article  ADS  Google Scholar 

  • Gosling, J. T., et al. (1994): Solar wind corotating stream interaction regions out of the ecliptic plane: Ulysses. Space Science Reviews 72, 99–104.

    Google Scholar 

  • Gosling, J. T., et al. (1994): The speeds of coronal mass ejections in the solar wind at mid heliographic latitudes: Ulysses. Geophysical Research Letters 21(12), 1109–1112.

    Article  ADS  Google Scholar 

  • Gosling, J. T., et al. (1995): Coronal mass ejections at high heliographic latitudes: Ulysses. Space Science Reviews 72, 133–136.

    Article  ADS  Google Scholar 

  • Gosling, J. T., et al. (2004): Dispersionless modulations in low-energy solar electron bursts and discontinuous changes in the solar wind electron strahl. Journal of Geophysical Research 10, A05102.

    Article  Google Scholar 

  • Gosling, J. T., et al. (2006): Petschek-type reconnection exhausts in the solar wind well beyond 1 AU. Ulysses. Astrophysical Journal 644, 613–621.

    Article  ADS  Google Scholar 

  • Gosling, J. T., et al. (2007): Direct evidence for prolonged magnetic reconnection at a continuous x-line within the heliospheric current sheet. Geophysical Research Letters 34, L06102.

    Article  Google Scholar 

  • Gosling, J. T., et al. (2007b): Five spacecraft observations of oppositely directed exhaust jets from a magnetic reconnection x-line extending more than 4.26 million kilometers in the solar wind at 1 AU. Geophysical Research Letters 34, L20108.

    Article  ADS  Google Scholar 

  • Gosling, J. T., Hundhausen, A. J. (1977): Waves in the solar wind. Scientific American 236, 36–43 – March.

    ADS  Google Scholar 

  • Gosling, J. T., Mc Comas, D. J., Skooug, R. M., Forsyth, R. J. (2001): Stream interaction regions at high heliographic latitudes during Ulysses 12/22/2004 6:25pm second polar orbit. Space Science Reviews 97, 189–192.

    Article  ADS  Google Scholar 

  • Gosling, J. T., Pizzo, V. (1999): Formation and evolution of corotating interaction regions and their three dimensional structure. Space Science Reviews 89, 21–52.

    Article  ADS  Google Scholar 

  • Gosling, J. T., Pizzo, V., Bame, S. J. (1973): Anomalously low proton temperatures in the solar wind following interplanetary shock waves – evidence for magnetic bottles? Journal of Geophysical Research 78, 2001–2009.

    Article  ADS  Google Scholar 

  • Gosling, J. T., Riley, P., Mccomas, D. J., Pizzo, V. J. (1998): Overexpanding coronal mass ejections at high heliographic latitudes – observations and simulations. Journal of Geophysical Research 103, 1941–1954.

    Article  ADS  Google Scholar 

  • Gosling, J. T., Roelof, E. C. (1974): A comment on the detection of closed magnetic structures in the solar wind. Solar Physics 39, 405–408.

    Article  ADS  Google Scholar 

  • Gosling, J. T., Skoug, R. M. (2002): On the origin of radial magnetic fields in the heliosphere. Journal of Geophysical Research (Space Physics) 107(A10 SSH), 19–1, 1327.

    Google Scholar 

  • Gosling, J. T., Skoug, R. M., Mc Comas, D. J. (2004): Low-energy solar electron bursts and solar wind stream structure at 1 AU. Journal of Geophysical Research 109, A04104.

    Article  Google Scholar 

  • Gosling, J. T., Skoug, R. M., Mccomas, D. J., Smith, C. W. (2005a): Direct evidence for magnetic reconnection in the solar wind near 1 AU. Journal of Geophysical Research 110, A1, A01107.

    Article  Google Scholar 

  • Gosling, J. T., Skoug, R. M., Mccomas, D. J., Smith, C. W. (2005b): Magnetic disconnection form the Sun: observations of a reconnection exhaust in the solar wind at the heliospheric current sheet. Geophysical Research Letters 32, 5. L05105.

    Article  Google Scholar 

  • Gough, D. O. (1976): Random remarks on solar hydrodynamics. In: The Energy Balance and Hydrodynamics of the Solar Chromosphere and Corona. Proceedings of the International Astronomical Union Colloquium No. 36 (Eds. R. -M. Bonnet and P. H. Delache). Paris: G. De Bussac, Clermont-Ferrand 1976, pp. 3–36.

    Google Scholar 

  • Gough, D. O. (1981): Solar interior structure and luminosity variations. Solar Physics 74, 21–34.

    Article  ADS  Google Scholar 

  • Gough, D. O. (1989): Deep roots of solar cycles. Nature 336, 618–619.

    Article  ADS  Google Scholar 

  • Gough, D. O., Leibacher, J. W., Scherrer, P. H., Toomre, J. (1996): Perspectives in helioseismology. Science 272, 1281–1284.

    Article  ADS  Google Scholar 

  • Gough, D. O., Toomre, J. (1991): Seismic observations of the solar interior. Annual Review of Astronomy and Astrophysics 29, 627–684.

    Article  ADS  Google Scholar 

  • Graham, G. (1724): An account of observations made of the variation of the horizontal needle at London, in the latter part of the year 1722 and beginning of 1723. Philosophical Transactions of the Royal Society (London) 33(383), 96–107.

    Google Scholar 

  • Grall, R. R., et al. (1996): Rapid acceleration of the polar solar wind. Nature 379, 429–432.

    Article  ADS  Google Scholar 

  • Gray, D. F., Livingston, W. C. (1997): Monitoring the solar temperature: Spectroscopic temperature variations of the Sun. Astrophysical Journal 474, 802–809.

    Article  ADS  Google Scholar 

  • Greaves, W. M. H., Newton, H. W. (1929): On the recurrence of magnetic storms. Monthly Notices of the Royal Astronomical Society 89, 641–646.

    ADS  Google Scholar 

  • Grec, G., Fossat, E., Pomerantz, M. A. (1980): Solar oscillations – full disk observations from the geographic south pole. Nature 288, 541–544.

    Article  ADS  Google Scholar 

  • Grec, G., Fossat, E., Pomerantz, M. A. (1983): Full-disk observations of solar oscillations from the geographic south pole – latest results. Solar Physics 82, 55–66.

    Article  ADS  Google Scholar 

  • Green, C. A., Kosovichev, A. G. (2007): Magnetic effect on wavelike properties of solar supergranulation. Astrophysical Journal (Letters), Part 2 665, L75–L78.

    Article  ADS  Google Scholar 

  • Greenland Ice-Core Project (GRIP) Members (1993): Climate instability during the last interglacial period recorded in the GRIP ice core. Nature 364, 103–207.

    Article  Google Scholar 

  • Gribov, V. N., Pontecorvo, B. M. (1969): Neutrino astronomy and lepton charge. Physics Letters B 28, 493–496.

    Article  ADS  Google Scholar 

  • Gringauz, K. I. (1961): Some results of experiments in interplanetary space by means of charged particle traps on Soviet space probes. Space Research 2, 539–553.

    Google Scholar 

  • Gringauz, K. I., et al. (1960): A study of the interplanetary ionized gas, high-energy electrons, and corpuscular radiation from the Sun by means of the three-electrode trap for charged particles on the second Soviet cosmic rocket. Soviet Physics (Doklady) 5, 361–364.

    ADS  Google Scholar 

  • Grip Members (1993): Climate instability during the last interglacial period recorded in the GReenland Ice-core Project (GRIP) ice core. Nature 364, 203–207.

    Article  ADS  Google Scholar 

  • Grotrian, W. (1934): Über das Fraunhofersche Spektrum der Sonnenkorona. Zeitschrift für Astrophysik 8, 124–146.

    ADS  Google Scholar 

  • Grotrian, W. (1939): On the question of the significance of the lines in the spectrum of the solar corona. Naturwissenschaften 27, 214. English translation in: A Source Book in Astronomy and Astrophysics 1900–1975 (Eds. K. R. Lang and O. Gingerich). Cambridge, MA: Harvard University Press 1979, pp. 120–122.

    Article  MATH  ADS  Google Scholar 

  • Gruen, E., et al. (1992): The Ulysses dust experiment. Astronomy and Astrophysics Supplement 92(2), 411–423.

    ADS  Google Scholar 

  • Güdel, M. (2007): The Sun in time: Activity and environment. Living Reviews in Solar Physics 4, 3.

    ADS  Google Scholar 

  • Güdel, M., Guinan, E. F., Skinner, S. L. (1997): The X-ray Sun in time: A study of the long-term evolution of coronae of solar-type stars. The Astrophysical Journal 483, 947–960.

    Article  ADS  Google Scholar 

  • Güdel, M., Schmitt, J. H. M. M., Benz, A. O (1994): Discovery of microwave emission from four nearby solar-type G stars. Science 265, 933–935.

    Article  ADS  Google Scholar 

  • Gudiksen, B. V., Nordlund, A. (2002): Bulk heating and slender magnetic loops in the solar corona. The Astrophysical Journal (Letters) a572, L113–L116.

    Article  ADS  Google Scholar 

  • Gudiksen, B. V., Nordlund, A. (2005): An ab initio approach to the solar coronal heating problem. The Astrophysical Journal 618, 1020–1030.

    Article  ADS  Google Scholar 

  • Guenther, D. B., Demarque, P. (1997): Seismic tests of the Sun’s interior structure, composition, and age, and implications for solar neutrinos. The Astrophysical Journal 484, 937–959.

    Article  ADS  Google Scholar 

  • Guenther, D. B., Jaffe, A., Demarque, P. (1989): The standard solar model: Composition, opacities, and seismology. Astrophysical Journal 345, 1022–1033.

    Article  ADS  Google Scholar 

  • Guhathakurta, M., Fisher, R. (1998): Solar wind consequences of a coronal hole density profile: Spartan 201–03 coronagraph and Ulysses observations from 1.15 Ro to 4 AU. Astrophysical Journal (Letters) 499, L215–L218.

    Article  ADS  Google Scholar 

  • Gurnett, D. A., Baumback, M. M., Rosenbauer, H. (1978): Stereoscopic direction finding analysis of a type III solar radio burst: Evidence for emission at 2fp Journal of Geophysical Research 83, 616–622.

    Article  ADS  Google Scholar 

  • Gurnett, D. A., et al. (1993): Radio emission from the heliopause triggered by an interplanetary shock. Science 262, 199–203.

    Article  ADS  Google Scholar 

  • Gurnett, D. A., Kurth, W. S. (2008): Intense plasma waves observed at and near the solar wind termination shock. Nature 454, 78–80.

    Article  ADS  Google Scholar 

  • Guzxik, J. A., Watson, I. S., Cox, A. N. (2005): Can enhanced diffusion improve helioseismic agreement for solar models with revised abundances? Astrophysical Journal 627, 1049–1056.

    Article  ADS  Google Scholar 

H

  • Habbal, S. R., et al. (1997): Origins of the slow and the ubiquitous fast solar wind. Astrophysical Journal (Letters) 489, L103–L106.

    Article  ADS  Google Scholar 

  • Haber, D. A., et al. (2002): Evolving submerged meridional circulation cells within the upper convection zone revealed by ring-diagram analysis. The Astrophysical Journal 570, 855–864.

    Article  ADS  Google Scholar 

  • Haber, D. A., et al. (2004): Organized subsurface flows near active regions. Solar Physics 220, 371–380.

    Article  ADS  Google Scholar 

  • Hagenaar, H. J., Schrijver, C. J., Title, A. M. (1997): The distribution of cell sizes of the solar chromospheric network. Astrophysical Journal 481, 988–995.

    Article  ADS  Google Scholar 

  • Haggerty, D. K., Roelof, E. C. (2002): Impulsive near-relativistic solar electron events: delayed injection with respect to solar electromagnetic emission. Astrophysical Journal 579, 841–853.

    Article  ADS  Google Scholar 

  • Haigh, J. D, Blackburn, M., Day, R. (2005): The response of tropospheric circulation to perturbations in lower-stratospheric temperature. Journal of Climate 18, 3672–3685.

    Article  ADS  Google Scholar 

  • Haigh, J. D. (1994): The role of stratospheric ozone in modulating the solar radiative forcing of climate. Nature 370, 544–546.

    Article  ADS  Google Scholar 

  • Haigh, J. D. (1996): The impact of solar variability on climate. Science 272, 981–984.

    Article  ADS  Google Scholar 

  • Haigh, J. D. (2001): Climate variability and the influence of the Sun. Science 294, 2109–2111.

    Article  Google Scholar 

  • Haigh, J. D. (2007): The Sun and the Earth’s climate. Living Reviews in Solar Physics 4, 2.

    ADS  MathSciNet  Google Scholar 

  • Haisch, B. M., Rodono, M. (Eds., 1989): Solar and stellar flares. Proceedings of IAU Colloquium No. 104. Solar Physics 121(1, 2). Reprinted Boston: Kluwer 1989.

    Google Scholar 

  • Haisch, B., Strong, K. T., Rodono, M. (1991): Flares on the Sun and other stars. Annual Review of Astronomy and Astrophysics 29, 275–324.

    Article  ADS  Google Scholar 

  • Hale, G. E. (1892a): A remarkable solar disturbance. Astronomy and Astrophysics 11, 611–613.

    Google Scholar 

  • Hale, G. E. (1892b): On the condition of the Sun’s surface in June and July, 1892, as compared with the record of terrestrial magnetism. Astronomy and Astrophysics 11, 917–925.

    Google Scholar 

  • Hale, G. E. (1908a): On the probable existence of a magnetic field in Sun-spots. Astrophysical Journal 28, 315–343. Reproduced in: A Source Book in Astronomy and Astrophysics1900–1975 (Eds. K. R. Lang and O. Gingerich). Cambridge: Harvard University Press 1979, pp. 96–105.

    Article  ADS  Google Scholar 

  • Hale, G. E. (1908b): Solar vortices. The Astrophysical Journal 28, 100–116.

    Article  ADS  MathSciNet  Google Scholar 

  • Hale, G. E. (1908c): The Zeeman effect in the Sun. Publications of the Astronomical Society of the Pacific 20, 287–288.

    Article  ADS  Google Scholar 

  • Hale, G. E. (1926): Visual observations of the solar atmosphere. Proceedings of the National Academy of Science 12, 286–295.

    Google Scholar 

  • Hale, G. E. (1929): The spectrohelioscope and its work. Part I. History, instruments, adjustments, and methods of observation. Astrophysical Journal 70, 265–311.

    Article  ADS  Google Scholar 

  • Hale, G. E. (1931): The spectrohelioscope and its work. Part III. Solar eruptions and their apparent terrestrial effects. Astrophysical Journal 73, 379–412.

    Article  ADS  Google Scholar 

  • Hale, G. E., et al. (1919): The magnetic polarity of sun-spots. Astrophysical Journal 49, 153–178.

    Article  ADS  Google Scholar 

  • Halley, E. (1716): An account of the late surprising appearance of the lights seen in the air. Philosophical Transactions of the Royal Society (London) 29, 406–428.

    Article  Google Scholar 

  • Hammer, C. U. (1977): Past volcanism revealed by Greenland ice sheet impurities. Nature 270, 482–486.

    Article  ADS  Google Scholar 

  • Hampel, W., et al. (1999): GALLEX solar neutrino observations: Results for GALLEX IV. Physics Letters 44, 127–133.

    Google Scholar 

  • Hanaoka, Y. (1994): A flare caused by interacting coronal loops. Astrophysical Journal (Letters) 420, L37–L40.

    Article  ADS  Google Scholar 

  • Hanaoka, Y. (1996): Flares and plasma flow caused by interacting coronal loops. Solar Physics 165, 275–301.

    Article  ADS  Google Scholar 

  • Hanaoka, Y. (1997): Double-loop configuration of solar flares. Solar Physics 173, 319–346.

    Article  ADS  Google Scholar 

  • Hanasoge, S. M., et al. (2006): Computational acoustics in spherical geometry: Steps toward validating helioseismology. Astrophysical Journal 648, 1268–1275.

    Article  ADS  Google Scholar 

  • Handy, B. N., et al. (1999): The Transition Region and Coronal Explorer. Solar Physics 187,229–260.

    Article  ADS  Google Scholar 

  • Handy, B. N., Schrijver, C. J. (2001): On the evolution of the solar photospheric and coronal magnetic field. Astrophysical Journal 547, 1100–1108.

    Article  ADS  Google Scholar 

  • Hansen, J. E., Lacis, A. A. (1990): Sun and dust versus greenhouse gases: An assessment of their relative roles in global climate change. Nature 346, 713–719.

    Article  ADS  Google Scholar 

  • Hansen, J. E., Lebedeff, S. (1987): Global trends of measured surface air temperature. Journal of Geophysical Research 92, 13345–13372.

    Article  ADS  Google Scholar 

  • Hansen, J. E., Lebedeff, S. (1988): Global surface air temperatures: Update through 1987. Geophysical Research Letters 15, 323–326.

    Article  ADS  Google Scholar 

  • Hansen, J. F., Bellan, P. M. (2001): Experimental demonstration of how strapping fields can inhibit solar prominence eruptions. Astrophysical Journal (Letters) 563, L183–L186.

    Article  ADS  Google Scholar 

  • Hansen, R. T., Garcia, C. J., Hansen, S. F., Yasukawa, E. (1974): Abrupt depletions of the inner corona. Publications of the Astronomical Society of the Pacific 86, 500–515.

    Article  ADS  Google Scholar 

  • Hara, H., et al. (1994): Temperatures of coronal holes observed with Yohkoh SXT. Publications of the Astronomical Society of Japan 46, 493–502.

    ADS  Google Scholar 

  • Harmon, J. K., Coles, W. A. (2005): Modeling radio scattering and scintillation observations of the inner solar wind using oblique Alfvén/ion cyclotron waves. Journal of Geophysical Research 110, A03101.

    Article  Google Scholar 

  • Harra, L. K., et al. (2007): Coronal dimming observed with Hinode: Outflows related to a coronal mass ejection. Publications of the Astronomical Society of Japan 59, S801–S806.

    ADS  Google Scholar 

  • Harra, L. K., Sterling, A. C. (2003): Imaging and spectroscopic investigations of a solar coronal wave: Properties of the wave front and associated erupting material. Astrophysical Journal 587, 429–438.

    Article  ADS  Google Scholar 

  • Harrison, R. A. (1986): Solar coronal mass ejections and flares. Astronomy and Astrophysics 162, 283–291.

    ADS  Google Scholar 

  • Harrison, R. A. (1991): Coronal mass ejection. Philosophical Transactions of the Royal Society (London) A336, 401–412.

    Article  ADS  Google Scholar 

  • Harrison, R. A. (1994): A statistical study of the coronal mass ejection phenomenon. Advances in Space Research 14(4), 23–28.

    Article  ADS  Google Scholar 

  • Harrison, R. A. (1997a): CME onset studies. In: The Corona and Solar Wind Near Minimum Activity. Proceedings of the Fifth SOHO Workshop ESA SP-404. Noordwijk: ESA Publications Division 1997, pp. 85–91.

    Google Scholar 

  • Harrison, R. A. (1997b): EUV blinkers – the significance of variations in the extreme ultraviolet quiet Sun. Solar Physics 175, 467–485. Reprinted in: The First Results from SOHO (Eds. B. Fleck and Z. Svestka). Boston: Kluwer Academic Publishers 1997, pp. 467–485.

    Article  ADS  Google Scholar 

  • Harrison, R. A. (1997c): One year of CDS: Highlights from observations using the coronal diagnostic spectrometer on SOHO. In: The Corona and Solar Wind Near Minimum Activity. Proceedings of the Fifth SOHO Workshop. ESA SP-404. Noorwijk: ESA Publications Division 1997, pp. 7–16.

    Google Scholar 

  • Harrison, R. A., Bryans, P., Simnett, G. M., Lyons, M. (2003): Coronal dimming and the coronal mass ejection onset. Astronomy and Astrophysics 400, 1071–1083.

    Article  ADS  Google Scholar 

  • Harrison, R. A., et al. (1990): The launch of solar coronal mass ejections: Results from the coronal mass ejection onset program. Journal of Geophysical Research 95, 917–937.

    Article  ADS  Google Scholar 

  • Harrison, R. A., et al. (1995): The Coronal Diagnostic Spectrometer for the Solar and Heliospheric Observatory. Solar Physics 162, 233–290.

    Article  ADS  Google Scholar 

  • Harrison, R. A., et al. (2008): First imaging of coronal mass ejections in the heliosphere viewed from outside the Sun-Earth line. Solar Physics 247, 171–193.

    Article  ADS  Google Scholar 

  • Harrison, R. A., Lyons, M. (2000): A spectroscopic study of coronal dimming associated with a coronal mass ejection. Astronomy and Astrophysics 358, 1097–1108.

    ADS  Google Scholar 

  • Hart, A. B. (1954): Motions in the Sun at the photospheric level IV. The equatorial rotation and possible velocity fields in the photosphere. Monthly Notices of the Royal Astronomical Society 114, 17–38.

    ADS  Google Scholar 

  • Hart, A. B. (1956): Motions in the Sun at the photospheric level VI. Large scale motions in the equatorial region. Monthly Notices of the Royal Astronomical Society 116, 38–55.

    ADS  Google Scholar 

  • Hartle, R. E., Sturrock, P. A. (1968): Two-fluid model of the solar wind. Astrophysical Journal 151, 1155–1170.

    Article  ADS  Google Scholar 

  • Hartmann, L. W., Noyes, R. W. (1987): Rotation and magnetic activity in main-sequence stars. Annual Review of Astronomy and Astrophysics 25, 271–301.

    Article  ADS  Google Scholar 

  • Hartz, T. R. (1964): Solar noise observations from the Alouette satellite. Annales d’Astrophysique 27, 831–836.

    ADS  Google Scholar 

  • Hartz, T. R. (1969): Type III solar radio noise bursts at hectometer wavelengths. Planetary and Space Science 17, 267–287.

    Article  ADS  Google Scholar 

  • Harvey, J. W. (1995): Helioseismology. Physics Today 48, 32–38 – October.

    Article  Google Scholar 

  • Harvey, J. W., et al. (1996): The Global Oscillation Network Group (GONG) project. Science 272, 1284–1286.

    Article  ADS  Google Scholar 

  • Harvey, J. W., Kennedy, J. R., Leibacher, J. W. (1987): GONG – to see inside our Sun. Sky and Telescope 74, 470–476 – November.

    ADS  Google Scholar 

  • Harvey, K. L., et al. (1999): Does magnetic flux submerge at flux cancellation sites? Solar Physics 190, 35–44.

    Article  ADS  Google Scholar 

  • Harvey, K. L., Martin, S. F. (1973): Ephemeral active regions. Solar Physics 32, 389–402.

    Article  ADS  Google Scholar 

  • Harvey, K. L., Recely, F. (2002): Polar coronal holes during cycles 22 and 23. Solar Physics 211, 31–52.

    Article  ADS  Google Scholar 

  • Haselgrove, B., Hoyle, F. (1959): Main-sequence stars. Monthly Notices of the Royal Astronomical Society 119, 112–120.

    ADS  Google Scholar 

  • Hassler, D. M., et al. (1997): Observations of polar plumes with the SUMER instrument on SOHO. Solar Physics 175, 375–391. Reprinted In: The First Results from SOHO (Eds. B. Fleck andZ. Svestka). Boston: Kluwer Academic Publishers 1997, pp. 375–391.

    Article  ADS  Google Scholar 

  • Hassler, D. M., et al. (1999): Solar wind outflow and the chromospheric magnetic network. Science 283, 810–813.

    Article  ADS  Google Scholar 

  • Hastings, D. E., Garret, H. (1996): Spacecraft–Environment Interactions. Cambridge Atmospheric and Space Science Series. New York: Cambridge University Press 1996.

    Google Scholar 

  • Hathaway, D. H. (1996): Doppler measurements of the Sun’s meridional flow. Astrophysical Journal 460, 1027–1033.

    Article  ADS  Google Scholar 

  • Hathaway, D. H., et al. (1996): GONG observations of solar surface flows. Science 272, 1306–1309.

    Article  ADS  Google Scholar 

  • Hathaway, D. H., et al. (2000): The photospheric convection spectrum. Solar Physics 193, 299–312.

    Article  ADS  Google Scholar 

  • Hathaway, D. H., et al. (2002): Radial flows in supergranules. Solar Physics 205, 25–38.

    Article  ADS  Google Scholar 

  • Hathaway, D. H., et al. (2003): Evidence that a deep meriodional flow sets the sunspot cycle period. Astrophysical Journal 589, 665–670.

    Article  ADS  Google Scholar 

  • Hathaway, D. H., Williams, P. E., Cuntz, M. (2006): Supergranule superrotation identified as a projection effect. The Astrophysical Journal 644, 598–602.

    Article  ADS  Google Scholar 

  • Havnes, O. (1971): Abundances and accelerations mechanisms of cosmic rays. Nature 229,548–549.

    Article  ADS  Google Scholar 

  • Hays, J. D., Imbrie, J., Shackleton, N. J. (1976): Variations in the Earth’s orbit: pacemaker of the ice ages. Science 194, 1121–1132.

    Article  ADS  Google Scholar 

  • Heath, D. F., Krueger, A. J., Crutzen, J. (1977): Solar proton events: Influence on stratospheric ozone. Science 197: 888–889.

    Article  ADS  Google Scholar 

  • Heaviside, O. (1902): Telegraphy In: Encyclopedia Britannica 113, 215.

    Google Scholar 

  • Henderson-Sellers, A. (1979): Clouds and the long term stability of the earth’s atmosphere and climate. Nature 279, 786–788.

    Article  ADS  Google Scholar 

  • Hernandez, I. Gonzalez, et al. (2006): Meridional circulation variability from large aperture ring-diagram analysis of global oscillation network group and Michelson Doppler imager data. Astrophysical Journal 638, 576–583.

    Google Scholar 

  • Herschel, W. (1801): Observations tending to investigate the nature of the Sun, in order to find the causes or symptoms of its variable emission of light and heat; with remarks on the use that may possibly be drawn from solar observations. Philosophical Transactions of the Royal Society of London 91, 265–318.

    Article  ADS  Google Scholar 

  • Hess, V. F. (1912): Concerning observations of penetrating radiation on seven free balloon flights. Physikalishe Zeitschrift 13, 1084–1091. English translation in: A Source Book in Astronomy and Astrophysics 1900–1975 (Eds. K. R. Lang and O. Gingerich). Cambridge, MA: Harvard University Press 1979, pp. 13–20.

    Google Scholar 

  • Hewish, A. (1955): The irregular structure of the outer regions of the solar corona. Proceedings of the Royal Society (London) 228A, 238–251.

    Google Scholar 

  • Hewish, A. (1958): The scattering of radio waves in the solar corona. Monthly Notices of the Royal Astronomical Society 118, 534–546.

    ADS  Google Scholar 

  • Hey, J. S. (1946): Solar radiations in the 4–6 metre radio wavelength band. Nature 157, 47–48.

    Article  ADS  Google Scholar 

  • Hey, J. S. (1973): The Evolution of Radio Astronomy. New York: Science History Publications, Neale Watson Academic Publications 1973.

    Google Scholar 

  • Heyvaerts, J., Priest, E. R. (1983): Coronal heating by phase-mixed shear Alfvén waves. Astronomy and Astrophysics 117, 220.

    MATH  ADS  Google Scholar 

  • Heyvaerts, J., Priest, E. R. (1984): Coronal heating by reconnection in DC current systems. A theory based on Taylor’s hypothesis. Astronomy and Astrophysics 137, 63–78.

    ADS  Google Scholar 

  • Heyvaerts, J., Priest, E. R., Rust, D. M. (1977): An emerging flux model for the solar flare phenomenon. Astrophysical Journal 216, 123–137.

    Article  ADS  Google Scholar 

  • Hick, P., et al. (1995): Synoptic IPS and Yohkoh soft X-ray observations. Geophysical Research Letters 22(5), 643–646.

    Article  ADS  Google Scholar 

  • Hickey, J. R., et al. (1981): Solar variability indications from Nimbus 7 satellite data. In: Variations of the Solar Constant (Ed. S. Sofia). Washington: NASA CP-2191, pp. 59–72.

    Google Scholar 

  • Hickey, J. R., et al. (1988a): Observation of total solar irradiance variability from Nimbus satellites. Advances in Space Research 9(7), 5–10.

    Article  ADS  Google Scholar 

  • Hickey, J. R., et al. (1988b): Total solar irradiance measurements by ERB/Nimbus-7: a review of nine years. Space Science Reviews 48, 321–342.

    Article  ADS  Google Scholar 

  • Hiei, E., Hundhausen, A. J., Sime, D. G. (1993): Reformation of a coronal helmet streamer by magnetic reconnection after a coronal mass ejection. Geophysical Research Letters 20,2785–2788.

    Article  ADS  Google Scholar 

  • Higdon, J. C., Lingenfelter, R. E. (2003): The superbubble origin of 22Ne in cosmic rays. Astrophysical Journal 590, 822–832.

    Article  ADS  Google Scholar 

  • Higdon, J. C., Lingenfelter, R. E. (2006): The superbubble origin for galactic cosmic rays. Advances in Space Research 37, 1913–1917.

    Article  ADS  Google Scholar 

  • Higdon, J. C., Lingenfelter, R. E., Ramaty, R. (1998): Cosmic-ray acceleration from supernova ejecta in superbubbles. The Astrophysical Journal (Letters) 509, L33–L36.

    Article  ADS  Google Scholar 

  • Hilchenbach, M., et al. (1998): Detection of 55–80 keV hydrogen atoms of heliospheric origin by CELIAS/HSTOF on SOHO. Astrophysical Journal 503, 916.

    Article  ADS  Google Scholar 

  • Hildner, E., et al. (1975): The sources of material comprising a mass ejection coronal transient. Solar Physics 45, 363–376.

    Article  ADS  Google Scholar 

  • Hill, F. (1988): Rings and trumpets – three-dimensional power spectra of solar oscillations. The Astrophysical Journal 333, 996–1013.

    Article  ADS  Google Scholar 

  • Hill, R. (1989): Solar oscillation ring diagrams and large-scale flows. Astrophysical Journal (Letters) 343, L69–L71.

    Article  ADS  Google Scholar 

  • Hill, T. W., Dessler, A. J. (1991): Plasma motions in planetary magnetospheres. Science 252,410–415 – April.

    Article  ADS  Google Scholar 

  • Hillas, A. M. (1972): Cosmic Rays. New York: Pergamon Press 1972.

    Google Scholar 

  • Hindman, B. W., et al. (2004): Comparison of solar subsurface flows assessed by ring and time-distance analyses. The Astrophysical Journal 613, 1253–1262.

    Article  ADS  Google Scholar 

  • Hines, C. O. (1974): A possible mechanism for the production of sun-weather correlations. Journal of Atmospheric Science 31, 589–591.

    Article  ADS  Google Scholar 

  • Hioter, O. P. (1747): Om Magnet-nalens Atskillige andreingar. Kongle Swen Wetenskaps Acad. Handlgar, 27–43.

    Google Scholar 

  • Hirayama, T. (1974): Theoretical model of flares and prominences I. Evaporating flare model. Solar Physics 34, 323–338.

    Article  ADS  Google Scholar 

  • Hirshberg, J., Bame, S. J., Robbins, D. E. (1972): Solar flares and solar wind helium enrichments: July 1965–July 1967. Solar Physics 23, 467–486.

    Article  ADS  Google Scholar 

  • Hirshberg, J., Colburn, D. S. (1969): Interplanetary field and geomagnetic variations – a unified view. Planetary and Space Science 17, 1183–1206.

    Article  ADS  Google Scholar 

  • Hodgson, R. (1860): On a curious appearance seen in the Sun. Monthly Notices of the Royal Astronomical Society 20, 15–16. Reproduced in: Early Solar Physics (Ed. A. J. Meadows). Oxford: Pergamon Press 1970, p. 185.

    ADS  Google Scholar 

  • Hoeksema, J. T. (1994): The large-scale structure of the heliospheric current sheet during the Ulysses epoch. Space Science Reviews 72, 137–148.

    Article  ADS  Google Scholar 

  • Hoeksema, J. T., Domingo, V., Fleck, B, Battrick, B. (Eds) (1995): SOHO-4: Helioseismology. ESA SP-376.

    Google Scholar 

  • Hoeksema, J. T., Scherrer, P. H. (1987): Rotation of the coronal magnetic field. Astrophysical Journal 318, 428–436.

    Article  ADS  Google Scholar 

  • Hoeksema, J. T., Wilcox, J. M., Scherrer, P. H. (1982): Structure of the heliospheric current sheet in the early portion of sunspot cycle 21. Journal of Geophysical Research 87A, 10, 331–10, 338.

    ADS  Google Scholar 

  • Hofer, M. Y., et al. (2003): Transition to solar minimum at high solar latitudes: Energetic particles from corotating interaction regions. Geophysical Research Letters 30(19), ULY 8–1.

    Article  Google Scholar 

  • Hollweg, J. V. (1972): Alfvénic motions in the solar atmosphere. Astrophysical Journal 177,255–259.

    Article  ADS  Google Scholar 

  • Hollweg, J. V. (1973): Transverse Alfvén waves in the solar wind. Wave pressure, Poynting flux, and angular momentum. Journal of Geophysical Research 78, 3643–3652.

    Article  ADS  Google Scholar 

  • Hollweg, J. V. (1975): Waves and instabilities in the solar wind. Reviews of Geophysics 13,263–289.

    Article  ADS  Google Scholar 

  • Hollweg, J. V. (1978): Some physical processes in the solar wind. Reviews of Geophysics 16,689–720.

    Article  ADS  Google Scholar 

  • Hollweg, J. V. (1984): Resonances of coronal loops. Astrophysical Journal 277, 392–403.

    Article  ADS  Google Scholar 

  • Hollweg, J. V. (1986): Transition region, corona and solar wind in coronal holes. Journal of Geophysical Research 91, 4111.

    Article  ADS  Google Scholar 

  • Hollweg, J. V. (1990): MHD waves on solar magnetic flux tubes – tutorial review. In: Physics of Magnetic Flux Ropes. Geophysical Monograph 58 (Eds. C. T. Russell, E. R. Priest and L. C. Lee). Washington, DC: American Geophysical Union 1990, pp. 23–31.

    Google Scholar 

  • Hollweg, J. V. (2006): The solar wind: then and now. Recurrent magnetic storms: Co-rotating solar wind streams. Geophysical Monograph Series 167, 19–30.

    Google Scholar 

  • Hollweg, J. V., et al. (1982): Possible evidence for coronal Alfvén waves. Journal of Geophysical Research 97, 1–8.

    Article  ADS  Google Scholar 

  • Hollweg, J. V., Isenberg, P. A. (2002): Generation of the fast solar wind: a review with emphasis on the resonant cyclotron interaction. Journal of Geophysical Research (Space Physics) 107, A7, 1147, SSH 12–1.

    Google Scholar 

  • Hollweg, J. V., Johnson, W. (1988): Transition regions, corona, and solar wind in coronal holes: some two-fluid models. Journal of Geophysical Research 87, 1.

    Article  ADS  Google Scholar 

  • Holman, G. D. (2005): Energetic electrons in solar flares as viewed in X-rays. Advances in Space Research 35, 1669–1674.

    Article  ADS  Google Scholar 

  • Holzer, T. E. (1977): Effects of rapidly diverging flow, heat addition, and momentum addition in the solar wind and stellar winds. Journal of Geophysical Research 82, 23–35.

    Article  ADS  Google Scholar 

  • Holzer, T. E. (1989): Interaction between the solar wind and the interstellar medium Annual Review of Astronomy and Astrophysics 27, 199–234.

    Google Scholar 

  • Holzer, T. E., Axford, W. I. (1970): The theory of stellar winds and related flows. Annual Review of Astronomy and Astrophysics 8, 31–60.

    Article  ADS  Google Scholar 

  • Holzer, T. E., Leer, E. (1997): Coronal hole structure and the high speed solar wind. In: The Corona and Solar Wind Near Minimum Activity. Proceedings of the Fifth SOHO Workshop. ESA SP-404. (Eds. O. Kjeldseth-Moe, A. Wilson) Noordwijk, The Netherlands: ESA Publications Division 1997, pp. 65–74.

    Google Scholar 

  • Hood, A. W., Priest, E. R. (1979): Kink instability of solar coronal loops as the cause of solar flares. Solar Physics 64, 303–321.

    Article  ADS  Google Scholar 

  • Hood, L. L. (1987): Solar ultraviolet radiation induced variations in the stratosphere and mesosphere. Journal of Geophysical Research 92, 876–888.

    Article  ADS  Google Scholar 

  • Horbury, T. S., Tsurutani, B. (2001): Ulysses measurements of waves, turbulence and discontinuities. In: The Heliosphere Near Solar Minimum: The Ulysses perspective (Eds. A. Balogh, R. G. Marsden and E. J. Smith). New York: Springer, Praxis 2001, pp. 167–227.

    Google Scholar 

  • Hosaka, J., et al. (2006): Solar neutrino measurements in super-kamiokande-1. Physical Review D 73, 112001–112007.

    Article  ADS  Google Scholar 

  • Hovestadt, D., et al. (1978): The nuclear and ionic charge distribution particle experiments on the ISEE-1 and ISEE-C spacecraft. IEEE Transactions Geoscience Electronics Vol. GE–16, 166–175.

    Google Scholar 

  • Hovestadt, D., et al. (1981): Singly charged energetic helium emitted in solar flares. Astrophysical Journal (Letters) 246, L81–L84.

    Article  ADS  Google Scholar 

  • Hovestadt, D., et al. (1984): Survey of He(+)/He(2+) abundance ratios in energetic particle events. Astrophysical Journal (Letters) 282, L39–L42.

    Article  ADS  Google Scholar 

  • Hovestadt, D., et al. (1995): CELIAS – Charge, Element and Isotope Analysis System for SOHO. Solar Physics 162, 441–481.

    Article  ADS  Google Scholar 

  • Hovestadt, D., Vollmer, O., Gloeckler, G, Fan, C.-Y. (1973): Measurement of elemental abundance of very low energy solar cosmic rays. Proceedings of the 13 th International Cosmic Ray Conference, 1498–1503.

    Google Scholar 

  • Hovestadt, D., Vollmer, O., Gloeckler, G., Fan, C.-Y. (1973): Differential energy spectra of low-energy (less than 8.5 MeV per nucleon) heavy cosmic rays during solar quiet times. Physical Review Letters 31, 650–653.

    Article  ADS  Google Scholar 

  • Howard, R. (1974): Studies of solar magnetic fields. Solar Physics 38, 283–299.

    Article  ADS  Google Scholar 

  • Howard, R. (1979): Evidence for large-scale velocity features on the Sun. The Astrophysical Journal (Letters) 228, L45–L50.

    Article  ADS  Google Scholar 

  • Howard, R. (1985): Eight decades of solar research at Mount Wilson. Solar Physics 100, 171–187.

    Article  ADS  MathSciNet  Google Scholar 

  • Howard, R. A., et al. (1982): The observation of a coronal transient directed at Earth. Astrophysical Journal (Letters) 263, L101–L104.

    Article  ADS  Google Scholar 

  • Howard, R. A., et al. (1985): Coronal mass ejections: 1979–1981. Journal of Geophysical Research 90, 8173–8191.

    Article  ADS  Google Scholar 

  • Howard, R. A., et al. (1997): Observations of CMEs from SOHO/LASCO. In: Coronal Mass Ejections. Geophysical Monograph 99 (Eds. N. Crooker, J. A. Joselyn and J. Feynman). Washington, DC: American Geophysical Union 1997, pp. 17–26.

    Google Scholar 

  • Howard, R. A., et al. (2008): Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Science Reviews 136, Issue 1–4, 67–115.

    Article  ADS  Google Scholar 

  • Howard, R. A., Koomen, M. J. (1974): Observation of sectored structure in the outer solar corona: Correlation with interplanetary magnetic field. Solar Physics 37, 469–475.

    Article  ADS  Google Scholar 

  • Howard, R. A., Sheeley, N. R. Jr., Michels, D. J., Koomen, M. J. (1985): Coronal mass ejections 1979–1981. Journal of Geophysical Research 90, 8173–8191.

    Article  ADS  Google Scholar 

  • Howard, R., Labonte, B. J. (1980): The Sun is observed to be a torsional oscillator with a period of 11 years. The Astrophysical Journal (Letters) 239, L33–L36.

    Article  ADS  Google Scholar 

  • Howard, R., Labonte, B. J. (1981): Surface magnetic fields during the solar activity cycle. Solar Physics 74, 131–145.

    Article  ADS  Google Scholar 

  • Howe, R. (2003): The internal rotation of the Sun. In: Proceedings of SOHO 12/GONG + 2002. Local and Global Helioseismology: The Present and Future. ESA SP-517 (Ed. H. Sawaya-Lacoste). Noordwijk, the Netherlands pp. 81–86.

    Google Scholar 

  • Howe, R., et al. (2000a): Deeply penetrating banded zonal flows in the solar convection zone. The Astrophysical Journal (Letters) 533, L163–L166.

    Article  ADS  Google Scholar 

  • Howe, R., et al. (2000b): Dynamic variations at the base of the solar convections zone. Science 287, 2456–2460.

    Article  ADS  Google Scholar 

  • Howe, R., et al. (2004): Convection-zone dynamics from GONG and MDI, 1995–2004. In Helio- and Asterosismology: Towards a Golden Future ESA SP-559 (Ed. D. Danesy). p. 472.

    Google Scholar 

  • Howe, R., et al. (2006a): Large-scale zonal flows near the solar surface. Solar Physics 235, 1–15.

    Article  ADS  Google Scholar 

  • Howe, R., et al. (2006b): Solar convection zone dynamics: How sensitive are inversion to subtle dynamo features? The Astrophysical Journal 649, 1155–1168.

    Article  ADS  Google Scholar 

  • Hoyle, F. (1949): Some Recent Researches in Solar Physics. Cambridge, England: Cambridge at the University Press 1949.

    Google Scholar 

  • Hoyle, F. (1958): Remarks on the computation of stellar evolution tracks. In: Stellar Populations (Ed. J. K. O’Connell). Vatican City: Specola Vaticana, pp. 223–226.

    Google Scholar 

  • Hoyle, F., Bates, D. R. (1948): The production of the E-layer. Terrestrial Magnetism and Atmospheric Electricity 53, 51–62.

    Article  ADS  Google Scholar 

  • Hoyng, P., et al. (1981): Origin and location of the hard X-ray emission in a two-ribbon flare. Astrophysical Journal (Letters) 246, L155–L159.

    Article  ADS  Google Scholar 

  • Hoyt, D. V, Eddy, J. A., Hudson, H. S. (1983): Sunspot areas and solar irradiance variations during 1980. Astrophysical Journal 275, 878–888.

    Article  ADS  Google Scholar 

  • Hoyt, D. V. et al. (1992): The Nimbus 7 solar total irradiance: a new algorithm for its derivation. Journal of Geophysical Research 97, 51–63.

    Article  ADS  Google Scholar 

  • Hoyt, D. V., Schatten, K. H. (1993): A discussion of plausible solar irradiance variations, 1700–1992. Journal of Geophysical Research 98, 18895–18906.

    Article  ADS  Google Scholar 

  • Hoyt, D. V., Schatten, K. H. (1997): The Role of the Sun in Climate Change. New York: Oxford University Press 1997.

    Google Scholar 

  • Hoyt, D. V., Schatten, K. H., Nesmes-Ribes, E. (1994): The one hundredth year of Rudolf Wolf’s death: Do we have the correct reconstruction of solar activity? Geophysical Research Letters 21, 2067–2070.

    Article  ADS  Google Scholar 

  • Hsieh, K. C., Simpson, J. A. (1970): The relative abundances and energy spectra of 3He and 4He from solar flares. Astrophysical Journal (Letters) 162, L191–L196.

    Article  ADS  Google Scholar 

  • Hu, Q., et al. (2003): Double flux-rope magnetic cloud in the solar wind at 1 AU. Geophysical Research Letters 30(7), 38–1.

    Article  Google Scholar 

  • Hu, Q., Smith, C. W., Ness, N. F., Skoug, R. M. (2004): Multiple flux rope magnetic ejecta in the solar wind. Journal of Geophysical Research 109, A03102.

    Article  Google Scholar 

  • Hudson, H. S. (1972): Thick-target processes and white-light flares. Solar Physics 24, 414–428.

    Article  ADS  MathSciNet  Google Scholar 

  • Hudson, H. S. (1987): Solar flare discovery. Solar Physics 113, 1–12.

    Article  ADS  Google Scholar 

  • Hudson, H. S. (1988): Observed variability of the solar luminosity. Annual Review of Astronomy and Astrophysics 26, 473–508.

    Article  ADS  Google Scholar 

  • Hudson, H. S. (1991): Solar flares, microflares, nanoflares and coronal heating. Solar Physics 133, 367–369.

    ADS  Google Scholar 

  • Hudson, H. S. (1997): The solar antecedents of geomagnetic storms. In: Magnetic Storms (Eds. B. T. Tsurutani, W. D. Gonzales and Y. Kamide). Washington, DC: American Geophysical Union 1997, 37–44.

    Google Scholar 

  • Hudson, H. S., Acton, L. W., Freeland, S. L. (1996): A long-duration solar flare with mass ejection and global consequences. Astrophysical Journal 470, 629–635.

    Article  ADS  Google Scholar 

  • Hudson, H. S., Bougeret, J.-L., Burkepile, J. (2006a): Coronal mass ejections: Overview of observations. Space Science Reviews, 123, 13–30.

    Article  ADS  Google Scholar 

  • Hudson, H. S., Cliver, E.W, (2001): Observing coronal mass ejections without coronagraphs. Journal of Geophysical Research 106(A11), 251199–25214.

    Google Scholar 

  • Hudson, H. S., Silva, S., Woodard, M. (1982): The effect of sunspots on solar irradiance. Solar Physics 76, 211–219.

    ADS  Google Scholar 

  • Hudson, H. S., et al. (1994): Impulsive behavior in solar soft X-radiation. Astrophysical Journal (Letters) 422, L25–L27.

    Article  ADS  Google Scholar 

  • Hudson, H. S., et al. (1998): X-ray coronal changes during halo CMEs. Geophysical Research Letters 25, 2481–2484.

    Article  ADS  Google Scholar 

  • Hudson, H. S., Haisch, B. M., Strong, K. T. (1995): Comment on ‘The solar flare myth’ by J. T. Gosling. Journal of Geophysical Research 100, 3473–3477.

    Article  ADS  Google Scholar 

  • Hudson, H. S., Ryan, J. (1995): High-energy particles in solar flares. Annual Review of Astronomy and Astrophysics 33, 239–282.

    Article  ADS  Google Scholar 

  • Hudson, H. S., Warmuth, A. (2004): Coronal loop oscillations and flare shock waves. Astrophysical Journal (Letters) 614, L85–L88.

    Article  ADS  Google Scholar 

  • Hudson, H. S., Webb, D. F. (1997): Soft X-ray signatures of coronal ejections. In: Coronal Mass Ejections. Geophysical Monograph 99 (Eds. N. Crooker, J. A. Joselyn and J. Feynman). Washington, DC: American Geophysical Union 1997, pp. 27–38.

    Google Scholar 

  • Hudson, H. S., Wolfson, C. J., and Metcalf, T. R. (2006b): White-light flares: A TRACE/RHESSI overview. Solar Physics 234, 79–93.

    Article  ADS  Google Scholar 

  • Hudson, M. K., et al. (2004): 3D modeling of shock-induced trapping of solar energetic particles in the Earth’s magnetosphere. Journal of Atmospheric and Terrestrial Physics 66, 1389–1397.

    Article  ADS  Google Scholar 

  • Hufbauer, K. (1991): Exploring the Sun: Solar Science Since Galileo. Baltimore, Maryland: Johns Hopkins University Press 1991.

    Google Scholar 

  • Hulburt, E. O. (1938): Photoelectric ionization in the ionosphere. Physical Review 53, 344–351.

    Article  ADS  Google Scholar 

  • Humboldt, F. W. H. A. von (1799–1804): Voyage aux régions équinoxiales du Nouveau Continent, fait en 1799, 1800, 1801, 1802, 1803, et 1804 par Al [exandre] de Humboldt et A [imé] Bonpland. Paris, 1805–1834.

    Google Scholar 

  • Humboldt, F. W. H. A. Von (1845, 1847): Kosmos. Cotta, Stuttgart 1845, 1847.

    Google Scholar 

  • Hundhausen, A. J. (1972a): Coronal Expansion and Solar Wind. New York: Springer-Verlag.

    Google Scholar 

  • Hundhausen, A. J. (1972b): Interplanetary shock waves and the structure of solar wind disturbances. In: Solar Wind: NASA SP-308 (Eds. C. P. Sonett, P. J. Coleman and J. M. Wilcox). Washington: NASA 1972, pp. 393–417.

    Google Scholar 

  • Hundhausen, A. J. (1973): Nonlinear model of high-speed solar wind streams. Journal of Geophysical Research 78, 1528–1542.

    Article  ADS  Google Scholar 

  • Hundhausen, A. J. (1977): An interplanetary view of coronal holes. In: Coronal Holes and High Speed Wind Streams (Ed. J. Zirker). Boulder: Colorado Associated University Press 1977, pp. 225–329.

    Google Scholar 

  • Hundhausen, A. J. (1987): The origin and propagation of coronal mass ejections. In: Solar Wind Six (Eds. V. J. Pizzo, T. Holzer and D. G. Sime). Boulder, Colorado: National Center for Atmospheric Research 1987, p. 181.

    Google Scholar 

  • Hundhausen, A. J. (1993): Sizes and locations of coronal mass ejections: SMM observations from 1980 and 1984–1989. Journal of Geophysical Research 98, 13177–13200.

    Article  ADS  Google Scholar 

  • Hundhausen, A. J. (1997): An introduction. In: Coronal Mass Ejections: Geophysical Monograph 99 (Eds. N. Crooker, J. A. Joselyn and J. Feynman). Washington: American Geophysical Union, pp. 1–7.

    Google Scholar 

  • Hundhausen, A. J. (1997): Coronal mass ejections. In: Cosmic Winds and the Heliosphere (Eds. J. R. Jokipii, C. P. Sonett and M. S. Giampapa). Tucson, Arizona: University of Arizona Press 1997, pp. 259–296.

    Google Scholar 

  • Hundhausen, A. J., Bame, S. J., Montgomery, M. D. (1970): Large-scale characteristics of flare-associated solar wind disturbances. Journal of Geophysical Research 75, 4631–4642.

    Article  ADS  Google Scholar 

  • Hundhausen, A. J., Burkepile, J. T., St. Cyr, O. C. (1994): Speeds of coronal mass ejections: SMM observations from 1980 and 1984–1989. Journal of Geophysical Research 99, 6543–6552.

    Article  ADS  Google Scholar 

  • Hundhausen, A. J., Gosling, J. T. (1976): Solar wind structure at large heliocentric distances: an interpretation of Pioneer 10 observations. Journal of Geophysical Research 81, 1436–1440.

    Article  ADS  Google Scholar 

  • Hundhausen, A. J., Stanger, A. L., Serbicki, S. A. (1994): Mass and energy contents of coronal mass ejections: SMM results from 1980 and 1984–1989. In: Solar Dynamical Phenomena and Solar Wind Consequences. Proceedings of the Third SOHO Workshop. ESA SP-373. Noordwijk: ESA Publications Division, pp. 409–412.

    Google Scholar 

  • Hunt, J. J., Domingo, V. (Eds., 1994): SOHO-3: Solar Dynamic Phenomena and Solar Wind Consequences. ESA SP-373 1994.

    Google Scholar 

  • Hurford, G. J., et al. (2002): The RHESSI imaging concept. Solar Physics 210, 61–86.

    Article  ADS  Google Scholar 

  • Hurford, G. J., et al. (2003): First gamma-ray images of a solar flare. Astrophysical Journal (Letters) 595, L77–L80.

    Article  ADS  Google Scholar 

  • Hurford, G. J., et al. (2006): Gamma-ray imaging of the 2003 October/November solar flares. Astrophysical Journal (Letters) 644, L93–L96.

    Article  ADS  Google Scholar 

  • Hurford, G. J., Mewaldt, R. A., Stone, E. C., Vogt, R. E. (1975): Enrichment of heavy nuclei in He-3-rich flares. Astrophysical Journal (Letters) 201, L95–L97.

    Article  ADS  Google Scholar 

  • Hurley, K., et al. (1992): The solar X-ray/cosmic gamma-ray burst experiment aboard Ulysses. Astronomy and Astrophysics Supplement 92(2), 401–410.

    ADS  MathSciNet  Google Scholar 

  • Huttunen, E. C., et al. (2008): STEREO and Wind observations of a magnetic cloud on May 21–23, 2007. Astrophysical Journal – submitted.

    Google Scholar 

  • Huttunen, K. E. J., et al. (2002): April 2000 magnetic storm: Solar wind driver and magnetospheric response. Journal of Geophysical Research 107, 1440.

    Article  Google Scholar 

  • Huttunen, K. E. J., et al. (2005): Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23. Annales Geophysicae 23, 625–641.

    ADS  Google Scholar 

  • Huttunen, K. E. J., Koskinen, H. E. J. (2004): Importance of post-shock streams and sheath region as drivers of intense magnetospheric storms and high-latitude activity. Annales Geophysicae 22, 1729–1738.

    ADS  Google Scholar 

I

  • Ichimoto, K., et al. (2007a): Twisting motions of sunspot penumbral filaments. Science 318,1597–1599.

    Article  ADS  Google Scholar 

  • Iichimoto, K., et al. (2007b): Fine-scale structures of the Evershed effect observed by the Solar Optical Telescope aboard Hinode. Publications of the Astronomical Society of Japan 59,S593–S599.

    ADS  Google Scholar 

  • Illing, R. M. E., Hundhausen, A. J. (1983): Possible observation of a disconnected magnetic structure in a coronal transient. Journal of Geophysical Research 99, 10210–10214.

    Article  ADS  Google Scholar 

  • Imada, S., et al. (2007): Discovery of a temperature-dependent upflow in the plage region during a gradual phase of the X-class flare. Publications of the Astronomical Society of Japan 59,S793–S799.

    ADS  Google Scholar 

  • Imbrie, J. (1982): Astronomical theory of the Pleistocene ice ages. A brief historical. Icarus 50, 408–432.

    Article  ADS  Google Scholar 

  • Imbrie, J., Imbrie, K. P. (1979): Ice ages – Solving the Mystery. Short Hills, New Jersey: Enslow Publishers 1979.

    Google Scholar 

  • Imbrie, J., Imbrie, J. Z. (1980): Modeling the climatic response to orbital variations. Science 207, 943–953.

    Article  ADS  Google Scholar 

  • Imbrie, J., Imbrie, K. P. (1986): Ice ages – Solving the Mystery. Second Edition. Cambridge, Massachusetts: Harvard University Press 1986.

    Google Scholar 

  • Imbrie, J., et al. (1984): The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record. In: Milankovitch and Climate, Part 1 (Eds. L. Berger et al.). Dordrecht, The Netherlands: Reidel 1984, pp. 269–305.

    Google Scholar 

  • Imbrie, J., et al. (1992): On the structure and origin of major glaciation cycles 1. Linear responses to Milankovich forcing. Paleoceanography 7, 701–738.

    Article  ADS  Google Scholar 

  • Innes, D. E, Inhester, B., Axford, W. I., Wilhelm, K. (1997): Bi-directional plasma jets produced by magnetic reconnection on the Sun. Nature 386, 811–813.

    Article  ADS  Google Scholar 

  • Insley, J. E., More, V., Harrison, R. A. (1995): The differential rotation of the corona as indicated by coronal holes. Solar Physics 160, 1–18.

    Article  ADS  Google Scholar 

  • Intergovernmental Panel On Climate Change (2001, 2007): The Scientific Basis. Contribution of Working Group 1 to the Third and the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press 2001, 2007.

    Google Scholar 

  • Intriligator, D. S., et al. (2005): From the Sun to the outer heliosphere: Modeling and analyses of the interplanetary propagation of the October/November (Halloween) 2003 solar events. Journal of Geophysical Research 110, A09S10.

    Article  Google Scholar 

  • Ionson, J. A. (1978): Resonant absorption of Alfvénic surface waves and the heating of solar coronal loops. Astrophysical Journal 226, 650–673.

    Article  ADS  Google Scholar 

  • Ireland, J., Will-Davey, M., Walsh, R. W. (1999): Coronal heating events in high cadence TRACE data. Solar Physics 190, 207–232.

    Article  ADS  Google Scholar 

  • Isenberg, P. A. (1983): Acceleration of heavy ions in the solar wind. In: Solar Wind Five (Ed. M. Neugebauer). Washington: NASA, pp. 655.

    Google Scholar 

  • Isenberg, P. A. (1990): Investigations of a turbulent-driven solar wind model. Journal of Geophysical Research 95, 6437.

    Article  ADS  Google Scholar 

  • Isenberg, P. A. (1991): The solar wind. Geomagnetism 4, 1–85.

    ADS  Google Scholar 

  • Isenberg, P. A. (2001): Heating of coronal holes and generation of the solar wind by ion-cyclotron resonance. Space Science Reviews 95, 119.

    Article  ADS  Google Scholar 

  • Isenberg, P. A. (2003): The kinetic shell model of coronal heating and acceleration by ion cyclotron waves: 3. The proton halo and dispersive waves. Journal of Geophysical Research 109, A03101.

    Article  Google Scholar 

  • Isenberg, P. A., Forbes, T. G. (1993): Catastrophic evolution of a force-free flux rope: A model for eruptive flares. Astrophysical Journal 417, 368–386.

    Article  ADS  Google Scholar 

  • Isenberg, P. A., Forbes, T. G. (2007): A three-dimensional line-tied magnetic filed model for solar eruptions. Astrophysics Journal 670, 1453–1466.

    Article  ADS  Google Scholar 

  • Isobe, H., et al. (2007): Flare ribbons observed with G-band and Fe I 6302 Å filters of the Solar Optical Telescope on board Hinode. Publications of the Astronomical Society of Japan 59,S807–S813.

    ADS  Google Scholar 

  • Izmodenov, V., Gloeckler, G., Malama, Y. (2003): When will Voyager 1 and 2 cross the termination shock? Geophysical Research Letters 30(7) 3–1.

    Article  Google Scholar 

J

  • Jackman, C. H., et al. (2005): Neutral atmospheric influences of the solar proton events in October–November 2003. Journal of Geophysical Research 110, 9.

    Article  Google Scholar 

  • James, I. N., James, P. M. (1989): Ultra-low-frequency variability in a simple atmospheric circulation model. Nature 342, 53–55.

    Article  ADS  Google Scholar 

  • Janssen, P. J. C. (1872): Observations of the solar eclipse of 12 December 1871. Nature 5, 249. Reproduced In: Early Solar Physics (Ed. A. J. Meadows). New York: Pergamon Press 1970, pp. 223–224.

    Article  Google Scholar 

  • Jefferies, S. M., et al. (2006): Magnetoacoustic portals and the basal heating of the solar chromosphere. The Astrophysical Journal (Letters) 648, L151–L155.

    Article  ADS  Google Scholar 

  • Jensen, J. M., Pijpers, F. P., Thompson, M. J. (2006): Time-distance measurements of cross-correlation asymmetries around NOAA AR 10486. Astrophysical Journal (Letters) 648,L75–L78.

    Article  ADS  Google Scholar 

  • Jing, J., et al. (2006): The statistical relationship between the photospheric magnetic parameters and the flare productivity of active regions. The Astrophysical Journal 38, 259.

    Google Scholar 

  • Jockers, K. (1970): Solar wind models based on exospheric theory. Astronomy and Astrophysics 6, 215–239.

    ADS  Google Scholar 

  • Johnson, T. H. (1938): Nature of primary cosmic radiation. Physical Review 54, 385–387.

    Article  ADS  Google Scholar 

  • Jokipii, J. R. (1966): Cosmic-ray propagation I. Charged particles in a random magnetic field. Astrophysical Journal, 146, 480.

    Article  ADS  Google Scholar 

  • Jokipii, J. R. (1971): Propagation of cosmic rays in the solar wind. Review of Geophysics and Space Physics 9, 27–87.

    Article  ADS  Google Scholar 

  • Jokipii, J. R., Davis, L. Jr. (1969): Long-wavelength turbulence and the heating of the solar wind. The Astrophysical Journal 156, 1101–1106.

    Article  ADS  Google Scholar 

  • Jokipii, J. R., et al. (1995): Interpretation and consequences of large-scale magnetic variances observed at high heliographic latitude. Geophysical Research Letters 22(23), 3385–3388.

    Article  ADS  Google Scholar 

  • Jokipii, J. R., Giacalone, J. (2004): Radial streaming anisotropies of charged particles accelerated at the solar wind termination shock. The Astrophysical Journal 605, L145–L148.

    Article  ADS  Google Scholar 

  • Jokipii, J. R., Giacalone, J., Kóta, J. (2004): Transverse streaming anisotropies of charged particles accelerated at the solar wind termination shock. Astrophysical Journal (Letters) 611,L141–L144.

    Article  ADS  Google Scholar 

  • Jokipii, J. R., Kóta, J. (1989): The polar heliospheric magnetic field. Geophysical Research Letters 16, 1–4.

    Article  ADS  Google Scholar 

  • Jokipii, J. R., Levy, E. H. (1977): Effects of particle drifts on the solar modulation of galactic cosmic rays. The Astrophysical Journal (Letters) 213, L85–L88.

    Article  ADS  Google Scholar 

  • Jokipii, J. R., Mc Donald, F. B. (1995): Quest for the limits of the heliosphere. Scientific American 272, 58–63 – April.

    ADS  Google Scholar 

  • Jokipii, J. R., Sonett, C. P., Giampapa, M. S. (Eds., 1997): Cosmic Winds and the Heliosphere. Tucson, Arizona: University of Arizona Press 1997.

    Google Scholar 

  • Jones, G. H., Balogh, A. (2003): The global heliospheric magnetic field polarity distribution as seen at Ulysses. Annales Geophysicae 21(6), 1377–1382.

    ADS  Google Scholar 

  • Jones, P. D., Wigley, T. M. L., Wright, P. B. (1986): Global temperature variations between 1861 and 1984. Nature 322, 430–434.

    Article  ADS  Google Scholar 

  • Joselyn, J. A., McIntosh, P. S. (1981): Disappearing solar filaments: a useful predictor of geomagnetic activity. Journal of Geophysical Research 86, 4555–4564.

    Article  ADS  Google Scholar 

  • Jouzel, J., et al. (1987): Vostok ice core: A continuous isotope temperature record over the last climatic cycle (160,000 years). Nature 329, 402–408.

    Article  ADS  Google Scholar 

  • Jouzel, J., et al. (1993): Extending the Vostok ice core record of palaeoclimate to the penultimate glacial period. Nature 364, 407–412.

    Article  ADS  Google Scholar 

  • Joy, A. H., Humason, M. L. (1949): Observations of the faint dwarf star L726–8. Publications of the Astronomical Society of the Pacific 61, 133–134.

    Article  ADS  Google Scholar 

  • Juckett, D. A. (2006): Long period (0.9–5.5 year) oscillations in surface spherical harmonics of sunspot longitudinal distributions. Solar Physics 237, 351–364.

    Article  ADS  Google Scholar 

  • Judge, P. G., Tarbell, T. D., Klaus, W. (2001): A study of chromospheric oscillations using the SOHO and TRACE spacecraft. The Astrophysical Journal 554, 424–444.

    Article  ADS  Google Scholar 

K

  • Kahler, S. W. (1977): The morphological and statistical properties of solar X-ray events with long decay times. The Astrophysical Journal 214, 891–897.

    Article  ADS  Google Scholar 

  • Kahler, S. W. (1982): The role of the big flare syndrome in correlations of solar energetic proton fluxes and associated microwave burst parameters. Journal of Geophysical Research 87,3439–3448.

    Google Scholar 

  • Kahler, S. W. (1987): Coronal mass ejections. Reviews of Geophysics 25, 663–675.

    Article  ADS  Google Scholar 

  • Kahler, S. W. (1992): Solar flares and coronal mass ejections. Annual Review of Astronomy and Astrophysics 30, 113–141.

    Article  ADS  Google Scholar 

  • Kahler, S. W. (2001): The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: Effects of ambient particle intensities and energy spectra. Journal of Geophysical Research 106, 20947–20956.

    Article  ADS  Google Scholar 

  • Kahler, S.W. (2007): Solar sources of heliospheric energetic events: shocks or flares? Space Science Reviews 129, 359–390.

    Article  ADS  Google Scholar 

  • Kahler, S. W., Sheeley, N. R. Jr., Liggett, M. (1989): Coronal mass ejections and associated X-ray flare durations. Astrophysical Journal 344, 1026–1033.

    Article  ADS  Google Scholar 

  • Kahler, S. W., et al. (1984): Associations between coronal mass ejections and solar energetic proton events. Journal of Geophysical Research 89, 9683–9693.

    Article  ADS  Google Scholar 

  • Kahler, S. W., et al. (1986): Solar filament eruptions and energetic particle events. Astrophysical Journal 302, 504–510.

    Article  ADS  Google Scholar 

  • Kahn, F. D. (1961): Sound waves trapped in the solar atmosphere. Astrophysical Journal 134, 343–346.

    Article  ADS  MathSciNet  Google Scholar 

  • Kaiser, M. L. (2008): The STEREO mission: An introduction. Space Science Reviews, 136, No. 1–4, 5–16.

    Article  ADS  Google Scholar 

  • Kakinuma, T. (1977): Observations of interplanetary scintillation: solar wind velocity measurements. In: Study of Traveling Interplanetary Phenomena (Eds. M. A. Shea, D. F. Smart and S. T. Wu). Dordrecht: D. Reidel 1977, pp. 101–118.

    Google Scholar 

  • Kalkofen, W. (2008): Heating and dynamics of the quiet chromosphere. Proceedings of the International Astronomical Union Symposium 247, 93–98.

    Google Scholar 

  • Kallenbach, R., et al. (1998): Fractionation of Si, Ne, and Mg isotopes in the solar wind as measured by Soho/Celias/Mtof. Space Science Reviews 85, 357–370.

    Article  ADS  Google Scholar 

  • Kallenbach, R., Geiss, J., Gloeckler, G., Von Steiger, R. (2000): Pick-up ion measurements in the heliosphere – A review. Astrophysics and Space Science 274, 97–114.

    Article  ADS  Google Scholar 

  • Kallenrode, M.-B. (1998): Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. New York: Springer-Verlag 1998.

    Google Scholar 

  • Kamio, S., et al. (2007): Velocity structure of jets in a coronal hole. Publications of the Astronomical Society of Japan 59, S757–S762.

    ADS  Google Scholar 

  • Kanbach, G., et al. (1993): Detection of a long-duration solar gamma-ray flare on June 11, 1991 with EGRET on COMPTON-GRO. Astronomy and Astrophysics Supplement Series 97,349–353.

    ADS  Google Scholar 

  • Kane, R. P. (2006): The idea of space weather – a historical perspective. Advances in Space Research 37, 1261–1264.

    Article  ADS  Google Scholar 

  • Kane, S. R. (1974): Impulsive (flash) phase of solar flares: Hard X-ray, microwave, EUV and optical :emissions. In: Coronal Disturbances. Proceedings of IAU Symposium No. 57 (Ed. G. Newkirk, Jr.) Boston: D. Reidel 1974, pp. 105–141.

    Google Scholar 

  • Kane, S. R. (Ed., 1975): Solar Gamma-, X-, and EUV Radiation. Proceedings of IAU Symposium No. 68. Boston: D. Reidel 1975.

    Google Scholar 

  • Kane, S. R., et al. (1980): Impulsive phase of solar flares. In: Solar Flares: A Monograph from Skylab Solar Workshop II (Ed. P. A. Sturrock). Boulder, Colorado: Colorado Associated University Press 1980, pp. 187–229.

    Google Scholar 

  • Kane, S. R., et al. (1986): Rapid acceleration of energetic particles in the 1982 February 8 solar flare. Astrophysical Journal (Letters) 300, L95–L98.

    Article  ADS  Google Scholar 

  • Kane, S. R., et al. (1995): Energy release and dissipation during giant solar flares. Astrophysical Journal (Letters) 446, L47–L50.

    Article  ADS  Google Scholar 

  • Kano, R., Tsuneta, S. (1995): Scaling law of solar coronal loops obtained with Yohkoh. Astrophysical Journal 454, 934–944.

    Article  ADS  Google Scholar 

  • Kano, R., Tsuneta, S. (1996): Temperature distributions and energy scaling law of solar coronal loops obtained with Yohkoh. Publications of the Astronomical Society of Japan 48, 535–543.

    ADS  Google Scholar 

  • Kappenman, J. G. (1996): Geomagnetic storms and their impact on power systems. IEEE Power Engineering Review 16, 5–8.

    Article  Google Scholar 

  • Karlén, W., Kuylenstierna, J. (1996): Evidence from the Scandinavian tree lines since the last ice age. In: The Global Warming Debate (Ed. J. Emsley). London: European Science and Environment Forum 1996, pp. 192–204.

    Google Scholar 

  • Karpen, J. T., Antiochos, S. K., Klimchuk, J. A. (2006): The origin of high speed motions and threads in prominences. Astrophysical Journal 637, 531–540.

    Article  ADS  Google Scholar 

  • Karpen, J. T., et al. (1998): Dynamic responses to magnetic reconnection in solar arcades. Astrophysical Journal 495, 491.

    Article  ADS  Google Scholar 

  • Kasting, J. F. (1989): Long-term stability of the Earth’s climate. Palaeogeography, Palaeoclimatology, Palaeoecology 75, 83–95.

    Article  Google Scholar 

  • Kasting, J. F., Ackerman, T. P. (1986): Climatic consequences of very high carbon dioxide levels in Earth’s early atmosphere. Science 234, 1383–1385.

    Article  ADS  Google Scholar 

  • Kasting, J. F., Catling, D. (2003): Evolution of a habitable planet. Annual Reviews of Astronomy and Astrophysics 41, 429–463.

    Article  ADS  Google Scholar 

  • Kasting, J. F., Grinspoon, D. H. (1991): The faint young sun problem. In: The Sun in Time (Eds. C. P. Sonett, M. S. Giampapa and M. S. Matthews). Tucson, Arizona: The University of Arizona Press 1991, pp. 447–462.

    Google Scholar 

  • Kasting, J. F., Toon, O. B. (1989): Climate evolution on the terrestrial planets. In: Origin and Evolution of Planetary and Satellite Atmospheres, (Eds. S. K. Alrya, J. B. Pollack, M. S. Matthews). Tucson, University of Arizona Press, pp. 423–449.

    Google Scholar 

  • Katsukawa, Y., et al. (2007a): Formation process of a light bridge revealed with the Hinode Solar Optical Telescope. Publications of the Astronomical Society of Japan 59, S577–S584.

    ADS  Google Scholar 

  • Katsukawa, Y., et al. (2007b): Small-scale jetlike features in penumbral chromospheres. Science 318, 1594–1596.

    Article  ADS  Google Scholar 

  • Katsukawa, Y., Tsuneta, S. (2005): Magnetic properties at footpoints of hot and cool loops. Astrophysical Journal 621, 498–511.

    Article  ADS  Google Scholar 

  • Kawabata, K. (1960): The relationship between post-burst increases of solar microwave radiation and sudden ionospheric disturbances. Report of Ionosphere and Space Research in Japan 14, 405–426.

    Google Scholar 

  • Keating, G. M., et al. (1986): Detection of stratospheric HNO3 and NO2 response to short-term solar ultraviolet variability. Nature 322, 43–46.

    Article  ADS  Google Scholar 

  • Keating, G. M., et al. (1987): Response of middle atmosphere to short-term ultraviolet variations 1. Observations. Journal of Geophysical Research 92, 889–902.

    Article  ADS  Google Scholar 

  • Keeling, C. D. (1960): The concentration and isotopic abundance of carbon dioxide in the atmosphere. Tellus 12, 200–203.

    ADS  Google Scholar 

  • Kellogg, P. J. (1962): Flow of plasma around the earth. Journal of Geophysical Research 67,3805–3811.

    Article  ADS  Google Scholar 

  • Kelly, P. M. (1977): Solar influence on North Atlantic mean sea level pressure. Nature 269,320–322.

    Article  ADS  Google Scholar 

  • Kelly, P. M., Wigley, T. M. L. (1990): The influence of solar forcing trends on global mean temperature since 1861. Nature 347, 460–462.

    Article  ADS  Google Scholar 

  • Kelly, P. M., Wigley, T. M. L. (1992): Solar cycle length, greenhouse forcing and global climate. Nature 360, 328–330.

    Article  ADS  Google Scholar 

  • Kelvin, Lord: see Thomson, W. (Baron Kelvin) (1892): Presidential address to the Royal Society on November 30, 1892. In: Popular Lectures and Addresses by Sir William Thomson Baron Kelvin. Volume II. Geology and General Physics. London: Macmillan and Company 1894,508–529.

    Google Scholar 

  • Kennelly, A. E. (1902): On the elevation of the electrically-conducting strata in the Earth’s atmosphere. Electrical World and Engineer 39, 473.

    Google Scholar 

  • Keppler, E., et al. (1992): The Ulysses energetic particle composition experiment EPAC. Astronomy and Astrophysics Supplement 92(2), 317–331.

    ADS  Google Scholar 

  • Kiepenheuer, K. O. (1950): Cosmic rays and radio emission from our galaxy. Physical Review 79, 738–739. Reproduced In: A Source Book in Astronomy and Astrophysics 1900–1975 (Eds. K. R. Lang and O. Gingerich). Cambridge, Massachusetts: Harvard University Press 1977,pp. 677–679.

    Article  ADS  Google Scholar 

  • Kim, S., et al. (2007): Two-step reconnections in a C3.3 flare and its preflare activity observed by Hinode XRT. Publications of the Astronomical Society of Japan 59, S831–S836.

    ADS  Google Scholar 

  • Kim, Y.-H., et al. (2007): Small-scale X-ray/EUV jets seen in Hinode XRT and TRACE. Publications of the Astronomical Society of Japan 59, S763–S769.

    ADS  Google Scholar 

  • King, D. B., et al. (2003): Propagating EUV disturbances in the solar corona: Twowavelength observations. Astronomy and Astrophysics 404, L1–L4.

    Article  ADS  Google Scholar 

  • Kirchhoff, G. (1861): On the chemical analysis of the solar atmosphere. Philosophical Magazine and Journal of Science 21, 185–188. Reproduced in: Early Solar Physics (Ed. A. J. Meadows). New York: Pergamon Press 1970, pp. 103–106.

    Google Scholar 

  • Kirchhoff, G., Bunsen, R. (1860): Chemical analysis of spectrum – observations. Philosophical Magazine and Journal of Science 20, 89–109, 22, 329–249, 498–510 (1861).

    Google Scholar 

  • Kitai, R., et al. (2007): Umbral fine structures in sunspots observed with Hinode Solar Optical Telescope. Publications of the Astronomical Society of Japan 59, S585–S591.

    ADS  Google Scholar 

  • Kivelson, M. G., Russell, C. T. (Eds., 1997): Introduction to Space Physics. Cambridge, England: Cambridge University Press 1997.

    Google Scholar 

  • Kjeldseth-Moe, O., Brekke, P. (1998): Time variability of active region loops observed with the coronal diagnostic spectrometer on SOHO. Solar Physics 182, 73–95.

    Article  ADS  Google Scholar 

  • Kjeldseth-Moe, O., Wilson, A. (Eds., 1997): SOHO-5: The Corona and Solar Wind Near Minimum Activity. ESA SP-404 Noordwijk, Netherlands 1997.

    Google Scholar 

  • Klecker, B., et al. (2006): Energetic particle observations. Space Science Reviews 123, 217–250.

    Article  ADS  Google Scholar 

  • Klecker, B., Möbius, E., Popecki, M. A. (2007): Ionic charge states of solar energetic particles. A clue to the source. Space Science Reviews 130, 273–282.

    Article  ADS  Google Scholar 

  • Kleim, B., Dammasch, J. E., Curdt, W., Wilhelm, K. (2002): Correlated dynamics of hot and cool plasmas in the main phase of a solar flare. Astrophysical Journal (Letters) 568, L61–L65.

    Article  ADS  Google Scholar 

  • Kleim, B., Titov, V. S., Törok, T. (2003): Formation of current sheets and sigmoidal structure by the kink instability of a magnetic loop. Astronomy and Astrophysics 413, L23–L26.

    Article  ADS  Google Scholar 

  • Klein, J., et al. (1980): Radiocarbon concentrations in the atmosphere: 8000 year record of variations in tree rings. Radiocarbon 22, 950–961.

    Google Scholar 

  • Klein, K.-L. (2003): Introduction. In: Energy Conversion and Particle Acceleration in the Solar Corona, Lecture Notes in Physics Vol. 612 (Ed. K.-L. Klein). New York: Springer-Verlag 2003, pp. 1–6.

    Google Scholar 

  • Klein, L. W., Burlaga, L. F. (1982): Interplanetary magnetic clouds at 1 AU. Journal of Geophysical Research 87, 613–624.

    Article  ADS  Google Scholar 

  • Klimchuk, J. A. (2000): Cross-sectional properties of coronal loops. Solar Physics 193, 53–75.

    Article  ADS  Google Scholar 

  • Klimchuk, J. A. (2001): Theory of coronal mass ejections. Space Weather, Geophysical Monograph 125, 143–157.

    Google Scholar 

  • Klimchuk, J. A. (2006): On solving the coronal heating problem. Solar Physics 234, 41–77.

    Article  ADS  Google Scholar 

  • Klimchuk, J. A., Cargill, P. J. (2001): Spectroscopic diagnostics of nanoflare- heated loops. The Astrophysical Journal 553, 440–448.

    Article  ADS  Google Scholar 

  • Klimchuk, J. A., Gary, D. E. (1995): A comparison of active region temperatures and emission measures observed in soft X-rays and microwaves and implications for coronal heating. The Astrophysical Journal 448, 925–937.

    Article  ADS  Google Scholar 

  • Klimchuk, J. A., Porter, L. J. (1995): Scaling of heating rates in solar coronal loops. Nature 377, 131–133.

    Article  ADS  Google Scholar 

  • Klimchuk, J. A., Tanner, S. E. M., De Moortel, I. (2004): Coronal seismology and the propagation of acoustic waves along coronal loops. Astrophysical Journal 616, 1232–1241.

    Article  ADS  Google Scholar 

  • Ko, Y.-K., et al. (1997): An empirical study of the electron temperature and heavy ion velocities in the south polar coronal hole. Solar Physics 171, 345–361.

    Article  ADS  Google Scholar 

  • Ko, Y.-K., et al. (2003): Dynamical and physical properties of a post-coronal mass ejection current sheet. Astrophysical Journal 594, 1068–1084.

    Article  ADS  Google Scholar 

  • Kocharov, L., Torsti, J. (2003): The origin of high-energy 3He-rich solar particle events. The Astrophysical Journal 586, 1430–1435.

    Article  ADS  Google Scholar 

  • Kohl, J. L., Cranmer, S. R. (Eds., 1999): SOHO-7: Coronal holes and solar wind acceleration. Space Science Reviews 87 (1–2), 1–368.

    ADS  Google Scholar 

  • Kohl, J. L., et al. (1980): Measurement of coronal temperatures from 1.5 to 3 solar radii. The Astrophysical Journal (Letters) 241, L117–L121.

    Article  ADS  Google Scholar 

  • Kohl, J. L., et al. (1995): Spartan 201 coronal spectroscopy during the polar passes of Ulysses. Space Science Reviews 72, 29–38.

    Article  ADS  Google Scholar 

  • Kohl, J. L., et al. (1995): The Ultraviolet Coronagraph Spectrometer for the Solar and Heliospheric Observatory. Solar Physics 162, 313–356.

    Article  ADS  Google Scholar 

  • Kohl, J. L., et al. (1997): First results from the SOHO ultraviolet coronagraph spectrometer. Solar Physics 175, 613–644. Reprinted in: The First Results from SOHO (Eds. B. Fleck and Z. Svestka). Boston: Kluwer Academic Publishers 1997, pp. 613–644.

    Article  ADS  Google Scholar 

  • Kohl, J. L., et al. (1998): UVCS/SOHO empirical determinations of anisotropic velocity distributions in the solar corona. Astrophysical Journal (Letters) 501, L127–L131.

    Article  ADS  Google Scholar 

  • Kohl, J. L., et al. (1999): EUV spectral line profiles in polar coronal holes from 1.3 to 3.0 R solar. The Astrophysical Journal (Letters) 510, L59–L62.

    Article  ADS  Google Scholar 

  • Kohl, J. L., Noci, G., Cranmer, R., Raymond, J. C. (2006): Ultraviolet spectroscopy of the extended solar corona. Astronomy and Astrophysics Review 13, 31–157.

    Article  ADS  Google Scholar 

  • Kohl, J. L., Withbroe, G. L. (1982): EUV spectroscopic plasma diagnostics for the solar wind acceleration region. Astrophysical Journal 256, 263–270.

    Article  ADS  Google Scholar 

  • Kojima, M., et al. (2004): Fast solar wind after the rapid acceleration. Journal of Geophysical Research 109(A4), A04103.

    Article  Google Scholar 

  • Kojima, M., Kakinuma, T. (1987): Solar cycle evolution of solar wind speed structure between 1973 and 1985 observed with the interplanetary scintillation method. Journal of Geophysical Research 92, 7269–7279.

    Article  ADS  Google Scholar 

  • Kolhörster, W. (1913): Messungen der durchdringenden Strahlung im Freiballon im gröβeren Höhen. Physikalishe Zeitschrift 14, 1153–1156.

    Google Scholar 

  • Kolmogoroff, A. N. (1941a): Dissipation of energy in the locally isotropic turbulence. Compt. Rend (Dokl.) Acad. Sci. (SSSR) 32, 16.

    MathSciNet  Google Scholar 

  • Kolmogoroff, A. N. (1941b): The local structure of turbulence in incompressible viscous fluids for very large Reynolds numbers. Compt. Rend (Dokl.) Acad. Sci (SSSR) 30, 301.

    MathSciNet  Google Scholar 

  • Kominz, M. A., Pisias, N. G. (1979): Pleistocene climate: Deterministic or stochastic. Science 204, 171–173.

    Article  ADS  Google Scholar 

  • Komm, R., et al. (2004): Solar subsurface fluid dynamics descriptors derived from Global Oscillation Network Group and Michelson Doppler Imager data. Astrophysical Journal 605,554–567.

    Article  ADS  Google Scholar 

  • Komm, R., et al. (2007): Divergence and vorticity of solar subsurface flows derived from ring-diagram analysis of MDI and GONG data. The Astrophysical Journal 667, 571–584.

    Article  ADS  Google Scholar 

  • Kopp, G., Lawrence, G., Rottman, G. (2005): The Total Irradiance Monitor (TIM): Science results. Solar Physics 230, 129–139.

    Article  ADS  Google Scholar 

  • Kopp, R. A., Holzer, T. E. (1976): Dynamics of coronal hole regions 1.: Steady polytropic flows with multiple critical points. Solar Physics 49, 43–56.

    Article  ADS  Google Scholar 

  • Kopp, R. A., Kuperus, M. (1968): Magnetic fields and the temperature structure of the chromosphere-corona interface. Solar Physics 4, 212–223.

    Article  ADS  Google Scholar 

  • Kopp, R. A., Pneuman, G. W. (1976): Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Physics 50, 85–98.

    Article  ADS  Google Scholar 

  • Korzennik, S., Wilson, A. (Eds., 1998): SOHO-6/GONG 98: Structure and Dynamics of the Interior of the Sun and Sun-like Stars. ESA SP-418 1998.

    Google Scholar 

  • Kosovichev, A. G., Duvall, T. L. Jr. (2006): Active region dynamics. Space Science Reviews 124, 1–12. Also in Solar Dynamics and Its Effects on the Heliosphere and Earth, Space Science Series of ISSI Volume 22. New York: Springer 2007, pp. 1–12.

    Article  ADS  Google Scholar 

  • Kosovichev, A. G., Duvall, T. L. Jr., Scherrer, P. H. (2000): Time-distance inversion methods and results – invited review. Solar Physics 192, 159–176.

    Article  ADS  Google Scholar 

  • Kosovichev, A. G., et al. (1997): Structure and rotation of the solar interior: Initial results from the MDI medium-L program. Solar Physics 170, 43–61. Reprinted in: The First Results From SOHO (Eds. B. Fleck and Z. Svestka). Boston: Kluwer Academic Publishers 1997, pp. 43–61.

    Article  ADS  Google Scholar 

  • Kosovichev, A. G., Schou, J. (1997): Detection of zonal shear flows beneath the Sun’s surface from f-mode frequency splitting. The Astrophysical Journal (Letters) 482, L207–L210.

    Article  ADS  Google Scholar 

  • Kosovichev, A. G., Zharkova, V. V. (1998): X-ray flare quakes the Sun. Nature 393, 317–318.

    Article  ADS  Google Scholar 

  • Kosugi, T., et al. (1991): The Hard X-ray Telescope (HXT) for the SOLAR-A mission. Solar Physics 136, 17–36.

    Article  ADS  Google Scholar 

  • Kosugi, T., et al. (1992): The Hard X-ray Telescope (HXT) onboard Yohkoh: Its performance and some initial results. Publications of the Astronomical Society of Japan 44, L45–L49.

    ADS  Google Scholar 

  • Kosugi, T., et al. (2007a): The Hinode (Solar-B) mission: An overview. Solar Physics 243, 3–17.

    Article  ADS  Google Scholar 

  • Kotoku, J., et al. (2007b): Magnetic feature and morphological study of X-ray bright points with Hinode. Publications of the Astronomical Society of Japan 59, S735–S743.

    ADS  Google Scholar 

  • Koutchmy, S., et al. (2004): The August 11th, 1999 CME. Astronomy and Astrophysics 420,709–718.

    Article  ADS  Google Scholar 

  • Koutchmy, S., Livshits, M. (1992): Coronal streamers. Space Science Reviews 61, 393–417.

    Article  ADS  Google Scholar 

  • Kozlovsky, B., Ramaty, R. (1977): Narrow lines from alpha-alpha reactions. Astrophysical Letters 19, 19–24.

    ADS  Google Scholar 

  • Krall, J., et al. (2001): Erupting solar magnetic flux ropes: Theory and observation. Astrophysical Journal 562, 1045–1057.

    Article  ADS  Google Scholar 

  • Krall, J., et al. (2006): Flux rope model of the 2003 October 28–30 coronal mass ejection and interplanetary coronal mass ejections. Astrophysical Journal 642, 541–553.

    Article  ADS  Google Scholar 

  • Kreplin, R. W. (1961): Solar X-rays. Annales de Géophysique 17, 151–161.

    ADS  Google Scholar 

  • Kreplin, R. W., Chubb, T. A., Friedman, H. (1962): X-ray and Lyman-alpha emission from the Sun as measured from the Nrl Sr-1 satellite. Journal of Geophysical Research 67, 2231–2253.

    Article  ADS  Google Scholar 

  • Krieger, A. S., et al. (1974): X-ray observations of coronal holes and their relation to high velocity solar wind streams. In: Solar Wind Three (Ed. C. T. Russell). Los Angeles, California: Institute of Geophysics and Planetary Physics, UCLA 1974, 132–139.

    Google Scholar 

  • Krieger, A. S., Timothy, A. F., Roelof, E. C. (1973): A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Physics 29, 505–525.

    Article  ADS  Google Scholar 

  • Krijger, J. M., et al. (2001): Dynamics of the solar chromosphere. III. Ultraviolet brightness oscillations from TRACE. Astronomy and Astrophysics 379, 1052–1082.

    Article  ADS  Google Scholar 

  • Krimigis, S. M., et al. (2003): Voyager 1 exited the solar wind at a distance of approximately 85 AU from the Sun. Nature 426, 45–48.

    Article  ADS  Google Scholar 

  • Krucker, S., Benz, A. O. (1998): Energy distribution of heating processes in the quiet solar corona. Astrophysical Journal (Letters) 501, L213–L216.

    Article  ADS  Google Scholar 

  • Krucker, S., Benz, A. O., Bastian, T. S., Acton, L. W. (1997): X-ray network flares of the quiet sun. Astrophysical Journal 488, 499–505.

    Article  ADS  Google Scholar 

  • Krucker, S., et al. (2002): Hard X-ray microflares down to 3 keV. Solar Physics 210, 445–456.

    Article  ADS  Google Scholar 

  • Krucker, S., Hurford, G. J., Lin, R. P. (2003): Hard X-ray source motions in the 2002 July 23 gamma-ray flare. Astrophysical Journal (Letters) 595, L103–L106.

    Article  ADS  Google Scholar 

  • Krucker, S., Larson, D. E., Lin, R. P., Thompson, B. J. (1999): On the origin of impulsive electron events observed at 1 AU. The Astrophysical Journal 519, 864–875.

    Article  ADS  Google Scholar 

  • Krucker, S., Lin, R. P. (2000): Two classes of solar proton events derived from onset time analysis. Astrophysical Journal (Letters) 542, L61–L64.

    Article  ADS  Google Scholar 

  • Krüger, A. (1979): Introduction to Solar Radio Astronomy and Radio Physics. Dordrecht D. Reidel 1979.

    Google Scholar 

  • Kubo, M., et al. (2007a): Hinode observations of a vector magnetic field change associated with a flare on 2006 December 13. Publications of the Astronomical Society of Japan 59,S779–S784.

    ADS  Google Scholar 

  • Kubo, M., et al. (2007b): Formation of moving magnetic features and penumbral magnetic fields with Hinode/SOT. Publications of the Astronomical Society of Japan 59, S607–S612.

    ADS  Google Scholar 

  • Kucera T. A. (2006): Ultraviolet observations of prominence activation and coronal loop dynamics. Astrophysical Journal 645, 1525–1536.

    Article  ADS  Google Scholar 

  • Kucera, T. A., Tovar, M., De Pontieu, B. (2003): Prominence motions observed at high cadences in temperatures from 10 000 to 250 000 K. Solar Physics 212, 81–97.

    Article  ADS  Google Scholar 

  • Kucharek, H., et al. (2003): On the source and acceleration of energetic He+: A long term observation with ACE/SEPICA. Journal of Geophysical Research 108(A10), LIS 15–1.

    Article  Google Scholar 

  • Kuhn, J. R., Bush, R. I., Scherrer, P., Scheick, S. (1998): The sun’s shape and brightness. Nature 392, 155–157.

    Article  ADS  Google Scholar 

  • Kuhn, J. R., Kasting, J. F. (1983): The effects of increased CO2 concentrations of surface temperature of the early Earth. Nature 301, 53–55.

    Article  ADS  Google Scholar 

  • Kuhn, J. R., Libbrecht, K. G., Dicke, R. H. (1988): The surface temperature of the Sun and changes in the solar constant. Science 242, 908–911.

    ADS  Google Scholar 

  • Kukla, G. (1975): Missing link between Milankovitch and climate. Nature 253, 600–603.

    Article  ADS  Google Scholar 

  • Kukla, G., et al. (1981): Orbital signature of interglacials. Nature 290, 295–300.

    Article  ADS  Google Scholar 

  • Kumar, A., Rust, D. M. (1996): Interplanetary magnetic clouds, helicity conservation and current-core flux-ropes. Journal of Geophysical Research 101(A7), 15667–15684.

    Article  ADS  Google Scholar 

  • Kundu, M. R. (1961): Bursts of centimeter-wave emission and the region of origin of X-rays from solar flares. Journal of Geophysical Research 66, 4308–4312.

    Article  ADS  Google Scholar 

  • Kundu, M. R. (1965): Solar Radio Astronomy. New York: Wiley Interscience.

    Google Scholar 

  • Kundu, M. R. (1982): Advances in solar radio astronomy. Reports on Progress in Physics 45, 1435–1541.

    Article  ADS  Google Scholar 

  • Kundu, M. R., et al. (1995): Microwave and hard X-ray observations of footpoint emission from solar flares. Astrophysical Journal 454, 522–530.

    Article  ADS  Google Scholar 

  • Kundu, M. R., Lang, K. R. (1985): The sun and nearby stars: Microwave observations at high resolution. Science 228, 9–15.

    Article  ADS  Google Scholar 

  • Kundu, M. R., Vlahos, L. (1982): Solar microwave bursts – a review. Space Science Reviews 32, 405–462.

    Article  ADS  Google Scholar 

  • Kundu, M. R., Woodgate, B., Schmahl, E. J. (Eds., 1989): Energetic Phenomena on the Sun. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Kunow, H., et al. (1999): Co-rotating interaction regions at high latitudes. Space Science Reviews 89, 221–268.

    Article  ADS  Google Scholar 

  • Kunow, H., et al. (Eds., 2006): Coronal mass ejections, Space Science Reviews 123, 1–484. Reprinted by Springer Verlag and the International Space Science Institute.

    Article  ADS  Google Scholar 

  • Kuperus, M., Ionson, J. A., Spicer, D. S. (1981): On the theory of coronal heating mechanisms. Annual Review of Astronomy and Astrophysics 19, 7–40.

    Article  ADS  Google Scholar 

  • Kyle, H. L., Hoyt, D. V., Hickey, J. R. (1994): A review of the Nimbus 7 ERB solar data set. In: The Sun as a Variable Star: Solar and Stellar Luminosity] Variations (Eds. J. M. Pap, C. Fröhlich, H. S. Hudson and S. K. Solanki). New York: Cambridge University Press, pp. 9–12.

    Google Scholar 

L

  • Labitzke, K. (1987): Sunspots, the QBO and the stratospheric temperature in the north polar region. Geophysical Research Letters 14, 535–537.

    Article  ADS  Google Scholar 

  • Labitzke, K., van Loon, H. (1988): Associations between the 11-year solar cycle, the QBO, and the atmosphere. Part 1. The troposphere and stratosphere in the northern hemisphere winter. Journal of Atmospheric and Terrestrial Physics 50, 197–206.

    Article  ADS  Google Scholar 

  • Labitzke, K., van Loon, H. (1990): Associations between the 11-year solar cycle, the quasi-biennial oscillation and the atmosphere: a summary of recent work. Philosophical Transactions of the Royal Society (London) A330, 557–589.

    ADS  Google Scholar 

  • Labitzke, K., van Loon, H. (1992): On the association between the QBO and the extratropical stratosphere. Journal of Atmosphere and Terrestrial Physics 54, 1453–1463.

    Article  Google Scholar 

  • Labitzke, K., van Loon, H. (1993): Some recent studies of probable connections between solar and atmospheric variability. Annales Geophysicae 11, 1084–1094.

    ADS  Google Scholar 

  • Labitzke, K., van Loon, H. (1995): Connection between the troposphere and stratosphere on a decadal scale. Tellus A 47, 275–286.

    Article  ADS  Google Scholar 

  • Labonte, B. J., Howard, R. (1982): Solar rotation measurements at Mount Wilson. III – meridional flow and limbshift. Solar Physics 80, 361–372.

    Article  ADS  Google Scholar 

  • Lacis, A. A., Carlson, B. E. (1992): Global warming: Keeping the Sun in proportion. Nature 360, 297.

    Article  ADS  Google Scholar 

  • Lacoste, H. (Ed., 2006) SOHO-17: 10 Years of SOHO and Beyond. ESA SP-617 2006.

    Google Scholar 

  • Laitinen, T. V., et al. (2005): The magnetotail reconnection region in a global MHD simulation. Annales Geophysicae 23, 3753.

    Article  ADS  Google Scholar 

  • Laitinen, T. V., et al. (2006): On the characterization of magnetic reconnection in MHD simulations. Annales Geophysicae 24, 3059–3069.

    Article  ADS  Google Scholar 

  • Lamb, H. H. (1965): The early Medieval warm epoch and its sequel. Palaeogeography, Palaeoclimatology, Palaeoecology 1, 13–37.

    Article  Google Scholar 

  • Lamb, H. H. (1977): Climate: Present, Past and Future: Climate History and the Future. London: Methuen.

    Google Scholar 

  • Lamb, H. H. (1982): Climate History and the Modern World. London: Methuen.

    Google Scholar 

  • Landi, E., Feldman, U., Doschek, G. A. (2007): Neon and oxygen absolute abundances in the corona. The Astrophysical Journal 659, 743–749.

    Article  ADS  Google Scholar 

  • Lane, J. H. (1870): On the theoretical temperature of the sun; under the hypothesis of a gaseous mass maintaining its volume by its internal heat, and depending on the laws of gases as known to terrestrial experiment. American Journal of Science and Arts (2^nd series) 50, 57–74. Reproduced in: Early Solar Physics (Ed. A. J. Meadows). New York: Pergamon Press 1970, pp. 257–276.

    Google Scholar 

  • Lang, K. R. (1994): Radio evidence for nonthermal particle acceleration on stars of late spectral type. Astrophysical Journal Supplement 90, 753–764.

    Article  ADS  Google Scholar 

  • Lang, K. R. (1996): Unsolved mysteries of the Sun – Part 1, 2. Sky and Telescope 92(2), 38–42, August, 92(3), 24–28, September.

    ADS  Google Scholar 

  • Lang, K. R. (1997): SOHO reveals the secrets of the sun. Scientific American 276(3), 32–47, March. Updated in: Magnificent Cosmos, a Scientific American Publication (1998), March. New York City, Scientific American.

    Google Scholar 

  • Lang, K. R. (1999a): The Sun. In: The New Solar System (Eds. J. Kelly Beatty, C. C. Petersen, and A. Chaikin). New York: Cambridge University Press 1999, pp. 23–38.

    Google Scholar 

  • Lang, K. R. (1999b): Astrophysical Formulae. Vol. I. Radiation, Gas Processes and High Energy Astrophysics. New York: Springer Verlag.

    Google Scholar 

  • Lang, K. R. (1999c): Astrophysical Formulae. Vol. II. Space, Time, Mass and Cosmology. New York: Springer Verlag.

    Google Scholar 

  • Lang, K. R. (2001): The Cambridge Encyclopedia of the Sun. Cambridge, England, Cambridge University Press.

    Google Scholar 

  • Lang, K. R. (2006): Sun, Earth and Sky, 2nd edition. New York: Springer Verlag.

    Google Scholar 

  • Lang, K. R., Gingerich, O. (Eds., 1979): A Source Book in Astronomy and Astrophysics 1900–1975. Cambridge: Harvard University Press.

    Google Scholar 

  • Lang, K. R., et al. (1993): Magnetospheres of solar active regions inferred from spectral-polarization observations with high spatial resolution. Astrophysical Journal 419, 398–417.

    Article  ADS  Google Scholar 

  • Langer, S. H., Petrosian, V. (1977): Impulsive solar X-ray bursts. III. Polarization, directivity, and spectrum of the reflected and total bremsstrahlung radiation from a beam of electrons directed toward the photosphere. The Astrophysical Journal 215, 666–676.

    Article  ADS  Google Scholar 

  • Lanzerotti, L. J. (2001a): Space weather effects on communications. In: Space Storms and Space Weather Hazards, NATO Science Series II, Vol. 38. (Ed. I. A. Daglis). Boston: Kluwer,pp. 313–334.

    Google Scholar 

  • Lanzerotti, L. J. (2001b): Space weather effects on technologies. In: Space Weather (Eds. P. Song, H. J. Singer and G. L. Siscoe). Washington, D. C: American Geophysical Union, p. 11.

    Google Scholar 

  • Lanzerotti, L. J., et al. (1992): Heliosphere instrument for spectra, composition and anisotropy at low energies. Astronomy and Astrophysics Supplement 92(2), 349–363.

    ADS  Google Scholar 

  • Lanzerotti, L. J., et al. (1995): Over the southern solar pole: low-energy interplanetary charged particles. Science 268, 1010–1013.

    Article  ADS  Google Scholar 

  • Lapenta, G., Knoll, D. A. (2005): Effect of a converging flow at the streamer cusp on the genesis of the slow solar wind. The Astrophysical Journal 624, 1049–1056.

    Article  ADS  Google Scholar 

  • Lario, D., et al. (2000): Energetic proton observations at 1 and 5 AU: 2. Rising phase of the solar cycle 23. Journal of Geophysical Research 105(A8), 18251–18274.

    Article  ADS  Google Scholar 

  • Larsen, D. E., et al. (1997): Tracing the topology of the October 18–20, 1995, magnetic cloud with 0.1 to 100 keV electrons. Geophysical Research Letters 24, 1911–1914.

    Article  ADS  Google Scholar 

  • Lassen, K., Friis-Christensen, E. (1995): Variability of the solar cycle length during the past five centuries and the apparent association with terrestrial climate. Journal of Atmospheric and Terrestrial Physics 57, 835–845.

    Article  ADS  Google Scholar 

  • Lassen, K., Friis-Christensen, E. (1996): A long-term comparison of sunspot cycle length and temperature change from Zurich observatory. In: The Global Warming Debate (Ed. J. Emsley). London: European Science and Environment Forum, pp. 224–232.

    Google Scholar 

  • Lattes, C. M. G., et al. (1947): Processes involving charged mesons. Nature 159, 694–697.

    Article  ADS  Google Scholar 

  • Lattes, C. M. G., Occhialini, G. P. S., Powell, C. F. (1947): Observations on the tracks of slow mesons in photographic emulsions. Nature 160, 453–456, 492. Reproduced in: HILLAS (1972).

    Article  ADS  Google Scholar 

  • Laut, P. (2003): Solar activity and terrestrial climate: an analysis of some purported correlations. Journal of Atmospheric and Solar-Terrestrial Physics 65, 801–812.

    Article  ADS  Google Scholar 

  • Laut, P., Gundermann, J. (2000): Solar cycle lengths and climate: a reference revisited. Journal of Geophysical Research 105, 27489–27492.

    Article  ADS  Google Scholar 

  • Leamon, R. J., Canfield, R. C., Bleh, M. Z., Pevtsov, A. A. (2003): What is the role of the kink instability in solar coronal eruptions? Astrophysical Journal (Letters) 596, L255–L258.

    Article  ADS  Google Scholar 

  • Leamon, R. J., Canfield, R. C., Pevtsov, A. A. (2002): Properties of magnetic clouds and geomagnetic storms associated with eruption of coronal sigmoids. Journal of Geophysical Research (Space Physics) 107(A9), SSH 1–1.

    Google Scholar 

  • Lean, J. (1987): Solar uv irradiance variation: A review. Journal of Geophysical Research 92, 839–868.

    Article  ADS  Google Scholar 

  • Lean, J. (1989): Contribution of ultraviolet irradiance variations to changes in the Sun’s total irradiance. Science 244, 197–200.

    Article  ADS  Google Scholar 

  • Lean, J. (1991): Variations in the Sun’s radiative output. Reviews of Geophysics 29, 505–535.

    Article  ADS  Google Scholar 

  • Lean, J. (1997): The Sun’s variable radiation and its relevance for Earth. Annual Review of Astronomy and Astrophysics 35, 33–67.

    Article  ADS  Google Scholar 

  • Lean, J. (2000): Evolution of the Sun’s spectral irradiance since the Maunder Minimum. Geophysical Research Letters 27, 2425–2428.

    Article  ADS  Google Scholar 

  • Lean, J., Beer, J., Bradley, R. (1995): Reconstruction of solar irradiance since 1610: implications for climate change. Geophysical Research Letters 22, 3195–3198.

    Article  ADS  Google Scholar 

  • Lean, J., et al. (1995): Correlated brightness variations in solar radiative output from the photosphere to the corona. Geophysical Research Letters 22, 655–658.

    Article  ADS  Google Scholar 

  • Lean, J., et al. (1998): Magnetic sources of the solar irradiance cycle. Astrophysical Journal 492, 390–401.

    Article  ADS  Google Scholar 

  • Lean, J., Foukal, P. (1988): A model of solar luminosity modulation by magnetic activity between 1954 and 1984. Science 240, 906–908.

    Article  ADS  Google Scholar 

  • Lean, J., Rind, D. (1994): Solar variability: Implications for global change. EOS 75(1), 1–6.

    Article  ADS  Google Scholar 

  • Lean, J., Skumanich, A., White, O. (1992): Estimating the Sun’s radiative output during the Maunder minimum. Geophysical Research Letters 19, 1591–1594.

    Article  ADS  Google Scholar 

  • Lean, J., Wang, Y.M., Sheeley, N. Jr. (2002): The effect of increasing solar activity on the Sun’s total and open magnetic flux during multiple cycles: implications for solar forcing of climate. Geophysical Research Letters 29(24), 2224.

    Article  ADS  Google Scholar 

  • Lee, R. B., et al. (1995): Long-term solar irradiance variability during sunspot cycle 22. Journal of Geophysical Research 100, 1667–1675.

    Article  ADS  Google Scholar 

  • Leer, E., Holzer, T. E. (1980): Energy addition in the solar wind. Journal of Geophysical Research 85, 4681–4688.

    Article  ADS  Google Scholar 

  • Lefebvre, S., Kosovichev, A. G. (2005): Changes in the subsurface stratification of the Sun with the 11–year activity cycle. The Astrophysical Journal (Letters) 633, L149–L152.

    Article  ADS  Google Scholar 

  • Leibacher, J. W., Stein, R. F. (1971): A new description of the solar five-minute oscillation. Astrophysical Letters 7, 191–192.

    ADS  Google Scholar 

  • Leibacher, J. W., Van Driel-Gesztelyi, L., Gizon, L., Cally, P. (Eds., 2008): SOHO-19/GONG 2007: Seismology of Magnetic Activity. Solar Physics. – submitted.

    Google Scholar 

  • Leighton, R. B. (1961): Considerations on localized velocity fields in stellar atmospheres: Prototype – The solar atmosphere. In: Aerodynamic Phenomena in Stellar Atmospheres. Proceedings of the Fourth Symposium on Cosmical Gas Dynamics. Supplemento del Nuovo Cimento 22, 321–325.

    Google Scholar 

  • Leighton, R. B. (1963): The solar granulation. Annual Review of Astronomy and Astrophysics 1, 19–40.

    Article  ADS  Google Scholar 

  • Leighton, R. B. (1964): Transport of magnetic fields on the sun. The Astrophysical Journal 140, 1547–1562.

    Article  MATH  ADS  Google Scholar 

  • Leighton, R. B. (1969): A magneto-kinematic model or the solar cycle. The Astrophysical Journal 156, 1–26.

    Article  ADS  Google Scholar 

  • Leighton, R. B., Noyes, R. W., Simon, G. W. (1962): Velocity fields in the solar atmosphere I. Preliminary report. The Astrophysical Journal 135, 474–499.

    Article  ADS  Google Scholar 

  • Leka, K. D., Canfield, R. C., Mc Clymont, A. N., Van Driel-Gesztelyi, L. (1996): Evidence for current-carrying emerging flux. The Astrophysical Journal 462, 547.

    Article  ADS  Google Scholar 

  • Leka, K. D., Fan, Y. L., Barnes, G. (2005): On the availability of sufficient twist in solar active regions to trigger the kink instability. The Astrophysical Journal 626, 1091–1095.

    Article  ADS  Google Scholar 

  • Lemon, R. J., Mcintosh, S. W. (2007): Empirical solar wind forecasting from the chromosphere. Astrophysical Journal, Issue 659, 738–742.

    Article  ADS  Google Scholar 

  • Lenz, D. D., et al. (1999): Temperature and emission-measure profiles along long-lived solar coronal loops observed with the Transition Region and Coronal Explorer. The Astrophysical Journal (Letters) 517, L155–L158.

    Article  ADS  Google Scholar 

  • Lepping, R. P., et al. (1991): The interaction of a very large interplanetary magnetic cloud with the magnetosphere and with cosmic rays. Journal of Geophysical Research 96, 9425–9438.

    Article  ADS  Google Scholar 

  • Lepri, S. T., Zurbuchen, T. H. (2004): Iron charge state distributions as an indicator of hot ICMEs: Possible sources and temporal and spatial variations during solar maximum. Journal of Geophysical Research 109(A1), A01112.

    Article  Google Scholar 

  • Letaw, J. R., Silberberg, R., Tsao, C. H. (1987): Radiation hazards on space missions. Nature 330, 709–710.

    Article  ADS  Google Scholar 

  • Le Treut, H, Ghil, M. (1983): Orbital forcing, climatic interactions, and glaciation cycles. Journal of Geophysical Research 99, 5167–5190.

    Article  ADS  Google Scholar 

  • Levine, J. S., Hays, P. B., Walker, J. C. G. (1979): The evolution and variability of atmospheric ozone over geological time. Icarus 39, 295–309.

    Article  ADS  Google Scholar 

  • Levine, R. H. (1974): Acceleration of thermal particles in collapsing magnetic regions. The Astrophysical Journal 190, 447–456.

    Article  ADS  Google Scholar 

  • Levine, R. H., Altschuler, M. D., Harvey, J. W. (1977): Solar sources of the interplanetary magnetic field and solar wind. Journal of Geophysical Research 82, 1061–1065.

    Article  ADS  Google Scholar 

  • Li, B., Li, X., Hu, Y.-Q., Habbal, S. R. (2004): A two-dimensional Alfvén wave-driven solar wind model with proton temperature anisotropy. Journal of Geophysical Research 109, A07103.

    Article  Google Scholar 

  • Li, H., et al. (2007): Response of the solar atmosphere to magnetic flux emergence from Hinode observations. Publications of the Astronomical Society of Japan 59, S643–S648.

    ADS  Google Scholar 

  • Li, X. (2002): Heating in coronal funnels by ion cyclotron waves. Astrophysical Journal (Letters) 571, L67–L70.

    Article  ADS  Google Scholar 

  • Li, X. (2003): Transition region, coronal heating and the fast solar wind. Astronomy and Astrophysics 406, 345–356.

    Article  ADS  Google Scholar 

  • Li, X. (2004): Variations of 0.7–6.0 MeV electrons at geosynchronous orbit as a function of solar wind. Space Weather 2(3), S03006.

    Article  ADS  Google Scholar 

  • Li, X., et al. (1998): The effect of temperature anisotropy on observations of Doppler dimming and pumping in the inner corona. The Astrophysical Journal (Letters) 501, L133.

    Article  ADS  Google Scholar 

  • Li. X., Habbal, S. R. (2005): Hybrid simulation of ion cyclotron resonance in the solar wind. Evolution of velocity distribution functions. Journal of Geophysical Research 110, A10, A10109.

    Article  ADS  Google Scholar 

  • Li, Y., et al. (2008): The solar magnetic field and coronal dynamics of the eruption on 19 May 2007. Astrophysical Journal Letters 681, L37–L39.

    Google Scholar 

  • Libbrecht, K. G. (1989): Solar p-mode frequency splittings. The Astrophysical Journal 336, 1092–1097.

    Article  ADS  Google Scholar 

  • Libbrecht, K. G., Woodard, M. F. (1990): Solar-cycle effects on solar oscillation frequencies. Nature 345, 779–782.

    Article  ADS  Google Scholar 

  • Libby, W. F. (1955): Radiocarbon Dating. Chicago: The University of Chicago Press.

    Google Scholar 

  • Liewer, P. C., Neugebauer, M., Zurbuchen, T. (2004): Characteristics of active-region sources of solar wind near solar maximum. Solar Physics 223, 209–229.

    Article  ADS  Google Scholar 

  • Liewer, P., et al. (2008): Stereoscopic analysis of STEREO/EUVI observations of May 29, 2007 erupting filament. Astrophysical Journal – submitted.

    Google Scholar 

  • Lighthill, M. J. (1952): On sound generated aerodynamically: I. General theory. Proceedings of the Royal Society of London A 211, 564.

    Google Scholar 

  • Lighthill, M. J. (1954): On sound generated aerodynamically: II. Turbulence as a source of sound. Proceedings of the Royal Society of London A 222, 1.

    Google Scholar 

  • Lin, J. (2007): Observational features of large-scale structures as revealed by the catastrophe model of solar eruptions. Chinese Journal of Astronomy and Astrophysics 7(4), 457–476.

    Article  ADS  Google Scholar 

  • Lin, J., et al. (2005): Direct observations of the magnetic reconnection site of an eruption on 2003 November 18. The Astrophysical Journal 622, 1251–1264.

    Article  ADS  Google Scholar 

  • Lin, J., et al. (2007): Features and properties of coronal mass ejection/flare current sheets. The Astrophysical Journal (Letters) 658, L123–L126.

    Article  ADS  Google Scholar 

  • Lin, J., Forbes, T. G. (2000): Effects of reconnection on the coronal mass ejection process. Journal of Geophysical Research 105(A2), 2375–2392.

    Article  ADS  Google Scholar 

  • Lin, J., Forbes, T. G., Isenberg, P. A., Demoulin, P. (1998): The effect of curvature on flux-rope models of coronal mass ejections. The Astrophysical Journal 504, 1006.

    Article  ADS  Google Scholar 

  • Lin, J., Mancuso, S., Vourlidas, A. (2006): Theoretical investigation of the onsets of type II radio bursts during solar eruptions. The Astrophysical Journal 649, 1110–1123.

    Article  ADS  Google Scholar 

  • Lin, J., Raymond, J. C., Van Ballegooijen, A. A. (2004): The role of magnetic reconnection in the observable features of solar eruptions. The Astrophysical Journal 602, 422–435.

    Article  ADS  Google Scholar 

  • Lin, J., Soon, W. (2004): Evolution of morphological features of CMEs deduced from catastrophe model of solar eruptions. New Astronomy 9, 611–628.

    Article  ADS  Google Scholar 

  • Lin, J., Soon, W., Baliunas, S. L. (2003): Theories of solar eruptions: A review. New Astronomy Reviews 47, 53–84.

    Article  ADS  Google Scholar 

  • Lin, R. P. (1970): The emission and propagation of 40 keV solar electrons, I. The relationship of 40 keV electron to energetic proton and relativistic electron emission by the Sun. Solar Physics 12, 266–303.

    Article  ADS  Google Scholar 

  • Lin, R. P. (1985): Energetic solar electrons in the interplanetary medium. Solar Physics 100,537–561.

    Article  ADS  Google Scholar 

  • Lin, R. P. (1987): Solar particle acceleration and propagation. Reviews of Geophysics 25, 676–684.

    Article  ADS  Google Scholar 

  • Lin, R. P. (2005): Relationship of solar flare accelerated particles to solar energetic particles (SEPs) observed in the interplanetary medium. Advances in Space Research 35, 1857–1863.

    Article  ADS  Google Scholar 

  • Lin, R. P. (2006): Particle acceleration by the Sun: Electrons, hard X-rays/gamma-rays. Space Science Reviews 124, 233–248.

    Article  ADS  Google Scholar 

  • Lin, R. P., et al. (1981): A new component of hard X-rays in solar flares. Astrophysical Journal (Letters) 251, L109–L114.

    Article  ADS  Google Scholar 

  • Lin, R. P., et al. (1984): Solar hard X-ray microflares. The Astrophysical Journal 283, 421–425.

    Article  ADS  Google Scholar 

  • Lin, R. P., et al. (2002): The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Physics 210, 3–32.

    Article  ADS  Google Scholar 

  • Lin, R. P., et al. (2008): The STEREO IMPACT Suprathermal Electron (STE) instrument Space Science Reviews Issue 1–4, 241–255.

    Google Scholar 

  • Lin, R. P., Evans, L. G., Fainberg, J. (1973): Simultaneous observations of fast solar electrons and type III radio burst emission near 1 AU. Astrophysical Letters 14, 191–198.

    ADS  Google Scholar 

  • Lin, R. P., Hudson, H. S. (1976): Non-thermal processes in large solar flares. Solar Physics 50, 153–178.

    Article  ADS  Google Scholar 

  • Lindemann, F. A. (1919): Note on the theory of magnetic storms. Philosophical Magazine 38, 669–684.

    Google Scholar 

  • Lindsey, C., Braun, D. C. (1990): Helioseismic imaging of sunspots at their antipodes. Solar Physics 126, 101–115.

    Article  ADS  Google Scholar 

  • Lindsey, C., Braun, D. C. (1997): Helioseismic holography. The Astrophysical Journal 485,895–503.

    Article  ADS  Google Scholar 

  • Lindsey, C., Braun, D. C. (2000a): Basic principles of solar acoustic holography. Solar Physics 192, 261–284.

    Article  ADS  Google Scholar 

  • Lindsey, C., Braun, D. C. (2000b): Seismic images of the far side of the Sun. Science 287,1799–1801.

    Article  ADS  Google Scholar 

  • Lindsey, C., Braun, D. C. (2005a): The acoustic showerglass II. Imaging active region subphotospheres. The Astrophysical Journal 620, 1118–1131.

    Article  ADS  Google Scholar 

  • Lindsey, C., Braun, D. C. (2005b): The acoustic showerglass I. Seismic diagnostics of photospheric magnetic fields. The Astrophysical Journal 620, 1107–1117.

    Article  ADS  Google Scholar 

  • Lingenfelter, R. E. (1969): Solar flare optical, neutron, and gamma-ray emission. Solar Physics 8, 341–347.

    Article  ADS  Google Scholar 

  • Lingenfelter, R. E., et al. (1965): High-energy solar neutrons 1. Production in flares. Journal of Geophysical Research 70, 4077–4086.

    Article  ADS  Google Scholar 

  • Lingenfelter, R. E., Ramaty, R. (1967): High energy nuclear reactions in solar flares. In: High Energy Nuclear Reactions in Astrophysics (Ed. B. Shen). New York: W. A. Benjamin 1967, pp. 99–158.

    Google Scholar 

  • Linker, J. A., Mikic, Z. (1995): Disruption of a helmet streamer by photospheric shear. Astrophysical Journal (Letters) 38, L45–L48.

    Article  ADS  Google Scholar 

  • Linsky, J. L. (1980): Stellar chromospheres. Annual Review of Astronomy and Astrophysics 18, 439–488.

    Article  ADS  Google Scholar 

  • Lionello, R., Riley, P., Linker, J. A., Mikic, Z. (2005): The effects of differential rotation on the magnetic structure of the solar corona: Magnetohydrodynamic simulations. Astrophysical Journal 625, 463–473.

    Article  ADS  Google Scholar 

  • Lites, B. W., Hansen, E. R. (1977): Ultraviolet brightenings in active regions as observed from OSO-8. Solar Physics 55, 347–358.

    Google Scholar 

  • Lites, B., et al. (2007): Hinode observations of horizontal quiet Sun magnetic flux and the “hidden turbulent magnetic flux”. t Astrophysical Journal 634, 651–662. Publications of the Astronomical Society of Japan 59, S571–S576.

    Google Scholar 

  • Litwin, C., Rosner, R. (1993): On the structure of solar and stellar coronae – Loops and loop heat transport. Astrophysical Journal 412, 375.

    Article  ADS  Google Scholar 

  • Livingston, W., Wallace, L., White, O. R. (1988): Spectrum line intensity as a surrogate for solar irradiance variations. Science 240, 1765–1767.

    Article  ADS  Google Scholar 

  • Lockwood, G. W., et al. (1984): The photometric variability of solar-type stars. IV. Detection of rotational modulation among Hyades stars. Publications of the Astronomical Society of the Pacific 96, 714–722.

    Article  ADS  Google Scholar 

  • Lockwood, G. W., et al. (1992): Long-term solar brightness changes estimated from a survey of sun-like stars. Nature 360, 653–655.

    Article  ADS  Google Scholar 

  • Lockwood, G. W., Skiff, B. A., Radick, R. R. (1997): The photometric variability of sun-like stars: Observations and results, 1984–1995. The Astrophysical Journal 485, 789–811.

    Article  ADS  Google Scholar 

  • Lockwood, M., Forsyth, R. B., Balogh, A., Mc Comas, D. J. (2004): Open solar flux estimates from near-Earth measurements of the interplanetary magnetic field: Comparison of the first two perihelion passes of the Ulysses spacecraft. Annales Geophysicae 22, 1395–1405.

    ADS  Google Scholar 

  • Lockwood, M., Frölich, C. (2007): Recent oppositely directed trends in solar climate forcings and the global mean surface air temperature. Proceedings of the Royal Society 463, 2447–2460.

    Google Scholar 

  • Lockwood, M., Stamper, R., Wild, M. N. (1999): A doubling of the Sun’s coronal magnetic field during the past 100 years. Nature 399, 37–439.

    Article  Google Scholar 

  • Lockyer, J. N. (1869): Spectroscopic observations of the Sun. III, IV. Proceedings of the Royal Society 17, 350–356, 415–418. Reproduced in: Early Solar Physics (Ed. A. J. Meadows). New York: Pergamon Press 1970, pp. 193–202, 233–236.

    Google Scholar 

  • Lockyer, J. N. (1874): Contributions to Solar Physics. London: Macmillan

    Google Scholar 

  • Lodders, K. (2003a): Abundances and condensation temperatures of the elements. Meteoritics and Planetary Science 38, 5272.

    Google Scholar 

  • Lodders, K. (2003b): Solar system abundances and condensation temperatures of the elements. Astrophysical Journal 591, 1220–1247.

    Article  ADS  Google Scholar 

  • Lodge, O. (1900): Sun spots, magnetic storms, comet tails, atmospheric electricity, and aurorae. The Electrician 46, 249–250, 287–288.

    Google Scholar 

  • Lomb, N. R., Andersen, A. P. (1980): The analysis and forecasting of the Wolfsunspot numbers. Monthly Notices of the Royal Astronomical Society 190, 723–732.

    ADS  Google Scholar 

  • Longcope, D. W. (2005): Topological methods for the analysis of solar magnetic fields. Living Reviews in Solar Physics 2, 7.

    ADS  Google Scholar 

  • Longcope, D. W., Brown, D. S., Priest, E. R. (2003): On the distribution of magnetic null points above the solar photosphere. Physics of Plasmas 10, 3321–3334.

    Article  ADS  Google Scholar 

  • Longcope, D. W., et al. (2005): Observations of separator reconnection to an emerging active region. The Astrophysical Journal 630, 596–614.

    Article  ADS  Google Scholar 

  • Longcope, D. W., Kankelborg, C. C. (1999): Coronal heating by collision and cancellation of magnetic elements. The Astrophysical Journal 524, 483–495.

    Article  ADS  Google Scholar 

  • Loomis, E. (1860): On the geographical distribution of auroras in the northern hemisphere. American Journal of Science and Arts 30, 89.

    Google Scholar 

  • Loomis, E. (1864): The aurora borealis, or polar light: Its phenomena and laws. Smithsonian Institute Annual Report 1864 Washington, D.C. US Government Printing Office 1865, 208–248.

    Google Scholar 

  • Loomis, E. (1866–1871): Notices of auroras extracted from the meteorological journals of Reverend Ezra Stiles. Transactions of the American Academy of Arts and Sciences 1, 155.

    Google Scholar 

  • Lorius, C., et al. (1985): A 150,000-year climatic record from Antarctic ice. Nature 316, 591–596.

    Article  ADS  Google Scholar 

  • Lorius, C., et al. (1988): Antarctic ice core: CO2 and climatic change over the last climatic cycle. EOS 69, 681, 683–684.

    ADS  Google Scholar 

  • Lorius, C., et al. (1990): The ice-core record: climate sensitivity and future greenhouse warming. Nature 347, 139–147.

    Article  ADS  Google Scholar 

  • Lovelock, J. E. (1979): Gaia, a New Look at Life on Earth. Oxford: Oxford University Press.

    Google Scholar 

  • Lovelock, J. E. (1988): The Ages of Gaia. New York: Norton.

    Google Scholar 

  • Lovelock, J. E., Margulis, L. (1973): Atmospheric homeostasis by and for the biosphere: the gaia hypothesis. Tellus 26, 1–9.

    Google Scholar 

  • Lovelock, J. E., Whitfield, M. (1982): Life span of the biosphere. Nature 296, 561–563.

    Article  ADS  Google Scholar 

  • Low, B. C. (1996): Solar activity and the corona. Solar Physics 167, 217–265.

    Article  ADS  Google Scholar 

  • Lu, E. T., Hamilton, R. J. (1991): Avalanches and the distribution of solar flares. Astrophysical Journal (Letters) 380, L89–L92.

    Article  ADS  Google Scholar 

  • Lu, Q. M., Wu, C. S., Wang, S. (2006): The nearly isotropic velocity distributions of energetic electrons in the solar wind. The Astrophysical Journal 638, 1169–1175.

    Article  ADS  Google Scholar 

  • Lucek, E. A., Balogh, A. (1998): The identification and characterization of Alfvénic fluctuations in Ulysses data at midlatitudes. The Astrophysical Journal 507, 984–900.

    Article  ADS  Google Scholar 

  • Lugaz, N., Manchester, W. B. IV, Gombosi, T. I. (2005): Numerical simulation of the interaction of two coronal mass ejections from Sun to Earth. The Astrophysical Journal 634, 651–662.

    Article  ADS  Google Scholar 

  • Luhmann, J. G., et al. (2007): STEREO IMPACT investigation goals, measurements, and data products overview. Space Science Reviews, 136, No. 1–4, 117–184.

    ADS  Google Scholar 

  • Lundquist, L. L., et al. (2007): Interaction between emerging flux and large-scale loop systems observed with Hinode XRT. Presented at the 30 May 2007 Meeting of the Solar Physics Division, American Astronomical Society, Honolulu, Hawaii.

    Google Scholar 

  • Lüst, R., Schlüter, A. (1954): Kraftfreie magneticfelder. Zeitschrift für Astrophysik 34, 263–282.

    MATH  Google Scholar 

  • Lynch, B. J., et al. (2004): Observable properties of the breakout model for coronal mass ejections. The Astrophysical Journal 617, 589–599.

    Article  ADS  Google Scholar 

  • Lyons, L. R. (1992): Formation of auroral arcs via magnetosphere-ionosphere coupling. Reviews of Geophysics 30, 93–112.

    Article  ADS  Google Scholar 

  • Lyons, L. R., Williams, D. J. (1984): Quantitative Aspects of Magnetospheric Physics. Boston, D. Reidel.

    Google Scholar 

  • Lyot, B. (1930): La couronne solair etudie en dehors des eclipses. Comptes Rendus de l’Academie des Sciences Paris 191, 834.

    MATH  Google Scholar 

M

  • Machado, M. E., et al. (1988): The observed characteristics of flare energy release I. Magnetic structure at the energy release site. The Astrophysical Journal 326, 425–450.

    Article  ADS  Google Scholar 

  • Mackay, D. H., Van Ballegooijen, A. A. (2005): New results in modeling the hemispheric pattern of solar filaments. Astrophysical Journal (Letters) 621, L77–L80.

    Article  ADS  Google Scholar 

  • Macklin, R. J. Jr., Neugebauer, M. M. (Eds., 1966): The Solar Wind: Proceedings of a Conference held at the California Institute of Technology, Pasadena, California, April 1–4, 1964, and Sponsored by the Jet Propulsion Laboratory. Oxford: Pergamon Press.

    Google Scholar 

  • Maclennan, C. G., Lanzerotti, L. J., Gold, R. E. (2003): Low energy charged particles in the high latitude heliosphere: Comparing solar maximum and solar minimum. Geophysical Research Letters 30(19), ULY 7–1.

    Article  Google Scholar 

  • Mac Low, M. -M., McCray, R. (1988): Superbubbles in disk galaxies. The Astrophysical Journal 324, 776–785.

    Article  ADS  Google Scholar 

  • Mac Neice, et al. (2004): A numerical study of the breakout model for coronal mass ejection initiation. The Astrophysical Journal 614, 1028–1041.

    Article  ADS  Google Scholar 

  • Mac Queen, R. M. (1980): Coronal transients: A summary. Philosophical Transactions of the Royal Society (London) A297, 605–620.

    Article  ADS  Google Scholar 

  • Mac Queen, R. M., et al. (1974): The outer solar corona as observed from Skylab: Preliminary results. Astrophysical Journal (Letters) 187, L85–L88.

    Article  Google Scholar 

  • Mac Queen, R. M., et al. (1976): Initial results from the high altitude observatory white light coronagraph on Skylab – a progress report. Philosophical Transactions of the Royal Society (London) A281, 405–414.

    Article  ADS  Google Scholar 

  • Maher, K. A., Stevenson, D. J. (1988): Impact frustration of the origin of life. Nature 331, 612–614.

    Article  ADS  Google Scholar 

  • Mairan, J. J.: Traité Physique et Historique de l’Aurorae Boréale, Paris: L’Imprimerie Royale 1733 (1st edition), 1754 (2nd revised edition).

    Google Scholar 

  • Mall, U., Fichtner, H., Rucinski, D. (1996): Interstellar atom and pick-up ion fluxes along the Ulysses flight-path. Astronomy and Astrophysics 316, 511–518.

    ADS  Google Scholar 

  • Maltoni, M., et al. (2003): Status of three-neutrino oscillations after the SNO-salt data. Physical Review D68, 113010–113028.

    ADS  Google Scholar 

  • Manchester, W. B., et al. (2004): Modeling a space weather event from the Sun to the Earth: CME generation and interplanetary propagation. Journal of Geophysical Research 109, A02107.

    Article  Google Scholar 

  • Manchester, W. B., et al. (2005): Coronal mass ejection shock and sheath structures relevant to particle acceleration. Astrophysical Journal 622, 1225–1239.

    Article  ADS  Google Scholar 

  • Mancuso, S., Spangler, S. R. (1999): Coronal Faraday rotation observations: measurements and limits on plasma inhomogeneities. The Astrophysical Journal 525, 195–208.

    Article  ADS  Google Scholar 

  • Mandrini, C. H., Démoulin, P, Klimchuk, J. A. (2000): Magnetic field and plasma scaling laws: Their implications for corona heating models. The Astrophysical Journal 530, 999–1015.

    Article  ADS  Google Scholar 

  • Mann, M. E. (2000): Climate change: lessons for a new millennium. Science 289, 253–254.

    Article  Google Scholar 

  • Mann, M. E., Bradley, R. S., Hughes, M. K. (1998): Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392, 779–787.

    Article  ADS  Google Scholar 

  • Mann, M. E., Bradley, R. S., Hughes, M. K. (1999): Northern hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophysical Research Letters 26, 759–762.

    Article  ADS  Google Scholar 

  • Mann, M. E., Park, J., Bradley, R. S. (1995): Global interdecadal and century- scale climate oscillations during the last five centuries. Nature 378, 266–270.

    Article  ADS  Google Scholar 

  • Manoharan, P. K., et al. (1996): Evidence for large-scale solar magnetic reconnection from radio and X-ray measurements. Astrophysical Journal (Letters) 468, L73–L76.

    Article  ADS  Google Scholar 

  • Marconi, G. (1899): Wireless telegraphy. Proceedings of the Institution of Electrical Engineers 28, 273.

    Google Scholar 

  • Margulis, L., Lovelock, J. E. (1974): Biological modulation of the Earth’s atmosphere. Icarus 21, 471–489.

    Article  ADS  Google Scholar 

  • Mariska, J. T. (1986): The quiet solar transition region. Annual Review of Astronomy and Astrophysics 24, 23–28.

    Article  ADS  Google Scholar 

  • Mariska, J. T. (1992): The Solar Transition Region. New York: Cambridge University Press.

    Google Scholar 

  • Mariska, J. T. (1994): Flare plasma dynamics observed with the Yohkoh Bragg crystal. The Astrophysical Journal 434, 756.

    Article  ADS  Google Scholar 

  • Mariska, J. T., Doschek, G. A., Bentley, R. D. (1993): Flare plasma dynamics observed with the Yohkoh Bragg crystal spectrometer I. Properties of the Ca XIX resonance line. Astrophysical Journal 419, 418–425.

    Article  ADS  Google Scholar 

  • Mariska, J. T., Feldman, U., Doschek, G. A. (1978): Measurements of extreme- ultraviolet emission-line profiles near the solar limb. Astrophysical Journal 226, 698–705.

    Article  ADS  Google Scholar 

  • Markovskii, S. A., et al. (2006): Dissipation of the perpendicular turbulent cascade in the solar wind. Astrophysical Journal 639, 1177–1185.

    Article  ADS  Google Scholar 

  • Markovskii, S. A., Hollweg, J. V. (2004): Intermittent heating of the solar corona by heat flux-generated ion cyclotron waves. Astrophysical Journal 609, 1112–1122.

    Article  ADS  Google Scholar 

  • Markson, R. (1978): Solar modulation of atmospheric electrification and possible implications for the Sun-weather relationship. Nature 273, 103–109.

    Article  ADS  Google Scholar 

  • Marsch, E. (1991): MHD turbulence in the solar wind. In: Physics of the Inner Heliospere, Vol. II (Eds. R. Schwenn and E. Marsch). Heildelberg: Springer-Verlag, pp. 159–241.

    Google Scholar 

  • Marsch, E. (1997): Working group 3: Coronal hole structure and high speed solar wind. In: The Corona and Solar Wind Near Minimum Activity. Proceedings of the Fifth SOHO Workshop. ESA SP-404. Noordwijk: ESA Publications Division, pp. 135–140.

    Google Scholar 

  • Marsch, E. (2006): Kinetic physics of the solar corona and solar wind. Living Reviews in Solar Physics 3, 1.

    ADS  Google Scholar 

  • Marsch, E., Goertz, C. K., Richter, K. (1982): Wave heating and acceleration of solar wind ions by cyclotron resonance. Journal of Geophysical Research 87(A7), 5030–5044.

    Article  ADS  Google Scholar 

  • Marsch, E., Tu, C.-Y. (1990): On the radial evolution of MHD turbulence in the inner heliosphere. Journal of Geophysical Research 95, 8211–8229.

    Article  ADS  Google Scholar 

  • Marsch, E., Tu, C. -Y. (1997): The effects of high-frequency Alfvén waves on coronal heating and solar wind acceleration. Astronomy and Astrophysics 319, L17–L20.

    ADS  Google Scholar 

  • Marsch, E., Tu, C.-Y. (1997): Solar wind and chromospheric network. Solar Physics 176, 87–106.

    Article  ADS  Google Scholar 

  • Marsch, E., Tu, C.-Y. (2001): Evidence for pitch angle diffusion of solar wind protons in resonance with cyclotron waves. Journal of Geophysical Research 106, 8357.

    Article  ADS  Google Scholar 

  • Marsden, R. G. (Ed., 1995): The High Latitude Heliosphere. New York: Kluwer Academic Publishers.

    Google Scholar 

  • Marsden, R. G. (Ed., 2001): The 3-D heliosphere at solar maximum. Space Science Reviews 97, 1–429. Reprinted by: Kluwer Academic Publishers, Dordrecht, the Netherlands.

    Article  Google Scholar 

  • Marsden, R. G., et al. (1987): ISEE 3 observations of low-energy proton bidirectional events and their relation to isolated interplanetary magnetic structures. Journal of Geophysical Research 92, 11009–11019.

    ADS  Google Scholar 

  • Marsden, R. G., et al. (1996): Ulysses at high heliographic latitudes: An introduction. Astronomy and Astrophysics 316, 279–286.

    ADS  Google Scholar 

  • Marsden, R. G., Smith, E. J. (1996): Ulysses: Solar sojourner. Sky and Telescope 91, 24–30, March.

    ADS  Google Scholar 

  • Marsh, K. A. (1978): Ephemeral region flares and the diffusion of the network. Solar Physics 59, 105–113.

    Article  ADS  Google Scholar 

  • Marsh, K. A., Hurford, G. J. (1980): VLA maps of solar bursts at 15 and 23 GHz with arcsecond resolution. Astrophysical Journal (Letters) 240, L111–L114.

    Google Scholar 

  • Marsh, M. S., Walsh, R. W., De Moortel, I., Ireland, J. (2003): Joint observations of propagating oscillations with SOHO/CDS and TRACE. Astronomy and Astrophysics 404, L37–L41.

    Article  ADS  Google Scholar 

  • Marsh, N. D., Svensmark, H. (2000): Low cloud properties influenced by cosmic rays. Physical Review Letters 85, 5004–5007.

    Article  ADS  Google Scholar 

  • Marsh, N. D., Svensmark, H. (2003): Solar influence on Earth’s climate. Space Science Reviews 107, 317–325.

    Article  ADS  Google Scholar 

  • Martens, P. C. H., Cauffman, D. (Eds., 2002): Multi-wavelength Observations of Coronal Structure and Dynamics Yohkoh 10th Anniversary Meeting. New York: Pergamon.

    Google Scholar 

  • Martens, P. C. H., Kuin, N. P. M. (1989): A circuit model for filament eruptions and two-ribbon flares. Solar Physics 122, 263–302.

    Article  ADS  Google Scholar 

  • Martens, P. C. H., Zwaan, C. (2001): Origin and evolution of filament-prominence systems. Astrophysical Journal 558, 872–877.

    Article  ADS  Google Scholar 

  • Martin, S. F. (1998): Conditions for the formation and maintenance of filaments (invited review). Solar Physics 183, 107–137.

    Article  ADS  Google Scholar 

  • Martin, S. F., Bilimoria, R., Tracadas, P. W. (1994): Magnetic field configurations basic to filament channels and filaments. In: Solar Surface Magnetism (Eds. R. J. Rutten and C. J. Schrijver). NATO Series C433, Kluwer Academic Publisher, Dordrecht the Netherlands, p. 303.

    Google Scholar 

  • Martinson, D. G., et al. (1987): Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300,000–year chronostratigraphy. Quaternary Research 27, 1–29.

    Article  ADS  Google Scholar 

  • Martyn, D. F. (1946): Temperature radiation from the quiet Sun in the radio spectrum. Nature 158, 632–633.

    Article  ADS  Google Scholar 

  • Mason, D., et al. (2006): Flares, magnetic fields, and subsurface vorticity: a survey of GONG and MDI data. Astrophysical Journal 645, 1543–1553.

    Article  ADS  Google Scholar 

  • Mason, G. M. (2001): Heliospheric lessons for galactic cosmic-ray acceleration. Space Science Reviews 99, 119–133.

    Article  ADS  Google Scholar 

  • Mason, G. M., et al. (1986): The heavy-ion compositional signature in He-3-rich solar particle events. Astrophysical Journal 303, 849–860.

    Article  ADS  Google Scholar 

  • Mason, G. M., et al. (1999): Origin, injection and acceleration of CIR particles: observations report of working group 6. Space Science Reviews 89, 327–367.

    Article  ADS  Google Scholar 

  • Mason, G. M., et al. (2007): The Suprathermal Ion Telescope (SIT) for the IMPACT/SEP investigation. Space Science Reviews 136, No. 1–4, 257–284.

    ADS  Google Scholar 

  • Mason, G. M., Mazur, J. E., Dwyer, J. R. (1999): 3He enhancements in large solar energetic particle events. Astrophysical Journal (Letters) 525, L133–L136.

    Article  ADS  Google Scholar 

  • Mason, G. M., Sanderson, T. R. (1999): CIR associated energetic particles in the inner and middle heliosphere. Space Science Reviews 89, 77–90.

    Article  ADS  Google Scholar 

  • Masuda, S. (1994): Hard X-ray Sources and the Primary Energy Release Site in Solar Flares. Ph. D. Thesis. Mitaka: University of Tokyo, the Yohkoh HXT group, National Astronomical Observatory.

    Google Scholar 

  • Masuda, S., et al. (1994): A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. Nature 371, 495–497.

    Article  ADS  Google Scholar 

  • Masuda, S., et al. (1995): Hard X-ray sources and the primary energy-release site in solar flares. Publications of the Astronomical Society of Japan 47, 677–689.

    ADS  MathSciNet  Google Scholar 

  • Masuda, S., Kosugi, T., Tsuneta, S., Hara, H. (1996): Discovery of a loop-top hard X-ray source in impulsive solar flares. Advances in Space Research 17, 4–5, 63–66.

    Article  ADS  Google Scholar 

  • Matsuzaki, K., et al. (2007): Hot and cool loops composing the corona of the quiet Sun. Publications of the Astronomical Society of Japan 59, S683–S689.

    ADS  Google Scholar 

  • Matthaeus, W. H., et al. (2005): Spatial correlation of solar-wind turbulence from two point measurements. Physical Review Letters 95, 231101.

    Article  ADS  Google Scholar 

  • Matthaeus, W. H., Lamkin, S. L. (1986): Turbulent magnetic reconnection. Physics of Fluids 29, 2513.

    Article  ADS  Google Scholar 

  • Matthes, K., et al. (2003): Improved 11-year solar signal in the Freie Universität Berlin climate middle atmosphere model (fub-cmam). Journal of Geophysical Research 109, D06101.

    Article  ADS  Google Scholar 

  • Mattok, C. (Ed., 1992): SOHO-1: Coronal Steamers, Coronal Loops, and Coronal and Solar Wind Compositions. ESA SP-348 1992 Noordwijk, the Netherlands.

    Google Scholar 

  • Maunder, E. W. (1890): Professor Spoerer’s researches on sunspots. Monthly Notices of the Royal Astronomical Society 50, 251–252.

    Google Scholar 

  • Maunder, E. W. (1894): A prolonged sunspot minimum. Knowledge 17(106), 173–176.

    Google Scholar 

  • Maunder, E. W. (1905): Magnetic disturbances, 1882 to 1903, as recorded at the royal observatory, greenwich, and their association with sun-spots. Monthly Notices of the Royal Astronomical Society 65, 2–34.

    ADS  Google Scholar 

  • Maunder, E. W. (1922): The prolonged sunspot minimum, 1645–1715. Journal of the British Astronomical Association 32, 140–145.

    Google Scholar 

  • Maxwell, A., Swarup, G. (1958): A new spectral characteristic in solar radio emission. Nature 181, 36–38.

    Article  ADS  Google Scholar 

  • Maxwell, J. C. (1860): Illustrations of the dynamical theory of gases: Part I. On the motions and collisions of perfectly elastic spheres. Philosophical Magazine 19, 19.

    Google Scholar 

  • Mazur, J. E., et al. (1992): The energy spectra of solar flare hydrogen, helium, oxygen, and iron: Evidence for stochastic acceleration. Astrophysical Journal 401, 398–410.

    Article  ADS  Google Scholar 

  • Mazur, J. E., et al. (2000): Interplanetary magnetic field line mixing deduced from impulsive solar flare properties. Astrophysical Journal (Letters) 532, L79–L82.

    Article  ADS  Google Scholar 

  • Mazur, J. E., et al. (2002): Charge states of energetic particles from co-rotating interaction regions as constraints on their source. Astrophysical Journal 566, 555–561.

    Article  ADS  Google Scholar 

  • Mc Allister, A. H., Crooker, N. U. (2002): Coronal mass ejections, corotating interaction regions, and geomagnetic storms. In: Coronal Mass Ejections. Geophysical Monograph 99 (Eds. N. Crooker, J. A. Joselyn and J. Feynman). Washington, DC: American Geophysical Union 1997, pp. 279–290.

    Google Scholar 

  • Mc Ateer, et al. (2004): Ultraviolet oscillations in the chromosphere of the quiet Sun. Astrophysical Journal 602, 436–445.

    Article  ADS  Google Scholar 

  • Mc Comas, D. J., et al. (1998a): Ulysses’ rapid crossing of the polar coronal hole boundary. Journal of Geophysical Research 103, 1955.

    Article  ADS  Google Scholar 

  • Mc Comas, D. J., et al. (1998b): Ulysses’ return to the slow solar wind. Geophysical Research Letters 25, 1–4.

    Article  ADS  Google Scholar 

  • Mc Comas, D. J., et al. (2000): Solar wind observations over Ulysses’ first full polar orbit. Journal of Geophysical Research 105(A5), 10419–10434.

    Article  ADS  Google Scholar 

  • Mc Comas, D. J., et al. (2002): Ulysses’ second fast-latitude scan: Complexity near solar maximum and the reformation of polar coronal holes. Geophysical Research Letters 29(9), 4–1.

    Google Scholar 

  • Mccomas, D. J., et al. (2003): The three-dimensional solar wind around solar maximum. Geophysical Research Letters 30(10), 1517.

    Article  ADS  Google Scholar 

  • McComas, D. J., et al. (2007): Understanding coronal heating and solar wind acceleration: Case for in situ near-Sun measurements. Reviews of Geophysics 45, 1–26.

    Article  Google Scholar 

  • Mc Crea, W. H. (1929): The hydrogen chromosphere. Monthly Notices of the Royal Astronomical Society 89, 483–497.

    ADS  Google Scholar 

  • Mc Crea, W. H. (1956): Shock waves in steady radial motion under gravity. Astrophysical Journal 124, 461–468.

    Article  ADS  MathSciNet  Google Scholar 

  • Mc Donald, A. B., et al. (2001): First neutrino observations from the Sudbury Neutrino Observatory. Nuclear Physics B – Proceedings Supplements 91, 21–28.

    Google Scholar 

  • Mc Hargue, L. R., Damon, P. E. (1991): The global beryllium 10 cycle. Reviews of Geophysics 29, 141–158.

    Article  ADS  Google Scholar 

  • McIntosh, P. S., Dryer, M. (Eds., 1970): Progress in Astronautics and Aeronautics, Vol. 30. Cambridge: MIT Press, Preface.

    Google Scholar 

  • Mcintosh, S. W., et al. (2001): An observational manifestation of magnetoatmospheric waves in internetwork regions of the chromosphere and transition region. Astrophysical Journal (Letters) 548, L237–L241.

    Article  ADS  MathSciNet  Google Scholar 

  • Mcintosh, S. W., Fleck, B., Tarbell, T. D. (2004): Chromospheric oscillations in an equatorial coronal hole. Astrophysical Journal (Letters) 609, L95–L98.

    Article  ADS  Google Scholar 

  • McIntosh, S. W., Jefferies, S. M. (2006): Observing the modification of the acoustic cutoff frequency by field inclination angle. The Astrophysical Journal (Letters) 647, L77–L81.

    Article  ADS  Google Scholar 

  • Mcintosh, S. W., Judge, P. O. (2001): On the nature of magnetic shadows in the solar chromosphere. Astrophysical Journal 561, 420–426.

    Article  ADS  Google Scholar 

  • Mcintosh, S. W., Leamon, R. J. (2005): Is there a chromospheric footprint of the solar wind? Astrophysical Journal (Letters) 624, L117–L120.

    Google Scholar 

  • McKenzie, D. E. (2002): Signatures of reconnection in eruptive flares. In Multi Wavelength Observations of Coronal Structure and Dynamics (Eds. P. C. H. Martens and D. P. Cauffman).

    Google Scholar 

  • McKenzie, D. E., Canfield, R. C. (2008): Hinode XRT observations of a long-lasting coronal sigmoid. Astronomy and Astrophysics Letters. 481, L65–L68.

    Article  ADS  Google Scholar 

  • Mc Kenzie, D. E., Hudson, H. S. (1999): X-ray observations of motions and structure above a solar flare arcade. Astrophysical Journal (Letters) 519, L93–L96.

    Article  ADS  Google Scholar 

  • Mc Kenzie, J. F., Axford, W. I., Banaszkiewicz, M. (1997): The fast solar wind. Geophysical Research Letters 24(22), 2877–2880.

    Article  ADS  Google Scholar 

  • Mc Kenzie, J. F., Banaszkiewicz, M., Axford, W. I. (1995): Acceleration of the high speed solar wind. Astronomy and Astrophysics 303, L45–L46.

    ADS  Google Scholar 

  • Mc Kenzie, J. F., Bornatici, M. (1974): Effect of sound waves, Alfvén waves, and heat flow on interplanetary shock waves. Journal of Geophysical Research 79, 4589–4594.

    Article  ADS  Google Scholar 

  • Mc Kibben, R. B., et al. (1996): Observations of galactic cosmic rays and the anomalous helium during Ulysses passage from the south to the north solar pole. Astronomy and Astrophysics 316, 547–554.

    ADS  Google Scholar 

  • Mc Kibben, R. B., et al. (2003): Ulysses COSPIN observations of cosmic rays and solar energetic articles from the South Pole to the North Pole of the Sun during solar maximum. Annales Geophysicae 21, 1217–1228.

    Article  ADS  MathSciNet  Google Scholar 

  • Mc Kibben, R. B., Lopate, C., Zhang, M. (2001): Simultaneous observations of solar energetic particle events by IMP 9 and the Ulysses COSPIN high energy telescope at high solar latitudes. Space Science Reviews 97, 257–262.

    Article  ADS  Google Scholar 

  • Mc Lean, D. J. (2005): Metrewave solar radio bursts. In: Solar Radiophysics (Eds. D. J. Mc Lean and N. R. Labrum). Cambridge: Cambridge University Press 1985, pp. 37–52.

    Google Scholar 

  • Mc Lean, D. J., Labrum, N. R. (Eds., 1985): Solar Radiophysics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Mc Lennan, J. C., Shrum, G. M. (1926): On the origin of the auroral green line 5577 Å and other spectra associated with the aurora borealis. Proceedings of the Royal Society (London) A108, 501.

    Google Scholar 

  • Mc Mulllin, D. R., et al. (2004): Heliospheric conditions that affect the interstellar gas inside the heliosphere. Astronomy and Astrophysics 426, 885–895.

    Article  ADS  Google Scholar 

  • McDonald, A. B. (2001): First results from the Sudbury Neutrino Observatory explain the missing solar neutrinos and reveal new neutrino properties. News Release of the Sudbury Neutrino Observatory on 18 June 2001. Sudbury Neutrino Observatory, Sudbury, Ontario, Canada.

    Google Scholar 

  • McDonald, A. B. (2005): Sudbury Neutrino Observatory results. Physica Scripta T 121, 29–32.

    Article  ADS  Google Scholar 

  • Meadows, A. J. (1970): Early Solar Physics. Oxford: Pergamon Press.

    Google Scholar 

  • Meadows, A. J. (1975): A 100 years of controversy over sunspots and weathers. Nature 256, 95–97.

    Article  ADS  Google Scholar 

  • Meadows, A. J., Kennedy, J. E. (1982): The origin of solar-terrestrial studies. Vistas in Astronomy 25, 419–426.

    Article  ADS  Google Scholar 

  • Melrose, D. B. (1995): Current paths in the corona and energy release in solar flares. Astrophysical Journal 451, 391–401.

    Article  ADS  Google Scholar 

  • Melrose, D. B. (1997): A solar flare model based on magnetic reconnection between current-carrying loops. Astrophysical Journal 486, 521–533.

    Article  ADS  Google Scholar 

  • Mewaldt, R. A. (2006): Solar energetic particle composition, energy spectra and space weather. Space Science Reviews 124, 303–316.

    Article  ADS  Google Scholar 

  • Mewaldt, R. A., et al. (2005): Solar-particle energy spectra during the large events of October–November 2003 and January 2005. 29 th International Cosmic Ray Conference Pune, 1, 101–104.

    Google Scholar 

  • Meyer, J.-P. (1981): A tentative ordering of all available solar energetic particle abundance observations. Proceedings of the 17th International Cosmic Ray Conference 3, 145–152.

    Google Scholar 

  • Meyer, J.-P. (1985a): Solar-stellar outer atmospheres and energetic particles, and galactic cosmic rays. Astrophysical Journal Supplement Series 57, 173–204.

    Article  ADS  Google Scholar 

  • Meyer, J.-P. (1985b): The baseline composition of solar energetic particles. Astrophysical Journal Supplement Series 57, 151–171.

    Article  ADS  Google Scholar 

  • Meyer, J.-P. (1991): Diagnostic methods for coronal abundances. Advances in Space Research 11(1), 269–280.

    Article  ADS  Google Scholar 

  • Meyer, P., Parker, E. N., Simpson, J. A. (1956): Solar cosmic rays of February, 1956 and their propagation through interplanetary space. Physical Review 104, 768–783.

    Article  ADS  Google Scholar 

  • Meyer, P., Simpson, J. A. (1954): Changes in amplitude of the cosmic-ray 27–day intensity variation with solar activity. Physical Review 96, 1085–1088.

    Article  ADS  Google Scholar 

  • Meyer, P., Simpson, J. A. (1955): Changes in the low-energy particle cutoff and primary spectrum of cosmic radiation. Physical Review 99, 1517–1523.

    Article  ADS  Google Scholar 

  • Meyer, P., Simpson, J. A. (1957): Changes in the low-energy particle cutoff and primary spectrum of cosmic rays. Physical Review 106, 568–571.

    Article  ADS  Google Scholar 

  • Meyer, P., Vogt, R. (1961): Electrons in the primary cosmic radiation. Physical Review Letters 6, 193–196.

    Article  ADS  Google Scholar 

  • Meyer, P., Vogt, R. (1962): High-energy electrons of solar origin. Physical Review Letters 8,387–389.

    Article  ADS  Google Scholar 

  • Meyer-Vernet, N. (1999): How does the solar wind blow? A simple kinetic model. European Journal of Physics 20, No. 3, 167–176.

    Article  ADS  Google Scholar 

  • Michel, F. C., Dessler, A. J. (1965): Physical significance of inhomogeneities in polar cap absorption events. Journal of Geophysical Research 70, 4305–4311.

    Article  ADS  Google Scholar 

  • Miesch, M. S. (2003): Numerical modeling of the solar tachocline II. Forced turbulence with imposed shear. Astrophysical Journal 586, 663–684.

    Article  ADS  Google Scholar 

  • Miesch, M. S. (2005): Large-scale dynamics of the convection zone and tachocline. Living Reviews in Solar Physics 2, 1.

    ADS  Google Scholar 

  • Miesch, M. S., Gilman, P. A. (2004): Thin-shell magnetohydrodynamic equations for the solar tachocline. Solar Physics 220, 287–305.

    Article  ADS  Google Scholar 

  • Mikheyev, S. P., Smirnov, A. Y. (1985): Resonance enhancement of oscillations in matter and solar neutrino spectroscopy. Soviet Journal of Nuclear Physics 42, 913–917.

    Google Scholar 

  • Mikic, Z., Lee, M. A. (2006): An introduction to theory and models of CMEs, shocks and solar energetic particles Space Science Reviews 123, 57–80.

    Article  ADS  Google Scholar 

  • Mikic, Z., Linker, J. A. (1994): Disruption of coronal magnetic field arcades. Astrophysical Journal 430, 898–912.

    Article  ADS  Google Scholar 

  • Milankovitch, M. M. (1920): Théorie Mathématique des Phénomenes Thermiques Produits par la Radiation Solarie. Académie Yugoslave des Sciences et des Arts de Zagreb. Paris: Gauthier-Villars.

    Google Scholar 

  • Milankovitch, M. M. (1941): Kanon der Erdbestrahlung une sei Eiszeitenproblem (Canon of insolation and the ice-age problem). Königliche Serbische Akademie, Beograd, Publication 132, Section of Mathematics and Natural Science 33, 1941. (English translation by the Israel Program for Scientific Translations and published for the U. S. Department of Commerce and the National Science Foundation, Jerusalem 1970).

    Google Scholar 

  • Miller, J. A., et al. (1997): Critical issues for understanding particle acceleration in impulsive solar flares. Journal of Geophysical Research 102, 14631–14659.

    Article  ADS  Google Scholar 

  • Millikan, R. A. (1926): High frequency rays of cosmic origin. Proceedings of the National Academy of Sciences 12, 48–55.

    Google Scholar 

  • Millikan, R. A., Cameron, G. H. (1926): High frequency rays of cosmic origin III. Measurements in snow-fed lakes at high altitudes. Physical Review 28, 851–868.

    Article  ADS  Google Scholar 

  • Minton, D. A., Malhotra, R. (2007): Assessing the massive young Sun hypothesis to solve the warm young Earth puzzle. Astrophysical Journal 660, 170–1706.

    Article  ADS  Google Scholar 

  • Miralles, M. P., Cranmer, S. R., Kohl, J. L. (2001): Ultraviolet coronagraph spectrometer observations of a high-latitude coronal hole with high oxygen temperatures and the next solar cycle polarity. Astrophysical Journal (Letters) 560, L193–L196.

    Article  ADS  Google Scholar 

  • Miralles, M. P., Cranmer, S. R., Kohl, J. L. (2004): Low-latitude coronal holes during solar maximum. Advances in Space Research 33, 696.

    Article  ADS  Google Scholar 

  • Miralles, M. P., Cranmer, S. R., Kohl, J. L. (2005): Solar cycle variations of coronal hole properties. American Geophysical Union Spring Meeting, Abstract SP51B-07.

    Google Scholar 

  • Miralles, M. P., et al. (2001): Comparison of empirical models for polar and equatorial coronal holes. Astrophysical Journal (Letters) 549, L257–L260.

    Article  ADS  Google Scholar 

  • Miranda, O. G., et al. (2004): Constraining the neutrino magnetic moment with antineutrinos from the Sun. Physical Review Letters 93, 051304.

    Article  ADS  Google Scholar 

  • Mitalas, R., Sills, K. R. (1992): On the photon diffusion time scale for the Sun. The Astrophysical Journal 401, 759.

    Article  ADS  Google Scholar 

  • Mitchell, J. F. B. (1989): The “greenhouse” effect and climate change. Reviews of Geophysics 27, 115–139.

    Article  ADS  Google Scholar 

  • Mizuno, D. R., et al. (2005): Very high altitude aurora observations with the solar mass ejection imager. Journal of Geophysical Research 110, A07230.

    Article  Google Scholar 

  • Möbius, E., et al. (1985): Direct observation of He (+) pick-up ions of interstellar origin in the solar wind. Nature 318, 426–429.

    Article  Google Scholar 

  • Möbius, E., et al. (2002): Charge state of energetic (about 0.5 MeV/nucleon) ions in co-rotating interaction regions at 1 AU and implications on source populations. Geophysical Research Letters 29(2), 1016.

    Article  ADS  Google Scholar 

  • Möbius, E., et al. (2004): Synopsis of interstellar He parameters from combined neutral gas, pickup ion and UV scattering observations and related consequences. Astronomy and Astrophysics 426(3), 897–907.

    Article  ADS  Google Scholar 

  • Molina, M. J., Rowland, F. S. (1974): Stratospheric sink for chlorofluoromethanes. chlorine atomic-atalyzed destruction of ozone. Nature 249, 810–812.

    Article  ADS  Google Scholar 

  • Montgomery, M. D., et al. (1974): Solar wind electron temperature depressions following some interplanetary shock waves: Evidence for magnetic merging? Journal of Geophysical Research 79, 3103–3123.

    Article  ADS  Google Scholar 

  • Moon, Y.-J., et al. (2002): A statistical study of two classes of coronal mass ejections. Astrophysical Journal 581, 694–702.

    Article  ADS  Google Scholar 

  • Moon, Y.-J., et al. (2007): Hinode sp vector magnetogram of AR 10930 and its cross comparison with MDI. Publications of the Astronomical Society of Japan 59, S625–S630.

    ADS  Google Scholar 

  • Moore, R. L. (1988): Evidence that magnetic energy shedding in solar filament eruptions is the drive in accompanying flares and coronal mass ejections. Astrophysical Journal 324,1132–1137.

    Article  ADS  Google Scholar 

  • Moore, R. L., et al. (1980): The thermal X-ray flare plasma. In: Solar Flares. Skylab Solar Workshop II (Ed. P. A. Sturrock). Boulder, Colorado: Colorado Associated University Press 1980, pp. 341–409.

    Google Scholar 

  • Moore, R. L., Schmieder, B., Hathaway, D. H., Tarbell, T. D. (1997): 3–d magnetic field configuration late in a large two-ribbon flare. Solar Physics 176, 153–169.

    Article  ADS  Google Scholar 

  • Moore, R. L., Sterling, A. C. (2006): Initiation of coronal mass ejections. In Solar Eruptions and Energetic Particles. Geophysical Monograph Series 165. (Ed. N. Gopalswamy, R. Mewaldt and J. Torsti). Washington: American Geophysical Union.

    Google Scholar 

  • Moore, R. L., Sterling, A. C. (2007): The coronal-dimming footprint of a streamer puff coronal mass ejection: Confirmation of the magnetic-arch-blowout scenario. Astrophysical Journal 661, 543–550.

    Article  ADS  Google Scholar 

  • Moore, R. L., Sterling, A. C., Hudson, H. S., Lemen, J. R. (2001): Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophysical Journal 552, 833–848.

    Article  ADS  Google Scholar 

  • Moore, R. L., Sterling, A. C., Suess, S. T. (2007): The width of a solar coronal mass ejection and the source of the driving magnetic explosion: A test of the standard scenario for CME production. Astrophysical Journal 668, 1221–1231.

    Article  ADS  Google Scholar 

  • Moore, R. L., Suess, S. T., Musielak, Z. E., An, C. -H. (1991): Alfvén wave trapping, network microflaring and heating in coronal holes. The Astrophysical Journal 378, 347–359.

    Article  ADS  Google Scholar 

  • Moran, T. G., Davila, J. M. (2004): Three-dimensional polarimetric imaging of coronal mass ejections. Science 305, 66–70.

    Article  ADS  Google Scholar 

  • Moreton, G. E. (1960): Hα observations of flare-initiated disturbances with velocities ≈ 1000 km/sec. The Astronomical Journal 65, 494–495.

    Article  Google Scholar 

  • Moreton, G. E. (1961): Fast-moving disturbances on the Sun. Sky and Telescope 21, 145–147.

    ADS  Google Scholar 

  • Moreton, G. E. (1964): Ha shock wave and winking filaments with the flare of 20 September 1963. The Astronomical Journal 69, 145.

    Article  Google Scholar 

  • Moreton, G. E., Severny, A. B. (1968): Magnetic fields and flares in the region cmp 20 September 1963. Solar Physics 3, 282–297.

    Article  ADS  Google Scholar 

  • Morrison, P. (1954): Solar-connected variations of the cosmic rays. Physical Review 95, 646.

    Google Scholar 

  • Morrison, P. (1958): On gamma-ray astronomy. Nuovo Cimento 7, 858–865.

    Article  Google Scholar 

  • Moses, D. et al. (1997): EIT observations of the extreme ultraviolet Sun. Solar Physics 175, 571–599. Reprinted in: The First Results From SOHO (Eds. B. Fleck and Z. Svestka). Boston: Kluwer Academic Publishers 1997, pp. 571–599.

    Article  ADS  Google Scholar 

  • Müller-Mellin, R., et al. (1995): COSTEP – Comprehensive Suprathermal and Energetic Particle Analyser. Solar Physics 162, 483–504.

    Article  ADS  Google Scholar 

  • Mullen, E. G., et al. (1991): A double-peaked inner radiation belt: Cause and effect as seen on CRRES. IEEE Transactions on Nuclear Science 38, 1713–1717.

    Article  ADS  Google Scholar 

  • Munro, R. H., et al. (1979): The association of coronal mass ejection transients with other forms of solar activity. Solar Physics 61, 201–215.

    Article  ADS  Google Scholar 

  • Munro, R. H., Jackson, B. V. (1977): Physical properties of a polar coronal hole from 2 to 5 solar radii. The Astrophysical Journal 213, 874–886.

    Article  ADS  Google Scholar 

  • Murphy, N., Smith, E. J., Schwadron, N. A. (2002): Strongly underwound magnetic fields in co-rotating interaction regions: Observations and implications. Geophysical Research Letters 29(22), 2066.

    Article  ADS  Google Scholar 

  • Murphy, R. J., Dermer, C. D., Ramaty, R. (1987): High-energy processes in solar flares. Astrophysical Journal Supplement 63, 721–748.

    Article  ADS  Google Scholar 

  • Murphy, R. J., et al. (1985): Solar flare gamma-ray line spectroscopy. Proceedings 19th International Cosmic Ray Conference (La Jolla) 4, 253–256.

    Google Scholar 

  • Murphy, R. J., et al. (1991): Solar abundances from gamma-ray spectroscopy: Comparisons with energetic particle, photospheric, and coronal abundances. The Astrophysical Journal 371,793–803.

    Article  ADS  Google Scholar 

  • Murphy, R. J., Ramaty, R. (1984): Solar flare neutrons and gamma rays. Advances in Space Research 4(7), 127–136.

    Article  ADS  Google Scholar 

N

  • Nagashima, K., et al. (2007): Observations of sunspot oscillations in G band and Ca II H line with Solar Optical Telescope on Hinode. Publications of the Astronomical Society of Japan 59, S631–S636.

    ADS  Google Scholar 

  • Nakamura, M., et al. (1998): Reconnection event at the dayside magnetopause on January 10, 1997. Geophysical Research Letters 25, 2529–2532.

    Article  ADS  Google Scholar 

  • Nakariakov, V. M., et al. (1999): TRACE observations of damped coronal loop oscillations: Implications for coronal heating. Science 285, 862–864.

    Article  ADS  Google Scholar 

  • Nakariakov, V. M., Verwichte, E. (2005): Coronal waves and oscillations. Living Reviews in Solar Physics 2, 3.

    ADS  Google Scholar 

  • Narain, U., Ulmschneider, P. (1990): Chromospheric and coronal heating mechanisms. Space Science Reviews 54, 377–445.

    Article  ADS  Google Scholar 

  • Narain, U., Ulmschneider, P. (1996): Chromospheric and coronal heating mechanisms II. Space Science Reviews 75, 453–509.

    Article  ADS  Google Scholar 

  • Nash, A. G., Sheeley, N. R., Wang, Y. -M. (1988): Mechanisms for the rigid rotation of coronal holes. Solar Physics 117, 359–389.

    Article  ADS  Google Scholar 

  • National Research Council: Solar influences on global change. Washington, DC: National Academy Press 1994.

    Google Scholar 

  • Neftel, A., et al. (1982): Ice core sample measurements give atmospheric CO2 content during the past 40,000 years. Nature 295, 220–223.

    Article  ADS  Google Scholar 

  • Neftel, A., et al. (1985): Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature 315, 45–47.

    Article  ADS  Google Scholar 

  • Neftel, A., Oeschger, H., Suess, H. E. (1981): Secular non-random variations of cosmogenic carbon-14 in the terrestrial atmosphere. Earth and Planetary Science Letters 56, 127–147.

    Article  ADS  Google Scholar 

  • Neidig, D. F. (1989): The importance of solar white-light flares. Solar Physics 121, 261–269.

    Article  ADS  Google Scholar 

  • Nerney, S., Suess, S. T. (2005): Stagnation flow in thin streamer boundaries. The Astrophysical Journal 624, 378–391.

    Article  ADS  Google Scholar 

  • Nesme-Ribes, E., Baliunas, S. L., Sokoloff, D. (1996): The stellar dynamo. Scientific American 275, 46–52 – August.

    Google Scholar 

  • Nesme-Ribes, E., et al. (1993): Solar dynamics and its impact on solar irradiance and the terrestrial climate. Journal of Geophysical Research 98, 18923–18935.

    Article  ADS  Google Scholar 

  • Nesme-Ribes, E., Mangeney, A. (1992): On a plausible physical mechanism linking the Maunder Minimum to the Little Ice Age. Radiocarbon 34(2), 263–270.

    Google Scholar 

  • Nesme-Ribes, E., Sokoloff, D., Sadourny, R.: Solar rotation, irradiance changes and climate. In: The Sun as a Variable Star (Eds. J. Pap, H. Hudson and S. Solanki). New York: Cambridge University Press 1994, pp. 244–251.

    Google Scholar 

  • Ness, N. F. (1965): The Earth’s magnetic tail. Journal of Geophysical Research 70, 2989–3005.

    Article  ADS  Google Scholar 

  • Ness, N. F. (1968): Observed properties of the interplanetary plasma. Annual Review of Astronomy and Astrophysics 6, 79–114.

    Article  ADS  Google Scholar 

  • Ness, N. F. (1996): Pioneering the swinging 1960s into the 1970s and 1980s. Journal of Geophysical Research 101(A5), 10497–10509.

    Article  ADS  Google Scholar 

  • Ness, N. F., Hundhausen, A. J., Bame, S. J. (1971): Observations of the interplanetary medium: Vela 3 and IMP 3, 1965–1967. Journal of Geophysical Research 76, 6643–6660.

    Article  ADS  Google Scholar 

  • Ness, N. F., Scearce, C. S., Seek, J. B. (1964): Initial results of the IMP 1 magnetic field experiment. Journal of Geophysical Research 69, 3531–3569.

    Article  ADS  Google Scholar 

  • Ness, N. F., Wilcox, J. M. (1964): Solar origin of the interplanetary magnetic field. Physical Review Letters 13, 461–464.

    Article  ADS  Google Scholar 

  • Ness, N. F., Wilcox, J. M. (1966): Extension of the photospheric magnetic field into interplanetary space. Astrophysical Journal 143, 23–31.

    Article  ADS  Google Scholar 

  • Neugebauer, M. (1981): Observations of solar-wind helium. Fundamentals of Cosmic Physics 7, 131–199.

    ADS  Google Scholar 

  • Neugebauer, M. (1992): Knowledge of coronal heating and solar wind acceleration obtained from observations of the solar wind near 1 AU. In: Solar Wind Seven (Eds. E. Marsch and R. Schwenn). Oxford: Pergamon 1992, p. 69.

    Google Scholar 

  • Neugebauer, M. (1997): Pioneers of space physics: a career in the solar wind. Journal of Geophysical Research 102, A12, 26,887–26,894.

    Article  ADS  Google Scholar 

  • Neugebauer, M., et al. (2002): Sources of the solar wind at solar activity maximum. Journal of Geophysical Research 107(A12), 1488.

    Article  Google Scholar 

  • Neugebauer, M., Snyder, C. W. (1962): The mission of Mariner II – preliminary observations. Solar plasma experiment. Science 138, 1095–1096.

    Article  ADS  Google Scholar 

  • Neugebauer, M., Snyder, C. W. (1966): Mariner 2 observations of the solar wind. Journal of Geophysical Research 71, 4469–4484.

    ADS  Google Scholar 

  • Neugebauer, M., Snyder, C. W. (1967): Mariner 2 observations of the solar wind 2. Relation of plasma properties to the magnetic field. Journal of Geophysical Research 72, 1823–1828.

    Article  ADS  Google Scholar 

  • Neupert, W. M. (1968): Comparison of solar X-ray line emission with microwave emission during flares. The Astrophysical Journal (Letters) 153, L59–L64.

    Article  ADS  Google Scholar 

  • Neupert, W. M. (1989): Transient coronal extreme ultraviolet emission before and during the impulsive phase of a solar flare. The Astrophysical Journal 344, 504–512.

    Article  ADS  Google Scholar 

  • Neupert, W. M., et al. (1967): Observation of the solar flare X-ray emission line spectrum of iron from 1.3 to 20 Å. Astrophysical Journal (Letters) 149, L79–L83.

    Article  ADS  Google Scholar 

  • Neupert, W. M., et al. (1998): Obsevations of coronal structures above an active region by EIT and implications for coronal energy deposition. Solar Physics 183, 305–321.

    Article  ADS  Google Scholar 

  • Neupert, W. M., Pizzo, V. (1974): Solar coronal holes as sources of recurrent geomagnetic disturbances. Journal of Geophysical Research 79, 3701–3709.

    Article  ADS  Google Scholar 

  • Newell, N. E., et al. (1989): Global marine temperature variation and the solar magnetic cycle. Geophysical Research Letters 16, 311–314.

    Article  ADS  Google Scholar 

  • Newell, P. T., Meng, C.-I., Wing, S. (1998): Relation to solar activity of intense aurorae in sunlight and darkness. Nature 393, 342–345.

    Article  ADS  Google Scholar 

  • Newkirk, G. Jr. (Ed. 1974): Coronal Disturbances: Proceedings of IAU Symposium No. 57. Boston: D. Reidel 1974.

    Google Scholar 

  • Newkirk, G. Jr., Harvey, J. (1968): Coronal polar plumes. Solar Physics 3, 321–343.

    Article  ADS  Google Scholar 

  • Newman, M. J., Rood, R. T. (1977): Implications of solar evolution for the Earth’s early atmosphere. Science 198, 1035–1037.

    Article  ADS  Google Scholar 

  • Newton, H. W. (1930): An active region of the Sun on 1930 August 12. Monthly Notices of the Royal Astronomical Society 90, 820–825.

    ADS  Google Scholar 

  • Newton, H. W. (1932): The 27-day period in terrestrial magnetic disturbances. Observatory 55, 256–261.

    ADS  Google Scholar 

  • Newton, H. W. (1935): Note on two allied types of chromospheric eruptions. Monthly Notices of the Royal Astronomical Society 95, 650–665.

    ADS  Google Scholar 

  • Newton, H. W. (1942): Characteristic radial motions of Hα absorption markings seen with bright eruptions on the Sun’s disc. Monthly Notices of the Royal Astronomical Society 102, 2–10.

    ADS  Google Scholar 

  • Newton, H. W. (1943): Solar flares and magnetic storms. Monthly Notices of the Royal Astronomical Society 103, 244–257.

    ADS  Google Scholar 

  • Newton, H. W., Nunn, M. L. (1951): The Sun’s rotation derived from sunspots 1934 –1944 and additional results. Monthly Notices of the Royal Astronomical Society 111, 413–421.

    ADS  Google Scholar 

  • Ney, E. P. (1959): Cosmic radiation and the weather. Nature 183, 451–452.

    Article  ADS  Google Scholar 

  • Ng, C. K., Reames, D. V., Tylka, A. J. (1999): Effect of proton-amplified waves on the evolution of solar energetic particle composition in gradual events. Geophysical Research Letters 26(14), 2145–2148.

    Article  ADS  Google Scholar 

  • Nightingale, R. W., et al. (2002): Concurrent rotating sunspots, twisted coronal fans, sigmoid structures and coronal mass ejections. In: Multi-wavelength Observations of Coronal Structure and Dynamics – Yohkoh 10th Anniversary Meeting (Eds. P. C. H. Martens and D. Cauffman). New York: Elsevier Science 2002, p. 149.

    Google Scholar 

  • Nisbet, E. G. (2000): The realms of Archaean life. Nature 405, 625–626.

    Article  Google Scholar 

  • Nisbet, E. G., Sleep, N. H. (2001): The habitat and nature of early life. Nature 409, 1083–1091.

    Article  ADS  Google Scholar 

  • Nishio, M., et al. (1997): Magnetic field configuration in impulsive solar flares inferred from coaligned microwave/X-ray images. The Astrophysical Journal 489, 976.

    Article  ADS  Google Scholar 

  • Nitta, N. V., et al. (2006): Solar sources of impulsive solar energetic particle events and their magnetic field connection to the Earth. The Astrophysical Journal, 650(1), 438–450.

    Article  ADS  MathSciNet  Google Scholar 

  • Noci, G. (1973): Energy budget in coronal holes. Solar Physics 28, 403–407.

    Article  ADS  Google Scholar 

  • Noci, G. (2002): The temperature of the solar corona. Memoires Societa Astronomia Italiana 74, 704.

    ADS  Google Scholar 

  • Noci, G., et al. (1997): First results from UVCS/SOHO. Advances in Space Research 20(12), 2219.

    Article  ADS  Google Scholar 

  • Noci, G., et al. (1997): The quiescent corona and slow solar wind. In: The Corona and Solar Wind near Minimum Activity Proceedings of the Fifth SOHO Workshop. ESA SP-404 (Eds. O. Kjeldseth-Moe, A. Wilson). Noordwijk, The Netherlands: ESA Publications Division 1997, pp. 75–84.

    Google Scholar 

  • Noci, G., Kohl, J. L., Withbroe, G. L. (1987): Solar wind diagnostics from Doppler-enhanced scattering. The Astrophysical Journal 315, 706–715.

    Article  ADS  Google Scholar 

  • Nolte, J. T., et al. (1976): Coronal holes as sources of solar wind. Solar Physics 46, 303–322.

    Article  ADS  Google Scholar 

  • November, L. J. (1989): The vertical component of the supergranular convection. The Astrophysical Journal 344, 494–503.

    Article  ADS  Google Scholar 

  • November, L. J., Koutchmy, S. (1996): White-light coronal dark threads and density fine structure. The Astrophysical Journal 466, 512–528.

    Article  ADS  Google Scholar 

  • Noyes, R. W. (1971): Ultraviolet studies of the solar atmosphere. Annual Review of Astronomy and Astrophysics 9, 209–236.

    Article  ADS  Google Scholar 

  • Noyes, R. W., Baliunas, S. L., Guinan, E. F.: What can other stars tell us about the Sun? In: The Solar Interior and Atmosphere (Eds. A. N. Cox, W. C. Livingston and M. S. Matthews). Tucson, Arizona: University of Arizona Press 1991, pp. 1161–1186.

    Google Scholar 

  • Noyes, R. W., et al. (1984): Rotation, convection, and magnetic activity in lower main sequence stars. The Astrophysical Journal 279, 763–777.

    Article  ADS  Google Scholar 

  • Noyes, R. W., Leighton, R. B. (1963): Velocity fields in the solar atmosphere II. The oscillation field. The Astrophysical Journal 138, 631–647.

    Article  ADS  Google Scholar 

  • Noyes, R. W., Weiss, N. O., Vaughan, A. H. (1984): The relation between stellar rotation rate and activity cycle periods. The Astrophysical Journal 287, 769–773.

    Article  ADS  Google Scholar 

O

  • Ofman, L. (2005): MHD waves and heating in coronal holes. Space Science Reviews 120, 67–94.

    Article  ADS  Google Scholar 

  • Ofman, L., Davila, J. M., Shimizu, T. (1996): Signatures of global mode Alfvén resonance heating in coronal loops. The Astrophysical Journal (Letters) 459, L39–L42.

    Article  ADS  Google Scholar 

  • Ofman, L., Gary, S. P., Vinas, A. (2002): Resonant heating and acceleration of ions in coronal holes by cyclotron resonant spectra. Journal of Geophysical Research 107(A12), 1461, SSH 9–1.

    Article  Google Scholar 

  • Ogawara, Y., et al. (1991): The SOLAR-A mission: An overview. Solar Physics 136, 1–16.

    Article  ADS  Google Scholar 

  • Ogilvie, K. W., Coplan, M. A. (1995): Solar wind composition. Reviews of Geophysics Supplement 33, 615–622.

    Article  ADS  Google Scholar 

  • Ogilvie, K. W., Desch, M. D. (1997): The Wind spacecraft and its early scientific results. In: Results of the IASTP Program (Ed. C. T. Russell). New York: Elsevier, p. 559.

    Google Scholar 

  • Okamoto, T. J., et al. (2007): Coronal transverse magnetohydrodynamic waves in a solar prominence. Science 318, 1577–1578.

    Article  ADS  Google Scholar 

  • Oort, J. H. (1950): The structure of the cloud of comets surrounding the solar system and a hypothesis concerning its origin. Bulletin of the Astronomical Institutes of the Netherlands 11, 91–110. Reproduced in: A Source Book in Astronomy and Astrophysics 1900–1975 (Eds. K. R. Lang and O. Gingerich). Cambridge: Harvard University Press 1979, pp. 132–137.

    ADS  Google Scholar 

  • Oranje, B. J. (1983): The Ca II emission from the Sun as a star II. The plage emission profile. Astronomy and Astrophysics 124, 43–49.

    ADS  Google Scholar 

  • Orrall, F. Q., Rottman, G. J., Klimchuk, J. A. (1983): Outflow from the Sun’s polar corona. The Astrophysical Journal (Letters) 266, L65–L68.

    Article  ADS  Google Scholar 

  • Oster, L., Sofia, S., Schatten, K. (1982): Solar irradiance variations due to active regions. The Astrophysical Journal 256, 768–773.

    Article  ADS  Google Scholar 

  • Osterbrock, D. E. (1961): The heating of the solar chromosphere, plages, and corona by magnetohydrodynamic waves. The Astrophysical Journal 134, 347–388.

    Article  ADS  Google Scholar 

  • Otsuji, K., et al. (2007): Small-scale magnetic-flux emergence observed with Hinode Solar Optical Telescope. Publications of the Astronomical Society of Japan 59, S649–S654.

    ADS  Google Scholar 

  • Owen, T., Cess, R. D., Ramanathan, V. (1979): Enhanced CO2 greenhouse to compensate for reduced solar luminosity on early Earth. Nature 277, 640–642.

    Article  ADS  Google Scholar 

P

  • Paillard, D. (1998): The timing of Pleistocene glaciations from a simple multiple-state climate model. Nature 391, 378–381.

    Article  ADS  Google Scholar 

  • Pallavicini, R., Serio, S., Vaiana, G. S. (1977): A survey of solar X-ray limb flare images: The relation between their structure in the corona and other physical parameters. Astrophysical Journal 216, 108–122.

    Article  ADS  Google Scholar 

  • Pallé, P. L., Régulo, C., Roca-Cortés, T. (1989): Solar cycle induced variations of the low l solar acoustic spectrum. Astronomy and Astrophysics 224, 253–258.

    ADS  Google Scholar 

  • Parker, E. N. (1955): Dynamics of the interplanetary gas and magnetic fields. The Astrophysical Journal 125, 668–676.

    Google Scholar 

  • Parker, E. N. (1957a): Sweet’s mechanism for merging magnetic fields in conducting fluids. Journal of Geophysical Research 62, 509–520.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1957b): Acceleration of cosmic rays in solar flares. Physical Review 107, 830–836.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1958a): Dynamical instability in an anisotropic ionized gas of low density. Physical Review 109, 1874–1876.

    Article  MATH  ADS  Google Scholar 

  • Parker, E. N. (1958b): Dynamics of the interplanetary gas and magnetic fields. Astrophysical Journal 128, 664–676.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1958c): Interaction of the solar wind with the geomagnetic field. The Physics of Fluids 1, 171–187.

    Article  MATH  ADS  Google Scholar 

  • Parker, E. N. (1958d): Cosmic-ray modulation by solar wind. Physical Review 110, 1445–1449. Reproduced in: Cosmic Rays (Ed., A. M. Hillas). New York: Pergamon Press 1972.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1959): Extension of the solar corona into interplanetary space. Journal of Geophysical Research 64, 1675–1681.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1960): The hydrodynamic theory of solar corpuscular radiation and stellar winds. The Astrophysical Journal 132, 821–866.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1961): Sudden expansion of the corona following a large solar flare and the attendant magnetic field and cosmic-ray effects. The Astrophysical Journal 133, 1014–1033.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1963): Interplanetary Dynamical Processes. New York: John Wiley.

    MATH  Google Scholar 

  • Parker, E. N. (1963): The solar flare phenomenon and the theory of reconnection and annihilation of magnetic fields. Astrophysical Journal Supplement 8(77), 177–211.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1964): Dynamical properties of stellar coronas and stellar winds I. Integration of the momentum equation. The Astrophysical Journal 139, 72–92.

    Article  ADS  MathSciNet  Google Scholar 

  • Parker, E. N. (1965): Dynamical theory of the solar wind. Space Science Reviews 4, 666–708.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1972): Topological dissipation and the small-scale fields in turbulent gases. Astrophysical Journal 174, 499–510.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1973): Convection and magnetic fields in an atmosphere with constant temperature gradient. I. Hydrodynamic flows. Astrophysical Journal 186, 643–664.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1979): Sunspots and the physics of magnetic flux tubes. I. The general nature of the sunspot. II. Aerodynamic drag. Astrophysical Journal 230, 905–913.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1983a): Magnetic fields in the cosmos. Scientific American 249, 44–65.

    ADS  Google Scholar 

  • Parker, E. N. (1983b): Magnetic neutral sheets in evolving fields II. Formation of the solar corona. The Astrophysical Journal 264, 642–647.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1988): Nanoflares and the solar x-ray corona. The Astrophysical Journal 330,474–479.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1991): Heating solar coronal holes. Astrophysical Journal 372, 719–727.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1996): Something stirs under the Sun. Nature 379, 209–210.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1997a): Reflections on macrophysics and the Sun. Solar Physics 176, 219–247.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1997b): Mass ejection and a brief history of the solar wind concept. In: Cosmic Winds and the Heliopshere (Eds. J. R. Jokipii, C. P. Sonett, and M. S. Giampapa). Tucson: University of Arizona Press 1997.

    Google Scholar 

  • Parker, E. N. (1998): Reflection on macrophysics and the Sun (Special historical review). Solar Physics 176, 2, 219–247.

    Article  ADS  Google Scholar 

  • Parker, E. N. (2001): A history of early work on the heliospheric magnetic field. Journal of Geophysical Research 106, A8, 15797–15802.

    Article  ADS  Google Scholar 

  • Parker, E. N. (2002): A history of the solar wind concept. In: The Century of Space Science I (Eds. J.A.M. Bleeker, J. Geiss, M. Huber). Dordrecht, the Netherlands, Kluwer 2002, 225–255.

    Google Scholar 

  • Parkinson, J. H., Morrison, L. V., Stephenson, F. V. (1980): The constancy of the solar diameter over the past 250 years. Nature 288, 548–551.

    Article  ADS  Google Scholar 

  • Parnell, C. E., Jupp, P. E. (2000): Statistical analysis of the energy distribution of nanoflares in the quiet sun. The Astrophysical Journal 529, 554–569.

    Article  ADS  Google Scholar 

  • Parnell, C. E., Priest, E. R., Golub, L. (1994): The three-dimensional structures of X-ray bright points. Solar Physics 151, 57–74.

    Article  ADS  Google Scholar 

  • Paschmann, G. (1997): Observational evidence for transfer of plasma across the magnetopause. Space Science Reviews 80, 217–234.

    Article  ADS  Google Scholar 

  • Patsourakos, S., Klimchuk, J. A., Mac Neice, P. J. (2004): The instability of steady-flow models to explain the extreme-ultarviolet coronal loops. Astrophysical Journal 603, 322–329.

    Article  ADS  Google Scholar 

  • Pauli, W. (1930): Les theories quantities du magnetisive l’electron magnetique (The theory of magnetic quantities: The magnetic electron. Septiene Cousieil Phys. Solvay, Proceedings of the Sixth Solvay Conference 1930, Bruxelles, Gauthier-Vill 183–186.

    Google Scholar 

  • Pauli, W. (1933): Remarks at the seventh solvay conference. Reproduced in the original French in: Collected Scientific Papers of Wolfgang Pauli, Vol. 2 (Eds. R. Kronig and V. F. Weiskopf). New York: Wiley Interscience 1964.

    Google Scholar 

  • Pawsey, J. L. (1946): Observation of million degree thermal radiation from the sun at a wave-length of 1.5 meters. Nature 158, 633–634.

    Article  ADS  Google Scholar 

  • Payne-Scott, R., Little, A. G. (1952): The position and movement on the solar disk of sources of radiation at a frequency of 97 Mc/s. III–Outbursts. Australian Journal of Scientific Research A5, 32–46.

    ADS  Google Scholar 

  • Payne-Scott, R., Yabsley, D. E., Bolton, J. G. (1947): Relative times of arrival of bursts of solar noise on different radio frequencies. Nature 160, 256–257.

    Article  ADS  Google Scholar 

  • Pecker, J. C., Runcorn, S. K. (Eds., 1990): The Earth’s climate and variability of the Sun over recent millennia: Geophysical, astronomical and archaeological aspects. Philosophical Transactions of the Royal Society (London) A330, 395–687. New York: Cambridge: University Press.

    Google Scholar 

  • Peres, G., et al. (2000): The Sun as an X-Ray star. II. Using the Yohkoh/Soft X-ray Telescope-derived solar emission measure versus temperature to interpret stellar X-ray observations. Astrophysical Journal 528, 537–551.

    Article  ADS  Google Scholar 

  • Perrin, J. B. (1920): Atomes et lumiere. La Revue du Mois 21, 113–166.

    Google Scholar 

  • Peterson, L. E. (1963): The 0.5-Mev gamma-ray and low-energy gamma-ray spectrum to 6 grams per square centimeter over Minneapolis. Journal of Geophysical Research 68, 979–987.

    Article  ADS  Google Scholar 

  • Peterson, L. E., Winckler, J. R. (1959): Gamma ray burst from a solar flare. Journal of Geophysical Research 64, 697–707.

    Article  ADS  Google Scholar 

  • Petit, J. R., et al. (1999): Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436.

    Article  ADS  Google Scholar 

  • Petschek, H. E. (1964): Magnetic field annihilation. In: AAS-NASA Symposium on the Physics of Solar Flares NASA SP-50 (Ed. W. N. Hess). Washington, DC: National Aeronautics and Space Administration, pp. 425–439.

    Google Scholar 

  • Petschek, H. E., Thorne, R. M. (1967): The existence of intermediate waves in neutral sheets. Astrophysical Journal 147, 1157–1163.

    Article  ADS  Google Scholar 

  • Pevtsov, A. A. (2000): Transequatorial loops in the solar atmosphere. The Astrophysical Journal 531, 553–560.

    Article  ADS  Google Scholar 

  • Pevtsov, A. A., Canfield, R. C. (1999): Helicity of the photospheric magnetic field. In: Magnetic Helicity in Space and Laboratory Plasmas. Geophysical Monograph 111. (Eds.. M. R. Brown, R. C. Canfield, and A. A. Pevtsov). Washington: American Geophysical Union, p. 103.

    Google Scholar 

  • Pevtsov, A. A., Canfield, R. C., Metcalf, T. R. (1995): Latitudinal variation of helicity of photospheric magnetic fields. Astrophysical Journal (Letters) 440, L109–L112.

    Article  ADS  Google Scholar 

  • Pevtsov, A. A., Canfield, R. C., Zirin, H. (1996): Reconnection and helicity in a solar flare. Astrophysical Journal 473, 533–538.

    Article  ADS  Google Scholar 

  • Pevtsov, A. A., et al. (1997): On the subphotospheric origin of coronal electric currents. Astrophysical Journal 481, 973.

    Article  ADS  Google Scholar 

  • Pevtsov, A. A., et al. (2008): On the solar cycle variation of the hemispheric helicity rule. Astrophysical Journal 677, 719–722.

    Article  ADS  Google Scholar 

  • Phan, T. D., et al. (2005): Magnetopause processes. Space Science Reviews 118, 367–424.

    Article  ADS  Google Scholar 

  • Phan, T. D., et al. (2006): A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind. Nature 439, 175–178.

    Article  ADS  Google Scholar 

  • Phillips, J. L., et al. (1995a): Ulysses solar wind plasma observations at high southerly latitudes. Science 268, 1030–1033.

    Article  ADS  Google Scholar 

  • Phillips, J. L., et al. (1995): Ulysses solar wind plasma observations from pole to pole. Geophysical Research Letters 22(23), 3301–3304.

    Article  ADS  Google Scholar 

  • Phillips, J. L., et al. (1995b): Sources of shocks and compressions in the high-latitude solar wind: Ulysses. Geophysical Research Letters 22(23), 3305–3308.

    Google Scholar 

  • Phillips, K. J. H. (1991): Spectroscopy of high-temperature solar flare plasmas. Philosophical Transactions of the Royal Society (London) A336, 461–470.

    Article  ADS  Google Scholar 

  • Pick, M., et al. (2006): Multi-wavelength observations of CMEs and associated phenomena. Space Science Reviews 123, 341–382.

    Article  ADS  Google Scholar 

  • Pick, M., Van den Oord, G. H. J. (1990): Observations of beam propagation. Solar Physics 130, 83–99.

    Article  ADS  Google Scholar 

  • Piddington, J. H. (1956): Solar atmospheric heating by hydromagnetic waves. Monthly Notices of the Royal Astronomical Society 116, 314.

    ADS  MathSciNet  Google Scholar 

  • Piddington, J. H. (1958): Interplanetary magnetic field and its control of cosmic ray variations. Physical Review 112, 589–596.

    Article  ADS  Google Scholar 

  • Pike, C. D., Mason, H. E. (2002): EUV spectroscopic observations of spray ejecta from an X2 flare. Solar Physics 206, 359–381.

    Article  ADS  Google Scholar 

  • Pizzo, V. J., Gosling, J. T. (1994): Three-dimensional simulation of high-latitude interaction regions: comparison with Ulysses results. Geophysical Research Letters 21, 2063–2066.

    Article  ADS  Google Scholar 

  • Pneuman, G. W., Kopp, R. A. (1971): Gas-magnetic field interactions in the solar corona. Solar Physics 18, 258–270.

    Article  ADS  Google Scholar 

  • Poincaré, H. (1896): Remarques sur une experience de M. Birkeland. Comptes Rendus del’Academie des Sciences 123, 530–533.

    Google Scholar 

  • Poland, A. I., et al. (1981): Coronal transients near sunspot maximum. Solar Physics 69, 169–175.

    Article  ADS  Google Scholar 

  • Poletto, G., et al. (2002): Low-latitude solar wind during the fall 1998 SOHO-Ulysses quadrature. Journal of Geophysical Research (Space Physics) 107(A10), SSH 9–1.

    Google Scholar 

  • Pollack, H., Huang, S., Shen, P. Y. (1998): Climate change revealed by subsurface temperatures: A global perspective. Science 282, 279–281.

    Article  ADS  Google Scholar 

  • Pomerantz, M. A., Duggal, S. P. (1973): Record-breaking cosmic ray storm stemming from solar activity in August 1972. Nature 241, 331–333.

    Article  ADS  Google Scholar 

  • Pontecorvo, B. M. (1967): Neutrino experiments and the problem of conservation of leptonic charge zhurnal eksperimental’noi i teoreticheskoi fiziki 53, 1717–1725. Soviet Physics JETP 26, 984 (1968).

    Google Scholar 

  • Popescu, M. D., Doyle, J. G., Xia, L. D. (2004): Network boundary origins of fast solar wind seen in the low transitions regions? Astronomy and Astrophysics 421, 339–348.

    Article  ADS  Google Scholar 

  • Porter, J. G., Dere, K. P. (1991): The magnetic network location of explosive events observed in the solar transition region. The Astrophysical Journal 370, 775–778.

    Article  ADS  Google Scholar 

  • Porter, J. G., et al. (1987): Microflares in the solar magnetic network. The Astrophysical Journal 323, 380–390.

    Article  ADS  Google Scholar 

  • Porter, J. G., Fontenla, J. M., Simnett, G. M. (1995): Simultaneous ultraviolet and X-ray observations of solar microflares. Astrophysical Journal 438, 472–479.

    Article  ADS  Google Scholar 

  • Porter, J. G., Klimchuk, J. A. (1995): Soft X-ray loops and coronal heating. The Astrophysical Journal 454, 499–511.

    Article  ADS  Google Scholar 

  • Porter, J. G., Moore, R. L. (1988): Coronal heating by microflares. In: Solar and Stellar Coronal Structure and Dynamics (Ed. R. C. Altrock). Sunspot: National Solar Observatory, Sacramento Peak, pp. 125–129.

    Google Scholar 

  • Porter, J. G., Toomre, J., Gebbie, K. B. (1984): Frequent ultraviolet brightenings observed in a solar active regions with Solar Maximum Mission. The Astrophysical Journal 283, 879–886.

    Article  ADS  Google Scholar 

  • Porter, L. J., Klimchuk, J. A. (1995): Soft X-ray loops and coronal heating. Astrophysical Journal 454, 499–511.

    Article  ADS  Google Scholar 

  • Porter, L. J., Klimchuk, J. A., Sturrock, P. A. (1994a): The possible role of high-frequency waves in heating solar coronal loops. The Astrophysical Journal 435, 502–514.

    Article  ADS  Google Scholar 

  • Porter, L. J., Klimchuk, J. A., Sturrock, P. A. (1994b): The possible role of MHD waves in heating the solar corona. The Astrophysical Journal 435, 482–501.

    Article  ADS  Google Scholar 

  • Posner, A. (2007): Up to one-hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons. Space Weather 5, S05001–S05029.

    Article  Google Scholar 

  • Posner, A., et al. (2001): Nature of the boundary between open and closed magnetic field line regions at the Sun revealed by composition data and numerical models. Journal of Geophysical Research 106(A8), 15869–15880.

    Article  ADS  Google Scholar 

  • Pres, P. (1999): The magnetic association of coronal bright points. The Astrophysical Journal (Letters) 510, L73–L76.

    Article  ADS  Google Scholar 

  • Priem, H. N. A. (1997): CO2 and climate: A geologist’s view. Space Science Reviews 81, 173–198.

    Article  ADS  Google Scholar 

  • Priest, E. R. (1978): The structure of coronal loops. Solar Physics 58, 57–87.

    Article  ADS  Google Scholar 

  • Priest, E. R. (1982): Solar Magnetohydrodynamics. Boston: D. Reidel.

    Google Scholar 

  • Priest, E. R. (1991): The magnetohydrodynamics of energy release in solar flares. Philosophical Transactions of the Royal Society (London) A336, 363–380.

    Article  ADS  Google Scholar 

  • Priest, E. R. (1996): Coronal heating by magnetic reconnection. Astrophysics and Space Science 237, 49–73.

    Article  MATH  ADS  Google Scholar 

  • Priest, E. R. (1999): How is the solar corona heated? Solar and Stellar Activity: Similarities and Differences. Asp Conference Series 158, 321–333.

    ADS  Google Scholar 

  • Priest, E. R., Foley, C. R., Heyvaerts, J., Arber, T. D., Culhane, J. L., Acton, L. W. (1998): Nature of the heating mechanism for the diffuse solar corona. Nature 393, 545–547.

    Article  ADS  Google Scholar 

  • Priest, E. R., Forbes, T. G. (1986): New models for fast steady-state magnetic reconnection. Journal of Geophysical Research 91, 5579–5588.

    Article  ADS  Google Scholar 

  • Priest, E. R., Forbes, T. G. (1990): Magnetic field evolution during prominence eruptions and two-ribbon flares. Solar Physics 126, 319–350.

    Article  ADS  Google Scholar 

  • Priest, E. R., Forbes, T. G. (2002): The magnetic nature of solar flares. Astronomy and Astrophysics Review 10(4), 313–377.

    Article  ADS  Google Scholar 

  • Priest, E. R., Heyvaerts, J. F., Title, A. M. (2002): A flux-tube tectonics model for solar coronal heating driven by the magnetic carpet. The Astrophysical Journal 576, 533–551.

    Article  ADS  Google Scholar 

  • Priest, E. R., Parnell, C. E., Martin, S. F. (1994): A converging flux model of an X-ray bright point and an associated canceling magnetic feature. The Astrophysical Journal 427, 459–474.

    Article  ADS  Google Scholar 

  • Priest, E. R., Schrijver, C. J. (1999): Aspects of three-dimensional magnetic reconnection (invited review). Solar Physics 190, 1–24.

    Article  ADS  Google Scholar 

  • Pudovkin, M. I., Veretenenko, S. V. (1996): Variations of the cosmic rays as one of the possible links between the solar activity and the lower atmosphere. Advances in Space Research 17(11), 161–164.

    Article  ADS  Google Scholar 

  • Pulkiinen, T. I., et al. (2001): The Sun–Earth connection on time scales from years to decades and centuries. Space Science Reviews 95, 625–637.

    Article  ADS  Google Scholar 

  • Pulkkinen, T. I. (2007): Space weather: terrestrial perspective. Living Reviews in Solar Physics 4, 1.

    ADS  Google Scholar 

  • Purcell, J. D., Tousey, R., Watanabe, K. (1949): Observations at high altitudes of extreme ultraviolet and X-rays from the Sun. Physical Review 76, 165–166.

    Google Scholar 

Q

  • Qiu, J., et al. (2007): On the magnetic flux budget in low-corona magnetic reconnection and interplanetary coronal mass ejections. The Astrophysical Journal 659, 758–772.

    Article  ADS  Google Scholar 

  • Qiu, J., Wang, H., Cheng, C. Z., Gary, D. E. (2004): Magnetic reconnection and mass acceleration in flare-coronal mass ejections events. Astrophysical Journal 604, 900–905.

    Article  ADS  Google Scholar 

  • Quinn, T. J., Fröhlich, C. (1999): Accurate radiometers should measure the output of the Sun. Nature 401, 841.

    Article  ADS  Google Scholar 

R

  • Radick, R. R., Lockwood, G. W., Baliunas, S. L. (1990): Stellar activity and brightness variations: a glimpse at the Sun’s history. Science 247, 39–44.

    Article  ADS  Google Scholar 

  • Ragot, B. R. (2006a): Mean cross-field displacement of magnetic field lines: Full nonlinear calculation and comparison with generalized quasi-linear results in the solar wind. Astrophysical Journal 644, 622–630.

    Article  ADS  Google Scholar 

  • Ragot, B. R. (2006b): Nonresonant pitch-angle scattering of low-energy electrons in the solar wind. The Astrophysical Journal 642, 1163–1172.

    Article  ADS  Google Scholar 

  • Ragot, B. R. (2006c): Distributions of magnetic field orientations in the turbulent solar wind. The Astrophysical Journal 651, 1209–1218.

    Article  ADS  Google Scholar 

  • Ragot, B. R. (2006d): Lengths of wandering magnetic field lines in the turbulent solar wind. The Astrophysical Journal 653, 1493–1498.

    Article  ADS  Google Scholar 

  • Raisbeck, G. M., et al. (1981): Cosmogenic 10Be concentrations in Antarctic ice during the past 30,000 years. Nature 292, 825–826.

    Article  ADS  Google Scholar 

  • Raisbeck, G. M., et al. (1985): Evidence for an increase in cosmogenic 10Be during a geomagnetic reversal. Nature 315, 315–317.

    Article  ADS  Google Scholar 

  • Raisbeck, G. M., et al. (1987): Evidence for two intervals of enhanced 10Be deposition in Antarctic ice during the last glacial period. Nature 326, 273–277.

    Article  ADS  Google Scholar 

  • Raisbeck, G. M., et al. (1990): 10Be and 2H in polar ice cores as a probe of the solar variability’s influence on climate. Philosophical Transactions of the Royal Society (London) A300,463–470.

    Article  ADS  Google Scholar 

  • Raisbeck, G. M., Yiou, F. (1988): 10Be as a proxy indicator of variations in solar activity and geomagnetic field intensity during the last 10,000 years. In: Secular, Solar and Geomagnetic Variations in the Last 10,000 Years (Eds. F. R. Stephenson and W. Wolfendale). Drodrecht: Kluwer, pp. 287–296.

    Google Scholar 

  • Ramanathan, V. (1988): The greenhouse theory of climate change. Science 240, 293–299.

    Article  ADS  Google Scholar 

  • Ramanathan, V., et al. (1989): Cloud-radiative forcing and climate: Results from the Earth Radiation Budget experiment. Science 243, 57–62.

    Article  ADS  Google Scholar 

  • Ramaty, R. (1969): Gyrosynchrotron emission and absorption in a magnetoactive plasma. Astrophysical Journal 158, 753–770.

    Article  ADS  Google Scholar 

  • Ramaty, R., et al. (1983): Implications of high-energy neutron observations from solar flares. Astrophysical Journal Letters 273, L41–L45.

    Article  ADS  Google Scholar 

  • Ramaty, R., et al. (1993): Acceleration in solar flares: Interacting particles versus interplanetary particles. Advances in Space Research 13(9), 275–284.

    Article  ADS  Google Scholar 

  • Ramaty, R., et al. (1994): Gamma-ray and millimeter-wave emissions from the 1991 June X-class flares. The Astrophysical Journal 436, 941–949.

    Article  ADS  Google Scholar 

  • Ramaty, R., Kozlovsky, B., Lingenfelter, R. E. (1979): Nuclear gamma rays from energetic particle interactions. Astrophysical Journal Supplement 40, 487–526.

    Article  ADS  Google Scholar 

  • Ramaty, R., Lingenfelter, R. E. (1966): Galactic cosmic-ray electrons. Journal of Geophysical Research 71, 3687–3703.

    ADS  Google Scholar 

  • Ramaty, R., Lingenfelter, R. E. (1979): γ-Ray line astronomy. Nature 278, 127–132.

    Article  ADS  Google Scholar 

  • Ramaty, R., Lingenfelter, R. E. (1983): Gamma-ray line astronomy. Space Science Reviews 36, 305–317.

    Article  ADS  Google Scholar 

  • Ramaty, R., Mandzhavidze, N. (1994): Theoretical models for high-energy solar flare emissions. In: High Energy Solar Phenomena – A New Era of Spacecraft Measurements (Eds. J. M. Ryan and W. T. Vestrand). New York: American Institute of Physics, pp. 26–44.

    Google Scholar 

  • Ramaty, R., Murphy, R. J. (1987): Nuclear processes and accelerated particles in solar flares. Space Science Reviews 45, 213–268.

    Article  ADS  Google Scholar 

  • Ramaty, R., Petrosian, V. (1972): Free-free absorption of gyrosynchrotron radiation in solarmicrowave bursts. The Astrophysical Journal 178, 241–249.

    Article  ADS  Google Scholar 

  • Ramsay, W. (1901): The inert constituents of the atmosphere. Nature 65, 161–164.

    Google Scholar 

  • Ramsey, H. E., Smith, S. F. (1966): Flare-initiated filament oscillations. Astronomical Journal 71, 197–199.

    Article  ADS  Google Scholar 

  • Rao, U. R. (1972): Solar modulation of galactic cosmic radiation. Space Science Reviews 12,719–809.

    Article  ADS  Google Scholar 

  • Raouafi, N. E., Harvey, J. W., Solanki, S. K. (2007): Properties of solar polar coronal plumes constrained by ultraviolet coronagraph spectrometer data. The Astrophysical Journal 658,643–656.

    Article  ADS  Google Scholar 

  • Rappazzo, A. F., Velli, M., Einaudi, G., Dahlburg, R. B. (2005): Diamagnetic and expansion effects on the observable properties of the slow solar wind in a coronal streamer. The Astrophysical Journal 633, 474–488.

    Article  ADS  Google Scholar 

  • Raymond, J. C. (1999): Composition variations in the solar corona and solar wind. Space Science Reviews 87, 55–66.

    Article  ADS  Google Scholar 

  • Raymond, J. C. (2004): Enhanced: Imaging the Sun’s eruptions in three dimensions. Science 305, 49–50.

    Article  Google Scholar 

  • Raymond, J. C., et al. (1997): Composition of coronal streamers from the ultraviolet coronagraph spectrometer. Solar Physics 175, 645–655. Reprinted in The First Results From SOHO (Eds. B. Fleck and Z. Svestka). Boston: Kluwer Academic Publishers, pp. 645–665.

    Article  ADS  Google Scholar 

  • Raymond, J. C., et al. (2000): SOHO and radio observations of a CME shock wave. Geophysical Research Letters 2710), 1439–1442.

    Article  ADS  Google Scholar 

  • Raymond, J. C., et al. (2003): Far-ultraviolet spectra of fast coronal mass ejections associated with X-class flares. Astrophysical Journal 597, 1106–1117.

    Article  ADS  Google Scholar 

  • Raynaud, D., et al. (1993): The ice record of greenhouse gases. Science 259, 926–934.

    ADS  Google Scholar 

  • Reale, F., et al. (2007): Fine thermal structure of a coronal active region. Science 318, 1582–1584.

    Article  ADS  Google Scholar 

  • Reale, F., Peres, G. (2000): TRACE-derived temperature and emission measure profiles along long-lived coronal loops: The role of filamentation. Astrophysical Journal (Letters) 528, L45–L48.

    Article  ADS  Google Scholar 

  • Reames, D. V. (1988): Bimodal abundances in the energetic particles of solar and interplanetary origin. Astrophysical Journal (Letters) 330, L71–L75.

    Article  ADS  Google Scholar 

  • Reames, D. V. (1990): Energetic particles from impulsive solar flares. Astrophysical Journal Supplement Series 73, 235–251.

    Article  ADS  Google Scholar 

  • Reames, D. V. (1993): Non-thermal particles in the interplanetary medium. Advances in Space Research 13, 331–339.

    Article  ADS  Google Scholar 

  • Reames, D. V. (1995): Solar energetic particles: A paradigm shift. Reviews of Geophysics Supplement 33, 585–589.

    Article  ADS  Google Scholar 

  • Reames, D. V. (1997): Energetic particles and the structure of coronal mass ejections. In: Coronal Mass Ejections. Geophysical Monograph 99 (Eds. N. Crooker, J. A. Joselyn, J. Feynman). Washington: American Geophysical Union, pp. 217–226.

    Google Scholar 

  • Reames, D. V. (1999): Particle acceleration at the Sun and in the heliosphere. Space Science Reviews 90, 413–491.

    Article  ADS  Google Scholar 

  • Reames, D. V. (2002): Magnetic topology of impulsive and gradual solar energetic particle events. Astrophysical Journal (Letters) 571, L63–L66.

    Article  ADS  Google Scholar 

  • Reames, D. V., Barbier, L. M., Ng, C. K. (1996): The spatial distribution of particles accelerated by coronal mass ejection-driven shocks. Astrophysical Journal 466, 473.

    Article  ADS  Google Scholar 

  • Reames, D. V., Kahler, S. W., Ng, C. K. (1997): Spatial and temporal invariance in the spectra of energetic particles in gradual solar events. Astrophysical Journal 491, 414.

    Article  ADS  Google Scholar 

  • Reames, D. V., Ng, C. K. (2004): Heavy-element abundances in solar energetic particle events. Astrophysical Journal 610, 510–522.

    Article  ADS  Google Scholar 

  • Reames, D. V., Richardson, I. G., Wenzel, K. P. (1992): Energy spectra of ions from impulsive solar flares. Astrophysical Journal 387, 715–725.

    Article  ADS  Google Scholar 

  • Reedy, R. C., Arnold, J. R. (1972): Interaction of solar and galactic cosmic-ray particles with the Moon. Journal of Geophysical Research 77, 537–555.

    Article  ADS  Google Scholar 

  • Reedy, R. C., Arnold, J. R., Lal, D. (1983): Cosmic-ray record in solar system matter. Science 219, 127–135.

    Article  ADS  Google Scholar 

  • Reeves, K. K., Warren, H. P. (2002): Modeling the cooling of postflare loops. Astrophysical Journal 578, 590–597.

    Article  ADS  Google Scholar 

  • Reid, G. C. (1976): Influence of ancient solar-proton events on the evolution of life. Nature 259, 177–179.

    Article  ADS  Google Scholar 

  • Reid, G. C. (1987): Influence of solar variability on global sea surface temperatures. Nature 329, 142–143.

    Article  ADS  Google Scholar 

  • Reid, G. C. (1991): Solar irradiance variations and global ocean temperature. Journal of Geomagnetism and Geoelectricity 43, 795–801.

    Google Scholar 

  • Reid, G. C. (1991): Solar total irradiance variations and the global sea surface temperature record. Journal of Geophysical Research 96, 2835–2844.

    Article  ADS  Google Scholar 

  • Reid, G. C., Leinbach, H. (1959): Low-energy cosmic-ray events associated with solar flares. Journal of Geophysical Research 64, 1801–1805.

    Article  ADS  Google Scholar 

  • Reinard, A. (2005): Comparison of interplanetary CME charge state composition with CME-associated flare magnitude. Astrophysical Journal 620, 501–505.

    Article  ADS  Google Scholar 

  • Reiner, M. J. et al. (1998): On the origin of radio emissions associated with the January 6–11, 1997 CME. Geophysical Research Letters 25, 2493–2496.

    Article  ADS  Google Scholar 

  • Reiner, M. J., Fainberg, J., Stone, R. G. (1995): Large-scale interplanetary magnetic field configuration revealed by solar radio bursts. Science 270, 461–464.

    Article  ADS  Google Scholar 

  • Reines, F., Cowan, C. L. Jr. (1953): Detection of the free neutrino. Physical Review 92, 830–831.

    Article  ADS  Google Scholar 

  • Reines, F., Cowan, C. L. Jr. (1956): The neutrino. Nature 178, 446.

    Article  ADS  Google Scholar 

  • Reisenfeld, D. B., et al. (2003): Properties of high-latitude CME-driven disturbances during Ulysses second northern polar passage. Geophysical Research Letters 30(19), ULY 5–1.

    Article  Google Scholar 

  • Revelle, R., Suess, H. E. (1957): Carbon dioxide exchange between atmosphere and ocean and the question of an increase in atmospheric carbon dioxide during the past decades. Tellus 9, 18–27.

    ADS  Google Scholar 

  • Rhodes, E. J. Jr., et al. (1997): Measurements of frequencies of solar oscillation for the MDI medium-l program. Solar Physics 175, 287–310. Reprinted in: The First Results From SOHO (Eds. B. Fleck and Z. Svestka). Boston: Kluwer Academic Publishers, pp. 287–310.

    Article  ADS  Google Scholar 

  • Rhodes, E. J. Jr., Ulrich, R. K., Simon, G. W. (1977): Observations of nonradial p-mode oscillations on the Sun. Astrophysical Journal 218, 901–919.

    Article  ADS  Google Scholar 

  • Ribes, E. (1990): Astronomical determinations of the solar variability. Philosophical Transactions of the Royal Society (London) A330, 487–497.

    Article  ADS  Google Scholar 

  • Ribes, J. C., Nesmeribes, E. (1990): The solar sunspot cycle in the Maunder minimum Ad 1645 to Ad 1715. Astronomy and Astrophysics 276, 549–563.

    ADS  Google Scholar 

  • Rice, J. B., Strassmeier, K. G. (2001): Doppler imaging of stellar surface structure.XVII. The solar-type Pleiades star HII 314=V1038 Tauri. Astronomy and Astrophysics 377, 264–272.

    Article  ADS  Google Scholar 

  • Richard, O., Theado, S., Vauclair, S. (2004): Updated Toulouse solar models including the diffusion-circulation coupling and the effect of μ-gradients. Solar Physics 220, 234–259.

    Article  ADS  Google Scholar 

  • Richardson, I. G. (1997): Using energetic particles to probe the magnetic topology of ejecta. In: Coronal Mass Ejections, Geophysical Monograph 99 (Eds. N. Crooker, J. A. Joselyn, J. Feynman). Washington: American Geophysical Union, p. 189.

    Google Scholar 

  • Richardson, I. G. (2004): Energetic particles and co-rotating interaction regions in the solar wind. Space Science Reviews 111, 3, 267–376.

    Article  ADS  Google Scholar 

  • Richardson, I. G., Cane, H. V. (1995): Regions of abnormally low proton temperature in the solar wind (1965–1991) and their association with ejecta. Journal of Geophysical Research 100, 23397–23412.

    Article  ADS  Google Scholar 

  • Richardson, I. G., Cane, H. V. (2004): Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies. Journal of Geophysical Research 109, A09104.

    Article  Google Scholar 

  • Richardson, J. D., et al. (2008): Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock. Nature 454, 63–66.

    Article  ADS  Google Scholar 

  • Richardson, J. D., Wang, C., Burlaga, L. F. (2003): Correlated solar wind speed density, and magnetic field changes at Voyager 2. Geophysical Research Letters 30(23), 2007.

    Article  Google Scholar 

  • Richardson, R. S. (1939): Intensity changes in bright chromospheric disturbances. Astrophysical Journal 90, 368–377.

    Article  MATH  ADS  Google Scholar 

  • Richardson, R. S. (1944): Solar flares versus bright chromospheric eruptions: A question of terminology. Publications of the Astronomical Society of the Pacific 56, 156–158.

    Article  ADS  Google Scholar 

  • Richardson, R. S. (1951): Characteristics of solar flares. Astrophysical Journal 114, 356–366.

    Article  ADS  Google Scholar 

  • Rickett, B. J., Coles, W. A. (1980): Solar cycle changes in the high latitude solar wind. In: Study of the Solar Cycle From Space. Nasa Conference Publication CP-2098. (Eds. G. Newkirk, J. B. Zirker) Washington: National Aeronautics and Space Administration 1980, pp. 233–243.

    Google Scholar 

  • Rickett, B. J., Coles, W. A. (1982): Solar cycle evolution of the solar wind in the three dimensions. In: Solar Wind Five. NASA Conference Publication CP-2280. (Ed. M. Neugebauer) Washington: NASA 1983, pp. 315–321.

    Google Scholar 

  • Rickett, B. J., Coles, W. A. (1991): Evolution of the solar wind structure over a solar cycle: Interplanetary scintillation velocity measurements compared with coronal observations. Journal of Geophysical Research 96, A2, 1717–1736.

    Article  ADS  Google Scholar 

  • Riley, P. (2007): An alternative interpretation of the relationship between the inferred open solar flux and the interplanetary magnetic field. Astrophysical Journal (Letters) 667, L97–L100.

    Article  ADS  Google Scholar 

  • Riley, P., Crooker, N. U. (2004): Kinematic treatment of coronal mass ejection evolution in the solar wind. Astrophysical Journal 600, 1035–1042.

    Article  ADS  Google Scholar 

  • Riley, P., et al. (2007): “Bursty” reconnection following solar eruptions: MHD simulations and comparison with observations. Astrophysical Journal 655, 591–597.

    Article  ADS  Google Scholar 

  • Riley, P., Gosling, J. T., Crooker, N. U. (2004): Ulysses observations of the magnetic connectivity between coronal mass ejections and the sun. Astrophysical Journal 608, 1100–1105.

    Article  ADS  Google Scholar 

  • Robbins, D. E., Hundhausen, A. J., Bame, S. J. (1970): Helium in the solar wind. Journal of Geophysical Research 75, 1178–1187.

    Article  ADS  Google Scholar 

  • Robbrecht, E., et al. (2001): Slow magnetoacoustic waves in coronal loops: EIT and TRACE. Astronomy and Astrophysics 370, 591–601.

    Article  ADS  Google Scholar 

  • Roberts, D. A. (1989): Interplanetary observational constraints on Alfvén wave acceleration of the solar wind. Journal of Geophysical Research 94, 6899–6905.

    Article  ADS  Google Scholar 

  • Roberts, D. A., Goldstein, M. L. (1991): Turbulence and waves in the solar wind. Review of Geophysics Supplement 29, 932–943.

    ADS  Google Scholar 

  • Roddier, F. (1975): Principe de realisation d’un hologramme acoustique de la surface du Soleil. (Procedure to form an acouostical hologram of the solar surface.) Comptes rendus de l’Académie des Sciences Paris B 281, 93–95.

    ADS  Google Scholar 

  • Roelof, E. C. (1974): Coronal structure and the solar wind. In: Solar Wind Three (Ed. C. T. Russell). Los Angeles: Institute of Geophysics and Planetary Physics UCLA, pp. 98–131.

    Google Scholar 

  • Roelof, E. C., et al. (1992): Low-energy solar electrons and ions observed at Ulysses February-April, 1991 – The inner heliosphere as a particle reservoir. Geophysical Research Letters 19(12), 1243–1246.

    Article  ADS  Google Scholar 

  • Rohen, G., et al. (2005): Ozone depletion during the solar proton events of October/November 2003 as seen by Sciamachy. Journal of Geophysical Research 110, A09S39.

    Article  Google Scholar 

  • Romano, P., Contarino, L., Zuccarello, F. (2005): Observational evidence of the primary role played by photospheric motions in magnetic helicity transport before a filament eruption. Astronomy and Astrophysics 433, 683–690.

    Article  ADS  Google Scholar 

  • Rompolt, B. (1975): Spectral features to be expected from rotational and expansional motions in fine solar structures. Solar Physics 41, 329–348.

    Article  ADS  Google Scholar 

  • Rompolt, B. (1990): Small scale structure and dynamics of prominences. Hvar Observatory Bulletin 14, 37–102.

    ADS  Google Scholar 

  • Rosenbauer, H. R., et al. (1977): A survey of initial results of the Helios plasma experiment. Journal of Geophysics 42, 561–580.

    Google Scholar 

  • Rosenberg, H. (1976): Solar radio observations and interpretations. Philosophical Transactions of the Royal Society (London) A281, 461–471.

    Article  ADS  Google Scholar 

  • Rosenberg, R. L. (1970): Unified theory of the interplanetary magnetic field. Solar Physics 15, 72–78.

    Article  ADS  Google Scholar 

  • Rosenberg, R. L., Coleman, P. J. Jr. (1969): Heliographic latitude dependence of the dominant polarity of the interplanetary magnetic field. Journal of Geophysical Research 74, 5611–5622.

    Article  ADS  Google Scholar 

  • Rosenthal, C. S., et al. (2002): Waves in the magnetized solar atmosphere I. Basic processes and internetwork oscillations. The Astrophysical Journal 564, 508–524.

    Article  ADS  Google Scholar 

  • Rosner, R., Tucker, W. H., Vaiana, G. S. (1978): Dynamics of the quiescent solar corona. The Astrophysical Journal 220, 643–665.

    Article  ADS  Google Scholar 

  • Rossi, B. (1991): The interplanetary plasma. Annual Review of Astronomy and Astrophysics 29, 1–8.

    Article  ADS  Google Scholar 

  • Rostoker, G., Fälthammar, C.-G. (1967): Relationship between changes in the interplanetary magnetic field and variations in the magnetic field at the Earth’s surface. Journal of Geophysical Research 72, 5853–5863.

    Article  ADS  Google Scholar 

  • Rottman, G. J. (1981): Rocket measurements of the solar spectral irradiance during solar minimum. Journal of Geophysical Research 86, 6697–6705.

    Article  ADS  Google Scholar 

  • Rottman, G. J., Orrall, F. Q., Klimchuk, J. A. (1982): Measurements of outflow from the base of solar coronal holes. Astrophysical Journal 260, 326–337.

    Article  ADS  Google Scholar 

  • Rouillard, A. P., et al. (2008): First imaging of co-rotating solar wind flows and their source regions using the STEREO spacecraft. Geophysical Research Letters 35, L10110.

    Article  ADS  Google Scholar 

  • Roussev, I. I., et al. (2003a): A three-dimensional flux rope model for coronal mass ejections based on a loss of equilibrium. Astrophysical Journal (Letters) 588, L45–L48.

    Article  ADS  Google Scholar 

  • Roussev, I. I., et al. (2003b): A three-dimensional model of the solar wind incorporating solar magnetogram observations. Astrophysical Journal (Letters) 595, L57–L61.

    Article  ADS  Google Scholar 

  • Roussev, I. I., et al. (2004): A numerical model of a coronal mass ejection: shock development with implications for the acceleration of GeV protons. Astrophysical Journal (Letters) 605, L73–L76.

    Article  ADS  Google Scholar 

  • Roussev, I. I., Sokolov, I. S. (2006): Models of solar eruptions: Recent advances from theory and simulations. In Solar Eruptions and Energetic Particles, Geophysical Monograph Series 165, 89–102

    ADS  Google Scholar 

  • Roussev, I., et al. (1999): Modeling of explosive events in the solar transition region. Romanian Astronomical Journal 9, 57.

    ADS  Google Scholar 

  • Roussev, I., et al. (2001): Modeling of explosive events in the solar transition region in a 2D environment Ii. Various MHD experiments. Astronomy and Astrophysics 375, 228–242.

    Article  ADS  Google Scholar 

  • Roussev, I., et al. (2001): Modeling of solar explosive events in 2D environments. III. Observable consequences. Astronomy and Astrophysics 380, 719–726.

    Article  ADS  Google Scholar 

  • Rucinski, D., Bzowski, M., Fahr, H. J. (2003): Imprints from the solar cycle on the helium atom and helium pickup ion distributions. Annales Geophysicae 21(6), 1315–1330.

    Article  ADS  Google Scholar 

  • Russell, C. (2008): The STEREO Mission. Space Science Reviews 136, Issues 1–4. New York, Springer.

    Google Scholar 

  • Russell, C. T., (Ed., 1995): The global geospace mission. Space Science Reviews 71, 1–878.

    Google Scholar 

  • Russell, C. T., (Ed., 1997): Results of the IASTP program. Advances in Space Research 20,523–1107.

    Google Scholar 

  • Russell, C. T., McPherron, R. L. (1973): Semiannual variation of geomagnetic activity. Journal of Geophysical Research 78, 92–108.

    Article  ADS  Google Scholar 

  • Rust, D. M. (1976): An active role for magnetic fields in solar flares. Solar Physics 47, 21–40.

    Article  ADS  Google Scholar 

  • Rust, D. M. (1982): Solar flares, proton showers, and the space shuttle. Science 216, 939–946.

    Article  ADS  Google Scholar 

  • Rust, D. M. (1983): Coronal disturbances and their terrestrial effects. Space Science Reviews 34, 21–36.

    Article  ADS  Google Scholar 

  • Rust, D. M. (1994): Spawning and shedding helical magnetic fields in the solar atmosphere. Geophysical Research Letters 21(4), 241–244.

    Article  ADS  Google Scholar 

  • Rust, D. M. (2001): A new paradigm for solar filament eruptions. Journal of Geophysical Research 106(A11), 25075–25088.

    Article  ADS  Google Scholar 

  • Rust, D. M., et al. (2005): Comparison of interplanetary disturbances at the NEAR spacecraft with coronal mass ejections at the Sun. Astrophysical Journal 621, 524–536.

    Article  ADS  Google Scholar 

  • Rust, D. M., Hildner, E. (1976): Expansion of an X-ray coronal arch into the outer corona. Solar Physics 48, 381–387.

    Article  ADS  Google Scholar 

  • Russell, C. (2008): The STEREO Mission Space Science Reviews, 138 Issues 1–4. New York Springer.

    Google Scholar 

  • Rust, D. M., Kumar, A. (1996): Evidence for helically kinked magnetic flux ropes in solar eruptions. Astrophysical Journal (Letters) 464, L199–L202.

    Article  ADS  Google Scholar 

  • Rust, D. M., Labonte, B. J. (2005): Observational evidence of the kink instability in solar filament eruptions and sigmoids. Astrophysical Journal (Letters) 622, L69–L72.

    Article  ADS  Google Scholar 

  • Rust, D. M., Nakagawa, Y., Neupert, W. M. (1975): EUV emission, filament activation and magnetic fields in a slow-rise flare. Solar Physics 41, 397–414.

    Article  ADS  Google Scholar 

  • Rust, D. M., Svestka, Z. (1979): Slowly moving disturbances in the X-ray corona. Solar Physics 63, 279–295.

    Article  ADS  Google Scholar 

  • Rust, D. M., Webb, D. F. (1977): Soft X-ray observations of large-scale active region brightenings. Solar Physics 54, 403–417.

    Article  ADS  Google Scholar 

  • Ruzmaikin, A. A., et al. (1996): Spectral properties of solar convection and diffusion. Astrophysical Journal 471, 1022–1029.

    Article  ADS  Google Scholar 

  • Ryan, J., et al. (1994): Neutron and gamma-ray measurements of the solar flare of 1991 June 9. In: High-Energy Solar Phenomena – A New Era of Spacecraft Measurements. AIP Conference Proceedings 294 (Eds. J. M. Ryan and W. T. Vestrand). New York: American Institute of Physics, p. 89.

    Google Scholar 

  • Rye, R., Kuo, P. H., Holland, H. D. (1995): Atmospheric carbon dioxide concentrations before 2.2 billion years ago. Nature 378, 603–605.

    Article  ADS  Google Scholar 

  • Ryutova, M., Tarbell, T. (2003): MHD shocks and the origin of the solar transition region. Physical Review Letters 90, 191101.

    Article  ADS  Google Scholar 

S

  • Saba, J. L. R., Strong, K. T. (1991): Nonthermal broadening. Astrophysical Journal 375, 789–799.

    Article  ADS  Google Scholar 

  • Sabine, E. (1852): Letter to John Herschel 16 March 1852. Herschel Letters No. 15.235. (Royal Society). In: The origin of solar-terrestrial studies (Quoted by A. J. Meadows and J. E. Kennedy). Vistas in Astronomy 25, 419–426 (1982).

    Google Scholar 

  • Sabine, E. (1852): On periodical laws discoverable in the mean effects of the larger magneticdisturbances. Philosophical Transactions of the Royal Society (London) 142, 103–124.

    Article  ADS  Google Scholar 

  • Sackmann, I.-J., Boothroyd, A. I. (2003): Our Sun. V. A bright young Sun consistent with helioseismology and warm temperatures on ancient Earth and Mars. Astrophysical Journal 583, 1024–1039.

    Article  ADS  Google Scholar 

  • Sackmann, I.-J., Boothroyd, A. I., Kraemer, K. E. (1993): Our Sun III. Present and future. Astrophysical Journal 418, 457–468.

    Article  ADS  Google Scholar 

  • Sagan, C., Chyba, C. (1997): The early faint Sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science 276, 1217–1221.

    Article  ADS  Google Scholar 

  • Sagan, C., Mullen, G. (1972): Earth and Mars: evolution of atmospheres and surface temperatures. Science 177, 52–56.

    Article  ADS  Google Scholar 

  • Sagdeev, R. Z., Kennel, C. F. (1991): Collisionless shock waves. Scientific American 264, 106–113, April.

    ADS  Google Scholar 

  • Saito, T. (1975): Two-hemisphere model of the three-dimensional magnetic structure of the interplanetary space. Science Reports of the Tohoku University, Series 5, 26, 37–54.

    Google Scholar 

  • Sakai, J.-I., De Jager, C. (1996): Solar flares and collisions between current-carrying loops. Space Science Reviews 77, 1–192.

    Article  ADS  Google Scholar 

  • Sakao, T. (1994): Characteristics of Solar Flare Hard X-ray Sources as Revealed with the Hard X-ray Telescope aboard the Yohkoh Satellite. Ph. D. Thesis. Mitaka: University of Tokyo, the Yohkoh HXT group, National Astronomical Observatory.

    Google Scholar 

  • Sakao, T., et al. (2007): Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind. Science 318, 1585–1587.

    Article  ADS  Google Scholar 

  • Sakurai, T. (1976): Magnetohydrodynamic interpretation of the motion of prominences. Publications of the Astronomical Society of Japan 28, 177–198.

    ADS  Google Scholar 

  • Sakurai, T. (1991): Observations from the Hinotori mission. Philosophical Transactions of the Royal Society (London) A336, 339–347.

    Article  ADS  Google Scholar 

  • Sakurai, T., Spangler, S. R. (1994): The study of coronal plasma structures and fluctuations with Faraday rotation measurements. Astrophysical Journal 434, 773–785.

    Article  ADS  Google Scholar 

  • Sandbaek, O., Leer, E. (1995): Coronal heating and solar wind energy balance. Astrophysical Journal 454, 486–498.

    Article  ADS  Google Scholar 

  • Sandbaek, O., Leer, E., Hansteen, V. H. (1994): On the relation between coronal heating, flux tube divergence, and the solar wind proton flux and flow speed. Astrophysical Journal 436, 390–399.

    Article  ADS  Google Scholar 

  • Sanderson, T. R., et al. (1983): Correlated particle and magnetic field observations of a large-scale magnetic loop structure behind an interplanetary shock. Geophysical Research Letters 10,916–919.

    Article  ADS  Google Scholar 

  • Sarabhai, V. (1963): Some consequences of nonuniformity of solar wind velocity. Journal of Geophysical Research 68, 1555–1557.

    Article  ADS  Google Scholar 

  • Sauvaud, J.-A., et al. (2007): The IMPACT Solar Wind Electron Analyzer (SWEA). Space Science Reviews 136, Issue 1–4, 227–239.

    ADS  Google Scholar 

  • Savcheva, A., et al. (2007): A study of polar jet parameters based on Hinode XRT observations. Publications of the Astronomical Society of Japan 59, S771–S778.

    ADS  Google Scholar 

  • Sawaya-Lacoste, H. (Ed., 2003): SOHO-12/GONG 2002: Local and Global Helioseismology: The Present and Future. ESA SP-517 2003.

    Google Scholar 

  • Scafetta, N., West, B. J. (2006): Phenomenological solar signature in 400 years of reconstructed northern hemisphere temperature record. Geophysical Research Letters 33, L17718.

    Article  ADS  Google Scholar 

  • Schatten, K. H. (1988): A model for solar constant secular changes. Geophysical Research Letters 15, 121–124.

    Article  ADS  Google Scholar 

  • Schatten, K. H., et al. (1985): The importance of improved facular observations in understanding solar constant variations. Astrophysical Journal 294, 689–696.

    Article  ADS  Google Scholar 

  • Schatten, K. H., Leighton, R. B., Howard, R., Wilcox, J. M. (1972): Large scale photospheric magnetic field: The diffusion of active region fields. Solar Physics 26, 283–289.

    Article  ADS  Google Scholar 

  • Schatten, K. H., Wilcox, J. M., Ness, N. F. (1969): A model of interplanetary and coronal magnetic fields. Solar Physics 6, 442–455.

    Article  ADS  Google Scholar 

  • Schatzman, E. (1949): The heating of the solar corona and chromosphere. Annales d’Astrophysique 12, 203–218.

    ADS  Google Scholar 

  • Schein, M., Jesse, W. P., Wollan, E. O. (1941): The nature of the primary cosmic radiation and the origin of the mesotron. Physical Review 59, 615.

    Article  ADS  Google Scholar 

  • Scherb, F. (1964): Velocity distributions of the interplanetary plasma detected by Explorer 10. Space Research 4, 797–818.

    Google Scholar 

  • Scherrer, P. H., et al. (1995): The Solar Oscillations Investigation – Michelson Doppler Imager. Solar Physics 162, 129–188.

    Article  ADS  Google Scholar 

  • Schlesinger, M. E., Ramankutty, N. (1992): Implications for global warming of intercycle solar irradiance variations. Nature 360, 330–333.

    Article  ADS  Google Scholar 

  • Schmahl, E., Hildner, E. (1977): Coronal mass-ejections-kinematics of the 19 December 1973 event. Solar Physics 55, 473–490.

    Article  ADS  Google Scholar 

  • Schmelz, J. T., et al. (2005): All coronal loops are the same: Evidence to the contrary. Astrophysical Journal (Letters) 627, L81–L84.

    Article  ADS  Google Scholar 

  • Schmidt, A. (1924): Das erdmagnetische Aussenfeld. Zeitschrift Geophysikalische 1, 3–13.

    Google Scholar 

  • Schmidt, W. K. H., et al. (1980): On temperature and speed of He++ and O6+ ions in the solar wind. Geophysical Research Letters 7, 697–700.

    Article  ADS  Google Scholar 

  • Schöll, M., et al. (2007): Long-term reconstruction of the total solar irradiance based on neutron monitor and support data. Advances in Space Research 40, 996–999.

    Article  ADS  Google Scholar 

  • Schou, J. (1999): Migration of zonal flows detected using Michelson Doppler Imager f mode frequency splittings. The Astrophysical Journal (Letters) 523, L181–L184.

    Article  ADS  Google Scholar 

  • Schou, J. (2003): Wavelike properties of solar supergranulation detected in Doppler shift data. Astrophysical Journal (Letters) 596, L259–L262.

    Article  ADS  Google Scholar 

  • Schou, J., et al. (1997): Determination of the Sun’s seismic radius from the SOHO Michelson Doppler Imager. Astrophysical Journal (Letters) 489, L197–L200.

    Article  ADS  Google Scholar 

  • Schou, J., et al. (1998): Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler Image. The Astrophysical Journal 505, 390–417.

    Article  ADS  Google Scholar 

  • Schove, D. J. (1955): The sunspot cycle 649 BC to 2000 AD. Journal of Geophysical Research 60, 127–145.

    Article  ADS  Google Scholar 

  • Schrijver, C. J. (1997): Working group 6: Magnetic fields, coronal structure and phenomena. In: The Corona and Solar Wind Near Minimum Activity. Proceedings of the Fifth SOHO Workshop. ESA SP-404. Noordwijk: Esa Publications Division, pp. 149–153.

    Google Scholar 

  • Schrijver, C. J. (2001): Catastrophic cooling and high-sped downflow in quiescent solar coronal loops observed with TRACE. Solar Physics 198, 325–345.

    Article  ADS  Google Scholar 

  • Schrijver, C. J. (2007): Braiding-induced interchange reconnection of the magnetic field and the width of solar coronal loops. Astrophysical Journal (Letters) 662, L119–L122.

    Article  ADS  Google Scholar 

  • Schrijver, C. J., Aschwanden, M. J., Title, A. M. (2002): Transverse oscillations in coronal loops observed with TRACE – I. An overview of events, movies, and a discussion of common properties and required conditions. Solar Physics 206, 69–98.

    Article  ADS  Google Scholar 

  • Schrijver, C. J., Brown, D. S. (2000): Oscillations in the magnetic field of the solar corona in response to flares near the photosphere. Astrophysical Journal (Letters) 537, L69–L72.

    Article  ADS  Google Scholar 

  • Schrijver, C. J., De Rosa, M. L. (2003): Photospheric and heliospheric magnetic fields. Solar Physics 212, 165–200.

    Article  ADS  Google Scholar 

  • Schrijver, C. J., De Rosa, M. L., Title, A. M. (2002): What is missing from our understanding of long-term solar and heliospheric activity? Astrophysical Journal 577, 1006–1012.

    Article  ADS  Google Scholar 

  • Schrijver, C. J., De Rosa, M. L., Title, A.M., Metcalf, T. R. (2005): The non-potentiality of active-region coronae and the dynamics of the photospheric magnetic field. Astrophysical Journal 628, 501–513.

    Article  ADS  Google Scholar 

  • Schrijver, C. J., et al. (1989): Relations between the photospheric magnetic field and the emission from the outer atmospheres of cool stars. I. The solar Ca II K line core emission. Astrophysical Journal 337, 964–976.

    Article  ADS  Google Scholar 

  • Schrijver, C. J., et al. (1996): Dynamics of the chromosphric network: Mobility, dispersal, and diffusion coefficients. Astrophysical Journal 468, 921.

    Article  ADS  Google Scholar 

  • Schrijver, C. J., et al. (1997a): Sustaining the quiet photospheric network: The balance of flux emergence, fragmentation, merging, and cancellation. The Astrophysical Journal 487,424–436.

    Article  ADS  Google Scholar 

  • Schrijver, C. J., et al. (1997b): The dynamic quiet solar corona: 4 days of joint observing with MDI and EIT. In: The Corona and Solar Wind Near Minimum Activity. Proceedings of the Fifth SOHO Workshop. ESA SP-404. Noordwijk: ESA Publications 1997, pp. 669–674.

    Google Scholar 

  • Schrijver, C. J., et al. (1998): Large-scale coronal heating by the small-scale magnetic field of the Sun. Nature 394, 152–154.

    Article  ADS  Google Scholar 

  • Schrijver, C. J., et al. (1999): A new view of the solar outer atmosphere by the Transition Region and Coronal Explorer. Solar Physics 187, 261–302.

    Article  ADS  Google Scholar 

  • Schrijver, C. J., Hagenaar, H. J., Title, A. M. (1997): On the patterns of the solar granulation and supergranulation. Astrophysical Journal 475, 328.

    Article  ADS  Google Scholar 

  • Schrijver, C. J., Lemen, J. R., Mewe, R. (1989): Coronal activity in F-, G-, and K type stars. IV. Evidence for expanding loop geometries in stellar coronae. Astrophysical Journal 341,484–492.

    Article  ADS  Google Scholar 

  • Schrijver, C. J., Mewe, R., Walter, F. M. (1984): Coronal activity in F-, G-, and K-type stars. Ii. Coronal structure and rotation. Astronomy and Astrophysics 138, 258–266.

    ADS  Google Scholar 

  • Schrijver, C. J., Title, A. M. (2001): On the Formation of polar spots in Sun-like stars. The Astrophysical Journal 551, 1099–1106.

    Article  ADS  Google Scholar 

  • Schrijver, C. J., Title, A. M. (2002): The topology of a mixed-polarity potential field, and inferences for the heating of the quiet solar corona. Solar Physics 207, 223–240.

    Article  ADS  Google Scholar 

  • Schrijver, C. J., Title, A. M. (2003): The magnetic connection between the solar photosphere and the corona. The Astrophysical Journal (Letters) 597, L165–L168.

    Article  ADS  Google Scholar 

  • Schrijver, C. J., Van Ballegooijen, A. A. (2005): Is the quiet-sun corona a quasi steady, force-free environment? Astrophysical Journal 630, 552–560.

    Article  ADS  Google Scholar 

  • Schrijver, C. J., Zwann, C. (2000): Solar and Stellar Magnetic Activity. Cambridge Astrophysics Series 34, Cambridge: Cambridg University Press.

    Google Scholar 

  • Schröder, W. (1988): Aurorae during the Maunder Minimum. Meteorology and Atmospheric Physics 38, 246–251.

    Article  ADS  Google Scholar 

  • Schröder, W. (1994): Behavior of auroras during the Spörer minimum (1450–1550). Annales Geophysicae 12, 808–809.

    ADS  Google Scholar 

  • Schröder, W. (1997): Some aspects of the earlier history of solar-terrestrial physics. Planetary and Space Science 45, 395–400.

    Article  ADS  Google Scholar 

  • Schröter, E. H. (1985): The solar differential rotation: Present status of observations. Solar Physics 100, 141–160.

    Article  ADS  Google Scholar 

  • Schröter, E. H., Wöhl, H. (1975): Differential rotation, meridional and random motions of the solar Ca+ network. Solar Physics 42, 3–16.

    Article  ADS  Google Scholar 

  • Schuck, P. W. (2005): Local correlation tracking and the magnetic induction equation. Astrophysical Journal (Letters) 632, L53–L56.

    Article  ADS  Google Scholar 

  • Schuck, P. W. (2006): Tracking magnetic footpoints with the magnetic induction equation. Astrophysical Journal 646, 1358–1391.

    Article  ADS  Google Scholar 

  • Schüle, U., et al. (2000): Radiance variations of the quiet Sun at far-ultraviolet wavelengths. Astronomy and Astrophysics 354, L71–L74.

    ADS  Google Scholar 

  • Schultz, M. (1973): Interplanetary sector structure and the heliomagnetic equator. Astrophysics and Space Science 24, 371–383.

    Article  ADS  MathSciNet  Google Scholar 

  • Schumacher, J., Kliem, B. (1997): Coalescence of magnetic islands including anomalous resistivity. Physics of Plasmas 4(10), 3533.

    Article  ADS  Google Scholar 

  • Schumacher, J., Kliem, B. (1997): Transient fast reconnection in dynamic current sheets with anomalous resistivity. Advances in Space Research 19, 1797.

    Article  ADS  Google Scholar 

  • Schüssler, M., et al. (1996): Distribution of starspots on cool stars. I. Young and main sequence stars of 1 M. Astronomy and Astrophysics 314, 503–512.

    ADS  Google Scholar 

  • Schüssler, M., Solanki, S. K. (1992): Why rapid rotators have polar spots. Astronomy and Astrophysics 264, L13–L16.

    ADS  Google Scholar 

  • Schuster, A. (1911): The origin of magnetic storms. Proceedings of the Physical Society (London) A85, 61.

    Google Scholar 

  • Schwabe, S. H. (1844): Sonnen-Beobachtungem im Jahre 1843. Astronomische Nachrichten 21, No. 495, 233–236. Reprinted in: Kosmos (Ed. A. Von Humboldt). English translation in: Solar observations during 1843 in Early Solar Physics (Ed. A. J. Meadows). Oxford: Pergamon Press 1970, pp. 95–98.

    ADS  Google Scholar 

  • Schwadron, N. A. (2002): An explanation for strongly underwound magnetic field in co-rotating rarefaction regions and its relationship to footpoint motion on the Sun. Geophysical Research Letters 29(14), 1663.

    Article  ADS  Google Scholar 

  • Schwadron, N. A., et al. (2000): Inner source distributions; Theoretical interpretation, implications, and evidence for inner source protons. Journal of Geophysical Research 105(A4), 7465–7472.

    Article  ADS  Google Scholar 

  • Schwadron, N. A., et al. (2005): Solar wind from the coronal hole boundaries. Journal of Geophysical Research 110(A4), A04104.

    Article  Google Scholar 

  • Schwadron, N. A., Mc Comas, D. J. (2003): Solar wind scaling law. Astrophysical Journal 599, 1395–1403.

    Article  ADS  Google Scholar 

  • Schwadron, N. A., Mc Comas, D. J. (2005): The sub-Parker spiral structure of the heliospheric magnetic field. Geophysical Research Letters 32(3), L03112.

    Article  Google Scholar 

  • Schwadron, N. A., Mc Comas, D. J., De Forest, C. (2006): Relationship between solar wind and coronal heating: Scaling laws from solar X-rays. The Astrophysical Journal 642, 1173–1178.

    Article  ADS  Google Scholar 

  • Schwarzschild, M. (1948): On noise arising from the solar granulation. The Astrophysical Journal 107, 1–5.

    Article  ADS  Google Scholar 

  • Schwarzschild, M. (1958): Structure and Evolution of the Stars. Princeton: Princeton University Press, p. 207.

    Google Scholar 

  • Schwenn, R. (1981): Solar wind and its interactions with the magnetosphere: Measured parameters. Advances in Space Research 1, 3–17.

    Article  ADS  Google Scholar 

  • Schwenn, R. (1983): Direct correlations between coronal transients and interplanetary disturbances. Space Science Reviews 34, 85–99.

    Article  ADS  Google Scholar 

  • Schwenn, R. (1986): Relationship of coronal transients to interplanetary shocks: 3D aspects. Space Science Reviews 44(1–2), 139–186.

    ADS  Google Scholar 

  • Schwenn, R. (1990): Large-scale structure of the interplanetary medium. In: Physics of the Inner Heliosphere I. Large-Scale Phenomena (Eds. R. Schwenn and E. Marsch). New York: Springer-Verlag 1990, pp. 99–181.

    Google Scholar 

  • Schwenn, R. (2006a): Space weather: the solar perspective. Living Reviews in Solar Physics 3, 2.

    ADS  Google Scholar 

  • Schwenn, R. (2006b): Solar wind sources and their variations over the solar cycle. Space Science Reviews 124, 51–76.

    Article  ADS  Google Scholar 

  • Schwenn, R., et al. (2005): The association of coronal mass ejections with their effects near the Earth. Annales Geophysicae 23, 1033–1059.

    Article  ADS  Google Scholar 

  • Schwenn, R., et al. (2006): Coronal observations of CMEs. Space Science Reviews 123, 127–176.

    Article  ADS  Google Scholar 

  • Schwenn, R., Marsch, E. (Eds., 1990): Physics of the Inner Heliosphere 1. Large- scale Phenomena, 2 Particles, Waves and Turbulence. New York: Springer-Verlag.

    Google Scholar 

  • Schwenn, R., Rosenbauer, H., Muehlhaeuser, K. -H. (1980): Singly-ionized helium in the driver gas of interplanetary shock wave. Geophysical Research Letters 7, 201–204.

    Article  ADS  Google Scholar 

  • Seehafer, N. (1990): Electric current helicity in the solar atmosphere. Solar Physics 125, 219–232.

    Article  ADS  Google Scholar 

  • Seppälä, A., et al. (2006): Destruction of the tertiary ozone maximum during a solar proton event. Geophysical Research Letters 33, L07804.

    Article  Google Scholar 

  • Serebryanskiy, A., Chou, D.-Y. (2005): Comparison of solar cycle variations of solar p-mode frequencies from GONG and MDI. Astrophysical Journal 633(1), 1187–1190.

    Article  ADS  Google Scholar 

  • Severny, A. B. (1958): The appearance of flares in neutral points of the solar magnetic field and the pinch-effect. Bulletin of the Crimean Astrophysical Observatory 20, 22–51.

    Google Scholar 

  • Shackleton, N. J. (1977): The oxygen isotope stratigraphic record of the late Pleistocene. Philosophical Transactions of the Royal Society (London) B280, 169–182.

    Article  ADS  Google Scholar 

  • Share, G. H., et al. (2003). Directionality of flare-accelerated alpha particles at the sun. Astrophysical Journal (Letters) 595, L89–L92.

    Article  ADS  Google Scholar 

  • Share, G. H., et al. (2004): RHESSI e+-e- annihilation radiation observations: Implications for conditions in the flaring solar chromosphere. Astrophysical Journal (Letters) 615, L169–L172.

    Article  ADS  Google Scholar 

  • Share, G. H., Murphy, R. J. (1997): Intensity and directionality of flare-accelerated α-particles at the sun. Astrophysical Journal 485, 409–418.

    Article  ADS  Google Scholar 

  • Share, G. H., Murphy, R. J., Ryan, J. (1997): Solar and stellar gamma ray observations with COMPTON. In: Proceedings of the Fourth Compton Symposium (Eds. C. D. Dermer, M. S. Strickman and J. D. Kurfess). New York: American Institute of Physics, pp. 17–36.

    Google Scholar 

  • Shaviv, N. J. (2003): Toward a solution to the early faint Sun paradox: A lower cosmic ray flux from a stronger solar wind. Journal of Geophysical Research 108, 3.

    Article  Google Scholar 

  • Shea, M. A., Smart, D. F. (1990): A summary of major solar proton events. Solar Physics 127, 297–320.

    Article  ADS  Google Scholar 

  • Sheeley, N. R. Jr. (2005): Surface of the sun’s magnetic field: A historical review of the flux-transport mechanism. Living Reviews in Solar Physics 2, 5.

    ADS  Google Scholar 

  • Sheeley, N. R. Jr., et al. (1975): Coronal changes associated with a disappearing filament. Solar Physics 45, 377–392.

    Article  ADS  Google Scholar 

  • Sheeley, N. R. Jr., et al. (1977): A pictorial comparison of interplanetary magnetic field polarity, solar wind speed, and geomagnetic disturbances index during the sunspot cycle. Solar Physics 52, 485–495.

    Article  ADS  Google Scholar 

  • Sheeley, N. R. Jr., et al. (1983): Associations between coronal mass ejections and interplanetary shocks. In Solar Wind Five, NASA Conference Publication Vol. 2280. Washington, DC: NASA, pp. 693–702.

    Google Scholar 

  • Sheeley, N. R. Jr., et al. (1983): Associations between coronal mass ejections and soft X-ray events. Astrophysical Journal 272, 349–354.

    Article  ADS  Google Scholar 

  • Sheeley, N. R. Jr., et al. (1984): Associations between coronal mass ejections and metric type II bursts. Astrophysical Journal 279, 839–847.

    Article  ADS  Google Scholar 

  • Sheeley, N. R. Jr., et al. (1985): Coronal mass ejections and interplanetary shocks. Journal of Geophysical Research 90, 163–175.

    Article  ADS  Google Scholar 

  • Sheeley, N. R. Jr., et al. (1997b): Measurements of flow speeds in the corona between 2 and 30 solar radii. Astrophysical Journal 484, 472–478.

    Article  ADS  Google Scholar 

  • Sheeley et al. (1997)

    Google Scholar 

  • Sheeley, N. R. Jr., et al. (1999): Continuous tracking of coronal outflows: Two kinds of coronal mass ejections. Journal of Geophysical Research 104(A11), 24739–24768.

    Article  ADS  Google Scholar 

  • Sheeley, N. R. Jr., Harvey, J. W., Feldman, W. C. (1976): Coronal holes, solar wind streams, and recurrent geomagnetic disturbances: 1973–1976. Solar Physics 49, 271–278.

    Article  ADS  Google Scholar 

  • Sheeley, N. R. Jr., Knudson, T. N., Wang, Y.-M. (2001): Coronal inflows and the Sun’s nonaxisymmetric open flux. Astrophysical Journal (Letters) 546, L131–L135.

    Article  ADS  Google Scholar 

  • Sheeley, N. R. Jr., Nash, A. G., Wang, Y.-M. (1987): The origin of rigidly rotating magnetic field patterns on the Sun. Astrophysical Journal 319, 481–502.

    Article  ADS  Google Scholar 

  • Sheeley, N. R. Jr., Wang, Y.-M. (1991): Magnetic field configurations associated with fast solar wind. Solar Physics 131, 165–186.

    Article  ADS  Google Scholar 

  • Sheeley, N. R. Jr., Wang, Y.-M. (2001): Coronal inflows and sector magnetism. Astrophysical Journal (Letters) 562, L107–L110.

    Article  ADS  Google Scholar 

  • Sheeley, N. R. Jr., Wang, Y.-M. (2002): Characteristics of coronal inflows. Astrophysical Journal 579, 874–887.

    Article  ADS  Google Scholar 

  • Sheeley, N. R. Jr., Wang, Y. -M., Phillips, J. L. (1997a): Near-Sun magnetic fields and the solar wind. In: Cosmic Winds and the Heliosphere (Eds. J. R. Jokipii, C. P. Sonett and M. S. Giampapa). Tucson: University of Arizona Press 1997, pp. 459–483.

    Google Scholar 

  • Sheeley, N. R., Jr., Warren, H. P., Wang, Y.-M. (2004): The origin of postflare loops. Astrophysical Journal 616, 1224–1231.

    Article  ADS  Google Scholar 

  • Shevgaonkar, R. K., Kundu, M. R. (1984): Three-dimensional structures of two solar active regions from Vla observations at 2, 6 and 20 centimeters wavelength. Astrophysical Journal 283,413–420.

    Article  ADS  Google Scholar 

  • Shevgaonkar, R. K., Kundu, M. R. (1985): Dual frequency observations of solar microwave bursts using the VLA. Astrophysical Journal 292, 733–751.

    Article  ADS  Google Scholar 

  • Shibahashi, H. (2007): Meridional circulation and differential rotation in the solar convection zone. Astronomische Nachrichten 328, 264.

    Article  MATH  ADS  Google Scholar 

  • Shibata, K. (1996): New observational facts about solar flares from Yohkoh studies – Evidence of magnetic reconnection and a unified model of flares. Advances in Space Research 17(4/5),9–18.

    Article  ADS  Google Scholar 

  • Shibata, K. (1997): Rapidly time variable phenomena: Jets, explosive events, and flares. In: The Corona and Solar Wind NearMminimum Activity. Proceedings of the Fifth SOHO Workshop. ESA SP-404. Noordwijk: Esa Publications Division, pp. 103–112.

    Google Scholar 

  • Shibata, K., et al. (1992): Observations of X-ray jets with the Yohkoh soft X-ray telescope. Publications of the Astronomical Society of Japan 44, L173–L179.

    ADS  Google Scholar 

  • Shibata, K., et al. (1994): A gigantic coronal jet ejected from a compact active region in a coronal hole. The Astrophysical Journal (Letters) 431, L51.

    Article  ADS  Google Scholar 

  • Shibata, K., et al. (1995): Hot plasma ejections associated with compact-loop solar flares. Astrophysical Journal (Letters) 451, L83–L85.

    Article  ADS  Google Scholar 

  • Shibata, K., et al. (2007a): New solar physics with Solar-B mission. Astronomical Society of the Pacific Conference Series 369, 1–593.

    Google Scholar 

  • Shibata, K., et al. (2007b): Chromospheric anemone jets as evidence of ubiquitous reconnection. Science 318, 1591–1593.

    Article  ADS  Google Scholar 

  • Shimizu, T. (1995): Energetics and occurrence rate of active-region transient brightenings and implications for the heating of the active-region corona. Publications of the Astronomical Society of Japan 47, 251–263.

    ADS  Google Scholar 

  • Shimizu, T. (Ed., 1996): Yohkoh Views the Sun – The First Five Years. Tokyo: The Institute of Space and Astronautical Science, National Astronomical Observatory, Yohkoh Group.

    Google Scholar 

  • Shimizu, T., Tsuneta, S. (1997): Deep survey of solar nanoflares with Yohkoh. Astrophysical Journal 486, 1045–1057.

    Article  ADS  Google Scholar 

  • Shimizu, T., Tsuneta, S., Acton, L. W., Lemen, J. R., Uchida, Y. (1992): Transient brightenings in active regions observed by the Soft X-ray Telescope on Yohkoh. Publications of the Astronomical Society of Japan 44, L147–L153.

    ADS  Google Scholar 

  • Shimojo, M., et al. (2007): Fine structures of solar X-ray jets observed with the X-ray telescope aboard Hinode. Publications of the Astronomical Society of Japan 59, S745–S750.

    ADS  Google Scholar 

  • Shimojo, M., Shibata, K. (1999): Occurrence rate of microflares in an X-ray bright point within an active region. Astrophysical Journal 516, 934–938.

    Article  ADS  Google Scholar 

  • Shimojo, M., Shibata, K. (2000): Physical parameters of solar X-ray jets. Astrophysical Journal 542, 1100–1108.

    Article  ADS  Google Scholar 

  • Shindell, D. T., et al. (2001): Solar forcing of regional climate change during the maunder minimum. Science 294, 2149–2152.

    Article  ADS  Google Scholar 

  • Shindell, D. T., et al. (2003): Volcanic and solar forcing of climate change during the pre-industrial era. Journal of Climate 16, 4094–4107.

    Article  ADS  Google Scholar 

  • Shine, R. A., Simon, G. W., Hulburt, N. E. (2000): Supergranule and mesogranule evolution. Solar Physics 193, 313–331.

    Article  ADS  Google Scholar 

  • Shklovskii, I. S., Moroz, V. I., Kurt, V. G. (1960): The nature of the Earth’s third radiation belt. Soviet Astronomy AJ 4, 871–873.

    ADS  Google Scholar 

  • Shodhan, S., et al. (2000): Counterstreaming electrons in magnetic clouds. Journal of Geophysical Research 105(A12), 27261–27268.

    Article  ADS  Google Scholar 

  • Silverman, S. M. (1992): Secular variation of the aurora for the past 500 years. Reviews of Geophysics 30(4), 333–351.

    Article  ADS  Google Scholar 

  • Simnett, G. M. (1973): Relativistic electrons in space. Space Research 13, 745–762.

    ADS  Google Scholar 

  • Simnett, G. M. (1991): Energetic particle production in flares. Philosophical Transactions of the Royal Society (London) A336, 439–450.

    Article  ADS  Google Scholar 

  • Simnett, G. M., Roelof, E. C., Haggerty, D. K. (2002): The acceleration and release of near-relativistic electrons by coronal mass ejections. Astrophysical Journal 579, 854–862.

    Article  ADS  Google Scholar 

  • Simon, G. W. (1967): Observations of horizontal motions in solar granulation: Their relation to supergranulation. Zeitschrift für Astrophysick 65, 345–363.

    ADS  Google Scholar 

  • Simon, G. W., Leighton, R. B. (1964): Velocity fields in the solar atmosphere. III. Large-scale motions, the chromospheric network, and magnetic fields. Astrophysical Journal 140,1120–1147.

    Article  ADS  Google Scholar 

  • Simon, G. W., Title, A. M., Weiss, N. O. (1995): Kinematical models of supergranular diffusion on the Sun. Astrophysical Journal 442, 886–897.

    Article  ADS  Google Scholar 

  • Simon, G. W., Title, A. M., Weiss, N. O. (2001): Sustaining the Sun’s magnetic network with emerging bipoles. Astrophysical Journal 561, 427–434.

    Article  ADS  Google Scholar 

  • Simon, T., Herbig, G., Boesgaard, A. M. (1985): The evolution of chromospheric activity and the spin-down of solar-type stars. Astrophysical Journal 293, 551–574.

    Article  ADS  Google Scholar 

  • Simpson, J. A. (1954): Cosmic-radiation intensity-time variations and their origin III. The origin of 27-day variations. Physical Review 94, 426–440.

    Article  ADS  Google Scholar 

  • Simpson, J. A. (1983): Elemental and isotopic composition of the galactic cosmic rays. Annual Review of Nuclear Particle Science 33, 323–381.

    Article  ADS  Google Scholar 

  • Simpson, J. A. (1998): Brief history of recurrent solar modulation of the galactic cosmic rays (1937–1990). Space Science Reviews 83, 169–176.

    Article  ADS  Google Scholar 

  • Simpson, J. A., Connell, J. J. (2001): Cosmic ray isotopic composition studies with the Ulysses high energy telescope: Implications for origin and distribution in the Galaxy. Space Science Reviews 97, 337–341.

    Article  ADS  Google Scholar 

  • Simpson, J. A., et al. (1992): The Ulysses Cosmic Ray and Solar Particle Investigation. Astronomy and Astrophysics Supplement Series 92, No. 2, 365–399.

    ADS  Google Scholar 

  • Simpson, J. A., et al. (1995a): Cosmic ray and solar particle investigations over the south polar regions of the Sun. Science 268, 1019–1023.

    Article  ADS  Google Scholar 

  • Simpson, J. A., et al. (1995b): The latitude gradients of galactic cosmic ray and anomalous helium fluxes measured on Ulysses from the Sun’s south polar region to the equator. Geophysical Research Letters 22(23), 3337–3340.

    Article  ADS  Google Scholar 

  • Singer, S. F. (1957): A new model of magnetic storms and aurorae. EOS 38, 175–190.

    Google Scholar 

  • Siscoe, G. (2000): The space-weather enterprise: Past, present, and future. Journal of Atmospheric and Solar-Terrestrial Physics 62, 1223–1232.

    Article  ADS  Google Scholar 

  • Siscoe, G. L. (1976): Three-dimensional aspects of interplanetary shock waves. Journal of Geophysical Research 81, 6235–6241.

    Article  ADS  Google Scholar 

  • Siscoe, G. L. (1980): Evidence in the auroral record for secular solar variations. Review of Geophysics and Space Physics 18, 647–658.

    Article  ADS  Google Scholar 

  • Skoug, R. M., et al. (2004): Extremely high speed solar wind: 29–30 October 2003. Journal of Geophysical Research 109(A9), A09102.

    Article  MathSciNet  Google Scholar 

  • Skumanich, A., et al. (1984): The Sun as a star: Three-component analysis of chromospheric variability in the calcium K line. Astrophysical Journal 282, 776–783.

    Article  ADS  Google Scholar 

  • Slottje, C. (1978): Millisecond microwave spikes in a solar flare. Nature 275, 520–521.

    Article  ADS  Google Scholar 

  • Smith, D. M., et al. (2002): The RHESSI spectrometer. Solar Physics 210, 33–60.

    Article  ADS  Google Scholar 

  • Smith, D. M., et al. (2003): High-resolution spectroscopy of gamma-ray lines from the X class solar flare of 2002 July 23. Astrophysical Journal (Letters) 595, L81–L84.

    Article  ADS  Google Scholar 

  • Smith, D. M., et al. (2005): Terrestrial gamma-ray flashes observed up to 20 MeV. Science 307, 1085–1088.

    Article  ADS  Google Scholar 

  • Smith, E. J. (1962): A comparison of Explorer 6 and Explorer 10 magnetometer data. Journal of Geophysical Research 67, 2045–2049.

    Article  ADS  Google Scholar 

  • Smith, E. J., Balogh, A. (1995): Ulysses observations of the radial magnetic field. Geophysical Research Letters 22(23), 3317–3320.

    Article  ADS  Google Scholar 

  • Smith, E. J., et al. (1995): Ulysses observations of Alfvén waves in the southern and northern solar hemispheres. Geophysical Research Letters 22(23), 3381–3384.

    Article  ADS  Google Scholar 

  • Smith, E. J., et al. (2000): Recent observations of the heliospheric magnetic field at Ulysses: Return to low latitude. Advances in Space Research 26(5), 823–832.

    Article  ADS  Google Scholar 

  • Smith, E. J., et al. (2003): The Sun and heliosphere at solar maximum. Science 302, 1165–1169.

    Article  ADS  Google Scholar 

  • Smith, E. J., Marsden, R. G. (1995): Ulysses observations from pole-to-pole: An introduction. Geophysical Research Letters 22(23), 3297–3300.

    Article  ADS  Google Scholar 

  • Smith, E. J., Marsden, R. G. (1998): The Ulysses mission. Scientific American 278, 74–79, January.

    Article  Google Scholar 

  • Smith, E. J., Marsden, R. G., Page, D. E. (1995): Ulysses above the Sun’s south pole – an introduction. Science 268, 1005–1006.

    Article  ADS  Google Scholar 

  • Smith, E. J., Sonett, C. P., Dungey, J. W. (1964): Satellite observation of the geomagnetic field during magnetic storms. Journal of Geophysical Research 69, 2669–2688.

    Article  ADS  Google Scholar 

  • Smith, E. J., Tsurutani, B. T., Rosenberg, R. L. (1978): Observations of the interplanetary sector structure up to heliographic latitudes of 16 degrees by Pioneer 11. Journal of Geophysical Research 83, 717–724.

    Article  ADS  Google Scholar 

  • Smith, E. J., Wolfe, J. H. (1976): Observations of interaction regions and co-rotating shocks between one and five AU: Pioneers 10 and 11. Geophysical Research Letters 3, 137–140.

    Google Scholar 

  • Smith, E. J., Wolfe, J. H. (1977): Pioneeer 10, 11 observations of evolving solar wind streams and shocks beyond 1 AU. In Study of Traveling Interplanetary Phenomena (Eds. M. A. Shea, D. F. Smart and S. T. Wu). Dordrecht: D. Reidel, pp. 227–257.

    Google Scholar 

  • Smy, M. B., et al. (2004): Precise measurement of the solar neutrino day-night and seasonal variation in Super-Kamiokande-I. Physical Review D 69, 011104–011109.

    Article  ADS  Google Scholar 

  • Sno Collaboration (1999): The Sudbury neutrino observatory projects. Nuclear Physics B – Proceedings Supplements 77, 43–47.

    Google Scholar 

  • Sno Collaboration (2000): The Sudbury Neutrino Observatory. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 449, 172–207.

    Google Scholar 

  • Snodgrass, H. B. (1983): Magnetic rotation of the solar photosphere. The Astrophysical Journal 270, 288–299.

    Article  ADS  Google Scholar 

  • Snodgrass, H. B. (1985): Solar torsional oscillations: A net pattern with wavenumber 2 as artifact. Astrophysical Journal 291, 339–343.

    Article  ADS  Google Scholar 

  • Snodgrass, H. B., Howard, R. (1985): Torsional oscillations of the sun. Science 228, 945–952.

    Article  ADS  Google Scholar 

  • Snyder, C. W., Neugebauer, M. (1964): Interplanetary solar-wind measurements by Mariner II. Space Research 4, 89–113.

    Google Scholar 

  • Snyder, C. W., Neugebauer, M., Rao, U. R. (1963): The solar wind velocity and its correlation with cosmic-ray variations and with solar and geomagnetic activity. Journal of Geophysical Research 68, 6361–6370.

    ADS  Google Scholar 

  • Socas-Navarro, H., Sánchez Almeida, J. (2002): Magnetic properties of photospheric regions with very low magnetic flux. Astrophysical Journal 565, 1323–1334.

    Article  ADS  Google Scholar 

  • Soderblom, D. R. (1985): A survey of chromospheric emission and rotation among solar-type stars in the solar neighborhood. Astronomical Journal 90, 2103–2115.

    Article  ADS  Google Scholar 

  • Soderblom, D. R., Baliunas, S. L. (1988): The sun among the stars: What stars indicate about solar variability. In: Secular, Solar and Geomagnetic Variations in the Last 10,000 Uears (Eds. F. R. Stephenson and A. W. Wolfendale). Dordrecht: Kluwer, pp. 25–48.

    Google Scholar 

  • Sokolov, I. V., et al. (2004): A new field line advection model for solar particle acceleration. Astrophysical Journal (Letters) 616, L171–L174.

    Article  ADS  Google Scholar 

  • Solanki, S. K. (2006): The solar magnetic field. Reports on Progress in Physics 69, 563–668.

    Article  ADS  Google Scholar 

  • Solanki, S. K., et al. (2003): Three-dimensional magnetic field topology in a region of solar coronal heating. Nature 425, 692–695.

    Article  ADS  Google Scholar 

  • Solanki, S. K., Fligge, M. (1998): Solar irradiance since 1874 revisted. Geophysical Research Letters 25, 341–344.

    Article  ADS  Google Scholar 

  • Solanki, S. K., Fligge, M. (1999): A reconstruction of total solar irradiance since 1700. Geophysical Research Letters 26, 2465–2468.

    Article  ADS  Google Scholar 

  • Solanki, S. K., Inhester, B., Schussler, M. (2006): The solar magnetic field. Reports on Progress in Physics 69, (3), 563.

    Article  ADS  Google Scholar 

  • Solanki, S. K., Schüssler, M., Fligge, M. (2000): Evolution of the Sun’s large scale magnetic field since the Maunder Minimum. Nature 408, 445–447.

    Article  ADS  Google Scholar 

  • Somov, B. V., Kosugi, T. (1997): Collisonless reconnection and high-energy particle acceleration in solar flares. Astrophysical Journal 485, 859–868.

    Article  ADS  Google Scholar 

  • Sonett, C. P. (1984): Very long solar periods and the radiocarbon record. Reviews of Geophysics and Space Physics 22(3), 239–254.

    Article  ADS  Google Scholar 

  • Sonett, C. P., Colburn, D. S., Davis, L. Jr., Smith, E. J., Colman, P. J. Jr. (1964): Evidence for a collision-free magnetohydrodynamic shock in interplanetary space. Physical Review Letters 13, 153–156.

    Article  ADS  Google Scholar 

  • Sonett, C. P., et al. (1960): Current systems in the vestigial geomagnetic field: Explorer 6. Physical Review Letters 4, 161–163.

    Article  ADS  Google Scholar 

  • Sonett, C. P., Giampapa, M. S., Matthews, M. S. (Eds., 1991): The Sun in Time. Tucson: University of Arizona Press.

    Google Scholar 

  • Sonett, C. P., Suess, H. E. (1984): Correlation of bristlecone pine ring widths with atmospheric 14C variations: A climate-Sun relation. Nature 307, 141–143.

    Article  ADS  Google Scholar 

  • Song, P., Singer, H. J., Siscoe, G. L. (Eds., 2001): Space Weather Geophysical Monograph No. 125. Washington: American Geophysical Union.

    Google Scholar 

  • Soon, W. H., Posmentier, E. S., Baliunas, S. L. (1996): Inference of solar irradiance variability from terrestrial temperature changes, 1880–1993: An astrophysical application of the Sun-climate connection. Astrophysical Journal 472, 891–902.

    Article  ADS  Google Scholar 

  • Southworth, G. C. (1945): Microwave radiation from the Sun. Journal of the Franklin Institute 239, 285–297.

    Article  Google Scholar 

  • Spadaro, D., et al. (2003): A transient heating model for coronal structure and dynamics. Astrophysical Journal 582, 486–494.

    Article  ADS  Google Scholar 

  • Spangler, S. R., et al. (2002): Very long baseline interferometer measurements of turbulence in the inner solar wind. Astronomy and Astrophysics 384, 654–665.

    Article  ADS  Google Scholar 

  • Spangler, S. R., Mancuso, S. (2000): Radio astronomical constraints on coronal heating by high-frequency Alfvén waves. Astrophysical Journal 530, 491–499.

    Article  ADS  Google Scholar 

  • Spicer, D. S., Sibeck, D., Thompson, B. J., Davila, J. M. (2006): A Kopp Pneuman-like picture of coronal mass ejections. Astrophysical Journal 643, 1304–1316.

    Article  ADS  Google Scholar 

  • Spiegel, E. A., Weiss, N. O. (1980): Magnetic activity and variations in solar luminosity. Nature 287, 616–617.

    Article  ADS  Google Scholar 

  • Spörer, G. F. W. (1874–1976): Beobachtungen der Sonnenflecken zu Anclam. Leipzig.

    Google Scholar 

  • Spörer, G. F. W. (1887): Üeber die periodicität der Sonnenflecken seit dem Jahre 1618. Vierteljahrsschr Astronomische Gesellschaft (Leipzig) 22, 323–329.

    Google Scholar 

  • Spörer, G. F. W. (1889): Üeber die periodicität der Sonnenflecken seit dem Jahre 1618. R. Leopold-Caroline Acad. Aston. Halle 53, 283–324.

    Google Scholar 

  • Spörer, G. F. W. (1899): Sur les différences que présentent l’Hémisphere nord el l’Hémisphere sud du Soleil. Bulletin Astronomique 6, 60.

    Google Scholar 

  • Spreybroeck, L. P. Van, Krieger, A. S., Vaiana, G. S. (1970): X-ray photographs of the Sun on March 7, 1970. Nature 227, 818–822.

    Article  ADS  Google Scholar 

  • Spruit, H. C. (1982): Effect of spots on a star’s radius and luminosity. Astronomy and Astrophysics 108, 348–355.

    ADS  Google Scholar 

  • Spruit, H. C. (1988): Influence of magnetic activity on the solar luminosity and radius. In: Solar Radiative Output Variations (Ed. P. V. Foukal). Cambridge: Cambridge Research and Instrumentation, pp. 254–288.

    Google Scholar 

  • Srivastava, N., Venkatakrishnan, P. (2002): Relationship between CME speed and geomagnetic storm intensity. Geophysical Research Letters 29, 1.

    Google Scholar 

  • St. Cyr, O. C., et al. (2000): Properties of coronal mass ejections: SOHO LASCO observations from January 1996 to June 1998. Journal of Geophysical Research 105, 18169–18186.

    Article  ADS  Google Scholar 

  • Stamper, R., et al. (1999): Solar causes of the long-term increase in geomagnetic activity. Journal of Geophysical Research 104(A12), 28325–28342.

    Article  ADS  Google Scholar 

  • Stauffer, B. (2000): Long term climate records from polar ice. Space Science Reviews 94, 321–336.

    Article  ADS  Google Scholar 

  • Stauffer, B., et al. (1998): Atmospheric Co2 concentration and millennial-scale climate change during the last glacial period. Nature 392, 59–61.

    Article  ADS  Google Scholar 

  • Steig, E. L., et al. (1996): Large amplitude solar modulation cycles of 10Be in Antarctica: Implications for atmospheric mixing processes and interpretation of the ice core record. Geophysical Research Letters 23, 523–526.

    Article  ADS  Google Scholar 

  • Stein, R. F., Nordlund A. (2001): Solar oscillations and convection Ii. Excitation of radial oscillations. Astrophysical Journal 546, 585–603.

    Article  ADS  Google Scholar 

  • Stenborg, G., Cobelli, P. J. (2003): A wavelet packets equalization technique to reveal the multiple spatial-scale nature of coronal structures. Astronomy and Astrophysics 398, 1185–1193.

    Article  ADS  Google Scholar 

  • Stenflo, J. O. (1974): Differential rotation and sector structure of solar magnetic fields. Solar Physics 36, 495–515.

    Article  ADS  Google Scholar 

  • Sterling, A. C. (2000): Sigmoid CME source regions at the Sun; some recent results. Journal of Atmospheric and Solar-Terrestrial Physics 62, 1427–1435.

    Article  ADS  Google Scholar 

  • Sterling, A. C., et al. (2007): Hinode observations of the onset stage of a solar filament eruption. Publications of the Astronomical Society of Japan 59, S823–S829.

    ADS  Google Scholar 

  • Sterling, A. C., Hudson, H. S. (1997): Yohkoh SXT observations of X-ray “dimming” associated with a halo coronal mass ejection. Astrophysical Journal (Letters) 491, L55–L58.

    Article  ADS  Google Scholar 

  • Sterling, A. C., Hudson, H. S., Thompson, B. J., Zarro, D. M. (2000): Yohkoh SXT and SOHO EIT observations of sigmoid-to-arcade evolution of structures associated with halo coronal mass ejections. Astrophysical Journal 532, 628–647.

    Article  ADS  Google Scholar 

  • Sterling, A. C., Moore, R. L. (2004): External and internal reconnection in two filament-carrying magnetic cavity solar eruptions. Astrophysical Journal 613, 1221–1232.

    Article  ADS  Google Scholar 

  • Sterling, A. C., Moore, R. L. (2005): Slow-rise and fast-rise phases of an erupting solar filament, and flare emission onset. Astrophysical Journal 630, 1148–1159.

    Article  ADS  Google Scholar 

  • Stern, D. P. (1989): A brief history of magnetospheric physics before the spaceflight era. Reviews of Geophysics 27, 103–114.

    Article  ADS  Google Scholar 

  • Stix, M. (1981): Theory of the solar cycle. Solar Physics 74, 79–101.

    Article  ADS  Google Scholar 

  • Stone, E. C., et al. (1998): The Advanced Composition Explorer. Space Science Reviews 86, 1–22, 257–632.

    Google Scholar 

  • Stone, E. C., et al. (2005): Voyager 1 explores the termination shock region and the heliosheath beyond. Science 309, 2017–2020.

    Article  ADS  Google Scholar 

  • Stone, E. C., et al. (2008): An asymmetric solar wind termination shock. Nature 454, 71–74.

    Article  ADS  Google Scholar 

  • Stone, R. G., et al. (1992): The Unified Radio and Plasma wave investigation. Astronomy and Astrophysics Supplement Series 92, No. 2, 291–316.

    ADS  Google Scholar 

  • Størmer, C. (1907): Sur les trajectories des corpuscles, electrisés dans l’espace sous l’action du magnétisme terrestre avec l’application aux aurores boréales. Archives des sciences physiques et naturelles (Geneva) 24, 5, 113, 221, 317; 32, 117–123, 190–219, 277–314, 415–436, 505–509 (1911); 33, 51–69, 113–150 (1912).

    Google Scholar 

  • Størmer, C. (1917): Corpuscular theory of the aurora borealis. Journal of Geophysical Research 22, 23–34, 97–112.

    ADS  Google Scholar 

  • Størmer, C. (1930): Periodische electronenbahnen im fielde lines elementarmagneton und ihre awendung auf eschenhagens elementarwellen des erdmagnetismus. Astrophysics 1, 237.

    Google Scholar 

  • Størmer, C. (1955): The Polar Aurora. Oxford: The Clarendon Press.

    Google Scholar 

  • Strachan, L., et al. (2002): Empirical densities, kinetic temperatures, and outflow velocities in the equatorial streamer belt at solar minimum. Astrophysical Journal 571, 1008–1014.

    Article  ADS  Google Scholar 

  • Strassmeier, K. G., Rice, J. B. (1998): Doppler imaging of stellar surface structure. VI. HD 129333 = EK Draconis: a stellar analog of the active young Sun. Astronomy and Astrophysics 330, 685–695.

    ADS  Google Scholar 

  • Strong, K. T. (1991): Observations from the Solar Maximum Mission. Philosophical Transactions of the Royal Society (London). A336, 327–337.

    Article  ADS  Google Scholar 

  • Strong, K. T., et al. (1984): A multiwavelength study of a double impulsive flare. Solar Physics 91, 325–344.

    Article  ADS  Google Scholar 

  • Strong, K. T., et al. (1992): Observations of the variability of coronal bright points by the soft X-ray telescope on Yohkoh. Publications of the Astronomical Society of Japan 44, L161–L166.

    ADS  Google Scholar 

  • Strong, K. T., et al. (Eds., 1998): The Many Faces of the Sun. A Summary of the Results from NASA’s Solar Maximum Mission. New York: Springer Verlag.

    Google Scholar 

  • Strömgren, B. (1932): The opacity of stellar matter and the hydrogen content of the stars. Zeitschrift für Astrophysik 4, 118–152.

    MATH  ADS  Google Scholar 

  • Stuiver, M. (1961): Variations in atmospheric carbon-14 attributed to a variable sun. Science 207, 11–19.

    Article  ADS  Google Scholar 

  • Stuiver, M. (1961): Variations in radiocarbon concentration and sunspot activity. Journal of Geophysical Research 66, 273–276.

    Article  ADS  Google Scholar 

  • Stuiver, M. (1980): Solar variability and climatic change during the current millennium. Nature 286, 868–871.

    Article  ADS  Google Scholar 

  • Stuiver, M., Braziunas, T. F. (1989): Atmospheric 14C and century-scale solar oscillations. Nature 338, 405–408.

    Article  ADS  Google Scholar 

  • Stuiver, M., Braziunas, T. F. (1993): Sun, ocean, climate and atmospheric 14 co2: an evaluation of causal and spectral relationships. Holocene 3(4), 289–305.

    Article  Google Scholar 

  • Stuiver, M., Quay, P. D. (1980): Changes in atmospheric carbon-14 attributed to a variable Sun. Science 207, 11–19.

    Article  ADS  Google Scholar 

  • Sturrock, P. A. (1966): Model of the high-energy phase of solar flares. Nature 211, 695–697.

    Article  ADS  Google Scholar 

  • Sturrock, P. A. (1968): A model of solar flares. In: Structure and Development of Solar Active Regions. International Astronomical Union Symposium No. 35 (Ed. K. O. Kiepenheuer). Dordrecht: D. Reidel Publishing Co., pp. 471–477.

    Google Scholar 

  • Sturrock, P. A. (Ed., 1980): Solar Flares: A Monograph From Skylab Solar Workshop II. Boulder: Colorado Associated University Press.

    Google Scholar 

  • Sturrock, P. A. (1989): The role of eruption in solar flares. Solar Physics 121, 387–397.

    Article  ADS  Google Scholar 

  • Sturrock, P. A., Hartle, R. E. (1966): Two-fluid model of the solar wind. Physical Review Letters 16, 628–631.

    Article  ADS  Google Scholar 

  • Sturrock, P. A., Uchida, Y. (1981): Coronal heating by stochastic magnetic pumping. The Astrophysical Journal 246, 331–336.

    Article  ADS  Google Scholar 

  • Sturrock, P. A., Wheatland, M. S., Acton, L. W. (1996): Yohkoh soft x-ray telescope images of the diffuse solar corona. Astrophysical Journal (Letters) 461, L115–L117.

    Article  ADS  Google Scholar 

  • Su, Y., et al. (2007): Evolution of the sheared magnetic fields of two X-class flares observed by Hinode/XRT. Publications of the Astronomical Society of Japan 59, S785–S791.

    ADS  Google Scholar 

  • Su, Y., Golub, L., Van Ballegooijen, A. A. (2007): A statistical study of shear motion of the footpoints in two-ribbon flares. Astrophysical Journal 655, 606–614.

    Article  ADS  Google Scholar 

  • Sudol, J. J., Harvey, J. W. (2005): Longitudinal magnetic field changes accompanying solar flares. Astrophysical Journal 635, 647–658.

    Article  ADS  Google Scholar 

  • Suess, H. E. (1955): Radiocarbon concentration in modern wood. Science 122, 415–417.

    Article  ADS  Google Scholar 

  • Suess, H. E. (1965): Secular variations of the cosmic-ray produced carbon 14 in the atmosphere and their interpretations. Journal of Geophysical Research 70, 5937–5952.

    Article  ADS  Google Scholar 

  • Suess, H. E. (1968): Climate changes, solar activity, and cosmic-ray production rate of natural radiocarbon. Meteorology Monograph 8, 146–150.

    Google Scholar 

  • Suess, H. E. (1973): Natural radiocarbon. Endeavor 32, 34–38.

    Google Scholar 

  • Suess, H. E. (1980): Radiocarbon geophysics. Endeavor 4, 113–117.

    Article  Google Scholar 

  • Suess, H. E., Linick, T. W. (1990): The 14C record in bristlecone pine wood of the past 8000 years based on the dendrochronology of the late C. W. Ferguson. Philosophical Transactions of the Royal Society (London) A330, 403–412.

    Article  ADS  Google Scholar 

  • Suess, S. T. (1990): The heliopause. Reviews of Geophysics 28, 97–115.

    Article  ADS  Google Scholar 

  • Suess, S. T., et al. (1996): Latitudinal dependence of the radial IMF component – interplanetary imprint. Astronomy and Astrophysics 316, 304–312.

    ADS  Google Scholar 

  • Suess, S. T., Smith, E. J. (1996): Latitudinal dependence of the radial IMF component coronal imprint. Geophysical Research Letters 23(22), 3267–3270.

    Article  ADS  Google Scholar 

  • Sui, L., Holman, G. D. (2003): Evidence for the formation of a large-scale current sheet in a solar flare. Astrophysical Journal (Letters) 596, L251–L254.

    Article  ADS  Google Scholar 

  • Sui, L., Holman, G. D., Dennis, B. R. (2005): Evidence for magnetic reconnection in three homologous solar flares observed by RHESSI. Astrophysical Journal, Part 1, 612, 546–556.

    Article  ADS  Google Scholar 

  • Sui, L., Holman, G. D., Dennis, B. R. (2006): Enigma of a flare involving multiple-loop interactions: Emerging, colliding loops or magnetic breakout? Astrophysical Journal 646, 605–614.

    Article  ADS  Google Scholar 

  • Sullivan, W. T. III. (Ed., 1984): The Early Years of Radio Astronomy. New York: Cambridge University Press.

    Google Scholar 

  • Svalgaard, L., Duvall, T. L., Scherrer, P. H. (1978): The strength of the Sun’s polar fields. Solar Physics 58, 225–239.

    Article  ADS  Google Scholar 

  • Svalgaard, L., et al. (1975): The Sun’s sector structure. Solar Physics 45, 83–91.

    Article  ADS  Google Scholar 

  • Svalgaard, L., Wilcox, J. M. (1975): Long-term evolution of solar sector structure. Solar Physics 41, 461–475.

    Article  ADS  Google Scholar 

  • Svalgaard, L., Wilcox, J. M. (1976): Structure of the extended solar magnetic field and the sunspot cycle variation in cosmic ray intensity. Nature 262, 766–768.

    Article  ADS  Google Scholar 

  • Svalgaard, L., Wilcox, J. M. (1978): A view of solar magnetic fields, the solar corona, and the solar wind in three dimensions. Annual Review of Astronomy and Astrophysics 16, 429–443.

    Article  ADS  Google Scholar 

  • Svalgaard, L., Wilcox, J. M., Duvall, T. L. (1974): A model combining the polar and the sector structured solar magnetic fields. Solar Physics 37, 157–172.

    Article  ADS  Google Scholar 

  • Svensmark, H. (1998): Influence of cosmic rays on Earth’s climate. Physical Review Letters 81, 5027–5030.

    Article  ADS  Google Scholar 

  • Svensmark, H., et al. (2007): Experimental evidence for the role of ions in particle nucleation under atmospheric conditions. Proceedings of the Royal Society 463, 385–396.

    Google Scholar 

  • Svensmark, H., Friis-Christensen, E. (1997): Variation of cosmic ray flux and global cloud coverage – a missing link in solar-climate relationships. Journal of Atmospheric and Solar-Terrestrial Physics 59, 1225–1232.

    Article  ADS  Google Scholar 

  • Svensmark, H., Friss-Christensen, E. (2007): Reply to Lockwood and Frölich: The persistent role of the Sun in climate forcing. Danish National Space Center: Scientific Report 3/2007.

    Google Scholar 

  • Svestka, Z. (1976): Solar Flares. Norwell: Kluwer.

    Google Scholar 

  • Svestka, Z. (1995): On “the solar flare myth” postulated by Gosling. Solar Physics 160, 153–156.

    Article  Google Scholar 

  • Svestka, Z., Cliver, E. W. (1992): History and basic characteristics of eruptive flares. In: Eruptive Solar Flares. Proceedings of International Astronomical Union Colloquium No. 133 (Eds. Z. Svestka, B. V. Jackson and M. E. Machado). New York: Springer-Verlag, pp. 1–14.

    Google Scholar 

  • Svestka, Z., et al. (1982): Observations of a post-flare radio burst in X-rays. Solar Physics 75, 305–329.

    Article  ADS  Google Scholar 

  • Svestka, Z., et al. (1987): Multi-thermal observations of newly formed loops in a dynamic flare. Solar Physics 108, 237–250.

    Article  ADS  Google Scholar 

  • Sweet, P. A. (1958): The neutral point theory of solar flares. In: Electromagnetic Phenomen in Cosmical Physics. International Astronomical Union Symposium No. 6 (Ed. B. Lehnert). Cambridge: Cambridge at the University Press 1958, pp. 123–134.

    Google Scholar 

  • Sweet, P. A. (1958): The production of high energy particles in solar flares. Nuovo Cimento (10)8, Suppl. 2, 188–196., Suppl. 2, 188–196.

    Google Scholar 

  • Sweet, P. A. (1958b): The neutral point theory of solar flares. In: Electromagnetic Phenomen in Cosmical Physics. International Astronomical Union Symposium No. 6 (Ed. B. Lehnert). Cambridge: Cambridge University Press 1958, pp. 123–134.

    Google Scholar 

  • Sweet, P. A. (1969): Mechanisms of solar flares. Annual Review of Astronomy and Astrophysics 7, 149–176.

    Article  ADS  Google Scholar 

  • Syrovatskii, S. I. (1981): Pinch sheets and reconnection in astrophysics. Annual Review of Astronomy and Astrophysics 19, 163–229.

    Article  ADS  Google Scholar 

T

  • Takakura, T. (1961): Acceleration of electrons in the solar atmosphere and type IV radio outbursts. Publications of the Astronomical Society of Japan 13, 166–172.

    ADS  Google Scholar 

  • Takakura, T. (1967): Theory of solar bursts. Solar Physics 1, 304–353.

    Article  ADS  Google Scholar 

  • Takakura, T. (1995): Imaging spectra of hard X-rays from the foot points of impulsive loop flares. Publications of the Astronomical Society of Japan 47, 355–364.

    ADS  Google Scholar 

  • Takakura, T., et al. (1993): Time variation of the hard X-ray image during the early phase of solar impulsive bursts. Publications of the Astronomical Society of Japan 45, 737–753.

    ADS  Google Scholar 

  • Takakura, T., Kai, K. (1966): Energy distribution of electrons producing microwave impulsive bursts and X-ray bursts from the Sun. Publications of the Astronomical Society of Japan 18, 57–76.

    ADS  Google Scholar 

  • Tanaka, K. (1987): Impact of X-ray observations from the Hinotori satellite on solar flare research. Publications of the Astronomical Society of Japan 39, 1–45.

    ADS  Google Scholar 

  • Tanaka, K. (1991): Studies on a very flare-active delta group - peculiar delta spot evolution and inferred subsurface magnetic rope structure. Solar Physics 136, 133–149.

    Article  ADS  Google Scholar 

  • Tanaka, K., et al. (1982): High-resolution solar flare X-ray spectra obtained with rotating spectrometers on the Hinotori satellite. The Astrophysical Journal (Letters) 254, L59–L63.

    Article  ADS  Google Scholar 

  • Tandberg-Hanssen, E., Emslie, A. G. (1988): The Physics of Solar Flares. New York: Cambridge University Press.

    Google Scholar 

  • Tandon, J. N., Das, M. K. (1982): The effect of a magnetic field on solar luminosity. Astrophysical Journal 260, 338–341.

    Article  ADS  Google Scholar 

  • Tang, F. (1981): Rotation rate of high-latitude sunspots. Solar Physics 69, 399–404.

    Article  ADS  Google Scholar 

  • Telleschi, A., et al. (2005): Coronal evolution of the Sun in time: High-resolution X Ray spectroscopy of solar analogs with different ages. Astrophysical Journal 622, 653–679.

    Article  ADS  Google Scholar 

  • Tett, S. F. B., et al. (1999): Causes of twentieth-century temperature change near the Earth’s surface. Nature 399, 569–572.

    Article  ADS  Google Scholar 

  • Thernisien, A., et al. (2008): Three-dimensional reconstruction of CMEs from SECCHI observations. Astrophysical Journal, Submitted.

    Google Scholar 

  • Thomas, B. T., Smith, E. J. (1980): The Parker spiral configuration of the interplanetary magnetic field between 1 and 8.5 AU. Journal of Geophysical Research 85, 6861–6867.

    Article  ADS  Google Scholar 

  • Thomas, B. T., Smith, E. J. (1981): The structure and dynamics of the heliospheric current sheet. Journal of Geophysical Research 86, 11105–11110.

    Article  ADS  Google Scholar 

  • Thomas, J. H., Cram, L. E., Nye, A. H. (1982): Five-minute oscillations as a probe of sunspot structure. Nature 297, 485–487.

    Article  ADS  Google Scholar 

  • Thompson, B. J., et al. (1998): SOHO/EIT observations of an earth-directed coronal mass ejection on May 12, 1997. Geophysical Research Letters 25, 2465–2468.

    Article  ADS  Google Scholar 

  • Thompson, B. J., et al. (1999): SOHO/EIT observations of the 1997 April 7 coronal transient: Possible evidence of coronal Moreton waves. Astrophysical Journal (Letters) 517, L151–L154.

    Article  ADS  Google Scholar 

  • Thompson, M. J., et al. (1996): Differential rotation and dynamics of the solar interior. Science 272, 1300–1305.

    Article  ADS  Google Scholar 

  • Thompson, M. J., et al. (2003): The internal rotation of the sun. Annual Review of Astronomy and Astrophysics 41, 599–643.

    Article  ADS  Google Scholar 

  • Thomsen, M. F., et al. (1998): The magnetospheric response to the CME passage of January 10–11, 1997, as seen at geosynchronous orbit. Geophysical Research Letters 25, 2545–2548.

    Article  ADS  Google Scholar 

  • Thomson, W. (Baron Kelvin) (1892): Presidential address to the Royal Society on November 30, 1892. In: Popular Lectures and Addresses by Sir William Thomson Baron Kelvin. Volume II. Geology and General Physics. London: Macmillan and Company 1894, pp. 508–529.

    Google Scholar 

  • Thuillier, G., et al. (2004) Solar irradiance reference spectra for two solar active levels. Advances in Space Research 34, 256–261.

    Article  ADS  Google Scholar 

  • Timothy, A. F., Krieger, A. S., Vaiana, G. S. (1975): The structure and evolution of coronal holes. Solar Physics 42, 135–156.

    Article  ADS  Google Scholar 

  • Tinsley, B. A. (1988): The solar cycle and the QBO influences on the latitude of storm tracks in the North Atlantic. Geophysical Research Letters 15, 409–412.

    Article  ADS  Google Scholar 

  • Tinsley, B. A. (1994): Solar wind mechanism suggested for weather and climate change. EOS Transactions of the American Geophysical Union 75(32), 369–376.

    Article  ADS  Google Scholar 

  • Titov, V., Demoulin, P. (1999): Basic topology of twisted magnetic configurations in solar flares. Astronomy and Astrophysics 351, 701–720.

    ADS  Google Scholar 

  • Tomczyk, S., et al. (2007): Alfvén waves in the solar corona. Science 317, 1192–1196.

    Article  ADS  Google Scholar 

  • Tomczyk, S., Schou, J., Thompson, M. J. (1995): Measurement of the rotation rate in the deep solar interior. The Astrophysical Journal (Letters) 448, L57–L60.

    Article  ADS  Google Scholar 

  • Toomre, J. (2002): Order amidst turbulence. Science 296, 64–65.

    Article  Google Scholar 

  • Topka, K., Moore, R., Labonte, B. J., Howard, R. (1982): Evidence for a poleward meridional flow on the Sun. Solar Physics 79, 231–245.

    Article  ADS  Google Scholar 

  • Török, T., Kliem, B. (2005): Confined and ejective eruptions of kink-unstable flux ropes. Astrophysical Journal (Letters) 630, L97–L100.

    Article  ADS  Google Scholar 

  • Torsti, J., et al. (1995): Energetic particle experiment ERNE. Solar Physics 162, 505–531.

    Article  ADS  Google Scholar 

  • Torsti, J., et al. (1998): Energetic (∼ 1 to 50 MeV) protons associated with Earth- directed coronal mass ejections. Geophysical Research Letters 25, 2525–2528.

    Article  ADS  Google Scholar 

  • Torsti, J., et al. (2002): Solar particle event with exceptionally high 3He enhancement in the energy range up to 50 MeV nucleon. Astrophysical Journal (Letters) 573, L59–L63.

    Article  ADS  Google Scholar 

  • Torsti, J., Laivola, J., Kocharov, L. (2003): Common overabundance of 3He in high-energy solar particles. Astronomy and Astrophysics 408, L1–L4.

    Article  ADS  Google Scholar 

  • Torsti, J., Riihonen, E., Kocharov, L. (2004): The 1998 May 2–3 magnetic cloud: an interplanetary “highway” for solar energetic particles observed with SOHO/ERNE. Astrophysical Journal (Letters) 600, L83–L86.

    Article  ADS  Google Scholar 

  • Toth, G., et al. (2007): Sun to thermosphere simulation of the October 28–30, 2003 storm with the space weather modeling framework. Space Weather 5, S06003.

    Article  Google Scholar 

  • Totsuka, Y. (1991): Recent results on solar neutrinos from Kamiokande. Nuclear Physics B 19, 69–76.

    Article  Google Scholar 

  • Tousey, R. (1963): The extreme ultraviolet spectrum of the Sun. Space Science Review 2, 3–69.

    ADS  Google Scholar 

  • Tousey, R. (1967): Some results of twenty years of extreme ultraviolet solar research. Astrophysical Journal 149, 239–252.

    Article  ADS  Google Scholar 

  • Tousey, R. (1973): The solar corona. Space Research 13, 713–730.

    ADS  Google Scholar 

  • Tousey, R. (1976): Eruptive prominences recorded by the X u.v. spectroheliograph on Skylab. Philosophical Transactions of the Royal Society (London) A281, 359–364.

    Article  ADS  Google Scholar 

  • Tousey, R., et al. (1946): The solar ultraviolet spectrum from a V-2 rocket. The Astronomical Journal 52, 158–159.

    Article  Google Scholar 

  • Tousey, R., et al. (1973): A preliminary study of the extreme ultraviolet spectroheliograms from Skylab. Solar Physics 33, 265–280.

    ADS  Google Scholar 

  • Trattner, K. J., et al. (1996): Ulysses COSPIN/LET: latitudinal gradients of anomalous cosmic ray O, N and Ne. Astronomy and Astrophysics 316, 519–527.

    ADS  Google Scholar 

  • Tsuneta, S. (1995): Particle acceleration and magnetic reconnection in solar flares. Publications of the Astronomical Society of Japan 47, 691–697.

    ADS  Google Scholar 

  • Tsuneta, S. (1996): Interacting active regions in the solar corona. Astrophysical Journal (Letters) 456, L63–L65.

    ADS  Google Scholar 

  • Tsuneta, S. (1996): Structure and dynamics of magnetic reconnection in a solar flare. Astrophysical Journal 456, 840–849.

    Article  ADS  Google Scholar 

  • Tsuneta, S. (1997): Moving plasmoid and formation of the neutral sheet in a solar flare. Astrophysical Journal 483, 507.

    Article  ADS  Google Scholar 

  • Tsuneta, S., et al. (1983): Vertical structure of hard X-ray flare. Solar Physics 86, 313–321.

    Article  ADS  Google Scholar 

  • Tsuneta, S., et al. (1991): The Soft X-ray Telescope for the SOLAR-A mission. Solar Physics 136, 36–67.

    Article  ADS  Google Scholar 

  • Tsuneta, S., et al. (1992): Global restructuring of the coronal magnetic fields observed with the Yohkoh Soft X-ray Telescope. Publications of the Astronomical Society of Japan 44, L211–L214.

    ADS  Google Scholar 

  • Tsuneta, S., et al. (1992): Observation of a solar flare at the limb with the Yohkoh Soft X-ray Telescope. Publications of the Astronomical Society of Japan 44, L63–L69.

    ADS  Google Scholar 

  • Tsuneta, S., et al. (2008): The Solar Optical Telescope (SOT) for the Solar-B mission, Solar Physics, 249, 167–196.

    Article  ADS  Google Scholar 

  • Tsurutani, B. T., et al. (1988): Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979). Journal of Geophysical Research 93, 8519–8531.

    Article  ADS  Google Scholar 

  • Tsurutani, B. T., et al. (1990): Interplanetary Alfvén waves and auroral (substorm) activity: IMP 8. Journal of Geophysical Research 95, 2241–2252.

    Article  ADS  Google Scholar 

  • Tsurutani, B. T., et al. (1994): The relationship between interplanetary discontinuities and Alfvén waves: Ulysses observations. Geophysical Research Letters 21(21), 2267–2270.

    Article  ADS  Google Scholar 

  • Tsurutani, B. T., et al. (1995a): Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. Journal of Geophysical Research 100, 21717–21733.

    Article  ADS  Google Scholar 

  • Tsurutani, B. T., et al. (1995b): Large amplitude IMF fluctuations in co-rotating interaction regions: Ulysses at midlatitudes. Geophysical Research Letters 22(23), 3397–3400.

    Article  ADS  Google Scholar 

  • Tsurutani, B. T., et al. (1996): Interplanetary discontinuities and Alfvén waves at high heliographic latitudes: Ulysses. Journal of Geophysical Research 101, 11027–11038.

    Article  ADS  Google Scholar 

  • Tsurutani, B. T., Gonzalez, W. D. (1987): The cause of high-intensity, long-duration continuous AE activity (HILDCAAs): interplanetary Alfvén wave trains. Planetary and Space Science 35, 405–412.

    Article  ADS  Google Scholar 

  • Tsurutani, B. T., Gonzalez, W. D. (1997): The interplanetary causes of magnetic storms:A review. In: Magnetic Storms: Geophysical Monograph 98 (Eds. B. T. Tsurutani, W. D. Gonzalez, Y. Kamide and J. K. Arbailo). Washington, DC: American Geophysical Union, pp. 77–89.

    Google Scholar 

  • Tsurutani, B. T., Gonzalez, W. D., Kamide, Y., Arballo, J. K. (Eds., 1997): Magnetic Storms. Geophysics Monograph 98. Washington, DC: American Geophysical Union.

    Google Scholar 

  • Tsurutani, B. T., Lin, R. P. (1985): Acceleration of greater than 47 keV ions and greater than 2 keV electrons by interplanetary shocks at 1 AU. Journal of Geophysical Research 90, 1–11.

    Article  ADS  Google Scholar 

  • Tu, C. -Y., et al. (2005): Solar wind origin in coronal funnels. Science 308, 519–523.

    Article  ADS  Google Scholar 

  • Tu, C.-Y., Marsch, E. (1992): The evolution of MHD turbulence in the solar wind. In: Solar Wind Seven, (Eds. E. Marsch, R. Schwenn) Oxford, Pergamon, pp. 549–554.

    Google Scholar 

  • Tu, C.-Y., Marsch, E. (1995): MHD structures, waves and turbulence in the solar wind: Observations and theories. Space Science Reviews 73, 1–210.

    Article  ADS  Google Scholar 

  • Tu, C.-Y., Marsch, E. (2001): On cyclotron wave heating and acceleration of solar wind ions in the outer corona. Journal of Geophysical Research 106(A5), 8233–8252.

    Article  ADS  Google Scholar 

  • Tu, C.-Y., Marsch, E., Qin, Z.-R. (2004): Dependence of the proton beam drift velocity on the proton core plasma beta in the solar wind. Journal of Geophysical Research 109(A5), A05101.

    Article  Google Scholar 

  • Tu, C.-Y., Marsch, E., Wilhelm, K., Curdt, W. (1998): Ion temperatures in a solar polar coronal hole observed by SUMER on SOHO. Astrophysical Journal 503, 475.

    Article  ADS  Google Scholar 

  • Turck-Chièze, S., et al. (2001): Solar neutrino emission deduced from a seismic model. The Astrophysical Journal (Letters) 555, L69–L73.

    Article  ADS  Google Scholar 

  • Turck-Chieze, S, et al. (1988): Revisiting the solar model. Astrophysical Journal 335, 415–424.

    Article  ADS  Google Scholar 

  • Turck-Chieze, S., et al. (1997): First results of the solar core from GOLF acoustic modes. Solar Physics 175, 247–265. Reprinted in: The First Results From SOHO (Eds. B. Fleck andZ. Svestka). Boston: Kluwer Academic Publishers, pp. 247–265.

    Article  ADS  Google Scholar 

  • Turck-Chieze, S., et al. (2004): Looking for gravity-mode multiplets with the GOLF experiment aboard SOHO. Astrophysical Journal 604, 455–468.

    Article  ADS  Google Scholar 

  • Tylka, A. J., et al. (2002): Flare- and shock-accelerated energetic particles in the solar events of 2001 April 12 and 15. Astrophysical Journal (Letters) 581, L119–L123.

    Article  ADS  Google Scholar 

  • Tylka, A. J., et al. (2005): Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events. Astrophysical Journal 625, 474–495.

    Article  ADS  Google Scholar 

  • Tyndall, J. (1861): On the absorption and radiation of heat by gases and vapors, and on the physical connection of radiation, absorption, and conduction. Philosophical Magazine and Journal of Science 22A, 276–277.

    Google Scholar 

  • Tzedakis, P. C., et al. (1997): Comparison of terrestrial and marine records of changing climate of the last 500,000 years. Earth and Planetary Science Letters 150, 171–176.

    Article  ADS  Google Scholar 

U

  • Uchida, Y. (1963): An effect of the magnetic field in the shock wave heating theory of the solar corona. Publications of the Astronomical Society of Japan 15, 376–399.

    ADS  Google Scholar 

  • Uchida, Y. (1968): Propagation of hydromagnetic disturbances in the solar corona and Moreton’s wave phenomenon. Solar Physics 4, 30.

    Article  ADS  Google Scholar 

  • Uchida, Y. (1974): Behavior of flare-produced coronal mhd wavefront and the occurrence of type II radio bursts. Solar Physics 39, 431–449.

    Article  ADS  Google Scholar 

  • Uchida, Y., Altschuler, M. D., Newkirk, G. Jr. (1973): Flare-produced coronal MHD-fast-mode wavefronts and Moreton’s wave phenomenon. Solar Physics 28, 495–516.

    Article  ADS  Google Scholar 

  • Uchida, Y., Canfield, R. C., Watanabe, T., Hiei, E. (Eds., 1991): Flare Physics in Solar Activity Maximum 22. New York: Springer-Verlag.

    Google Scholar 

  • Uchida, Y., et al. (1992): Continual expansion of the active-region corona observed by the Yohkoh Soft X-ray Telescope. Publications of the Astronomical Society of Japan 44, L155–L160.

    ADS  Google Scholar 

  • Uchida, Y., et al. (Eds., 1994): X-ray Solar Physics From Yohkoh. Tokyo: UniversityAcademy Press.

    Google Scholar 

  • Uchida, Y., Kosugi, T., Hudson, H. S. (Eds., 1996): Magnetodynamic Phenomena in the Solar Atmosphere - Prototypes of Stellar Magnetic Activity. IAU Colloquium No. 153. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Ugarte-Urra, I., Warren, H. P., Winebarger, A. R. (2007): The magnetic topology of coronal mass ejection sources. Astrophysical Journal 662, 1293–1301.

    Article  ADS  Google Scholar 

  • Ulmschneider, P., Priest, E. R., Rosner, R. (Eds., 1991): Mechanisms of Chromospheric and Coronal Heating. New York: Springer-Verlag.

    Google Scholar 

  • Ulrich, R. K. (1970): The five-minute oscillations on the solar surface. Astrophysical Journal 162, 993–1002.

    Article  ADS  Google Scholar 

  • Ulrich, R. K. (1970): The five-minute oscillations on the solar surface. The Astrophysical Journal 162, 993–1002.

    Article  ADS  Google Scholar 

  • Ulrich, R. K. (1975): Solar neutrinos and variations in the solar luminosity. Science 190, 619–624.

    ADS  Google Scholar 

  • Ulrich, R. K., Bertello, L. (1995): Solar-cycle dependence of the sun’s apparent radius in the neutral iron spectral line at 525 nm. Nature 377, 214–215.

    Article  ADS  Google Scholar 

  • Ulrich, R. K., Boyden, J. E. (2005): The solar surface toroidal magnetic field. Astrophysical Journal (Letters) 620, L123–L127.

    Article  ADS  Google Scholar 

  • Ulrich, R. K., Rhodes, E. J. Jr. (1977): The sensitivity of nonradial p mode eigenfrequencies to solar envelope structure. Astrophysical Journal 218, 521–529.

    Article  ADS  Google Scholar 

  • Underwood, J. H., et al. (1976): Preliminary results from S-056 X-ray telescope experiment aboard the Skylab-Apollo Telescope Mount. Progress in Astronautics and Aeronautics 48, 179–195.

    Google Scholar 

  • Unsöld, A. (1928): Über die Struktur der Fraunhoferschen Linien und die quantitative Spektralanalyse der Sonnenatmosphäre. Zeitschrift fur Physik 46, 765.

    Article  ADS  Google Scholar 

  • Ushida, Y., et al. (2003): TRACE observation of an arcade flare showing evidence supporting quadrupole magnetic source model for arcade flares. Publications of the Astronomical Society of Japan 55(1), 305–312.

    ADS  Google Scholar 

  • Usmanov, A. V., Dryer, M. (1995): A global 3-d simulation of interplanetary dynamics in June, 1991. Solar Physics 159, 347–370.

    Article  ADS  Google Scholar 

  • Uzdensky, D. A. (2007): Fast collisionless reconnection condition and self- organization of solar coronal heating. Astrophysical Journal 671, 2139–2153.

    Article  ADS  Google Scholar 

V

  • Vaiana, G. S., et al. (1968): X-ray structures of the Sun during the importance 1n flare of 8 June 1968. Science 161, 564–567.

    Article  ADS  Google Scholar 

  • Vaiana, G. S., et al. (1973a): X-ray observations of characteristic structures and time variations from the solar corona: Preliminary results from Skylab. The Astrophysical Journal (Letters) 185, L47–L51.

    Article  ADS  Google Scholar 

  • Vaiana, G. S., Krieger, A. S., Timothy, A. F. (1973b): Identification and analysis of structures in the corona from X-ray photography. Solar Physics 32, 81–116.

    Article  ADS  Google Scholar 

  • Vaiana, G. S., Rosner, R. (1978): Recent advances in coronal physics. Annual Review of Astronomy and Astrophysics 16, 393–428.

    Article  ADS  Google Scholar 

  • Vainio, R., Schlickeiser, R. (1999): Self-consistent Alfvén-wave transmission and test-particle acceleration at parallel shocks. Astronomy and Astrophysics 343, 303–311.

    ADS  Google Scholar 

  • Van Allen, J. A. (1975): Interplanetary particles and fields. Scientific American 233, 160–162, September.

    ADS  Google Scholar 

  • Van Allen, J. A., Fennell, J. F., Ness, N. F. (1971): Asymmetric access of energetic solar protons to the Earth’s north and south polar caps. Journal of Geophysical Research 76,4262–4275.

    Article  ADS  Google Scholar 

  • van Allen, J. A., Krimigis, S. M. (1965): Impulsive emission of ≈ 40-keV electrons from the Sun. Journal of Geophysical Research 70, 5737–5751.

    Article  ADS  Google Scholar 

  • van Allen, J. A., McIlwain, C. E., Ludwig, G. H. (1959): Radiation observations with satellite 1958ϵ. Journal of Geophysical Research 64, 271–286. Reproduced in:A Source Book in Astronomy and Astrophysics 1900–1975 (Eds. K. R. Lang and O. Gingerich). Cambridge: Harvard University Press 1979, pp. 149–151.

    Article  ADS  Google Scholar 

  • Van Allen, J. A., Ness, N. F. (1969): Particle shadowing by the Moon. Journal of Geophysical Research 74, 91–93.

    Google Scholar 

  • Van Ballegooijen, A. A., et al. (1998): Dynamics of magnetic flux elements in the solar photosphere. Astrophysical Journal 508, 435–447.

    Article  Google Scholar 

  • Van Ballegooijen, A. A., Martens, P. C. H. (1989): Formation and eruption of solar prominences. Astrophysical Journal 343, 971–984.

    Article  ADS  Google Scholar 

  • Van De Hulst, H. C. (1947): Zodiacal light in the solar corona. Astrophysical Journal 105,471–488.

    Article  ADS  Google Scholar 

  • Van Driel-Gesztelyi, L., et al. (1996): X-ray bright point flares due to magnetic reconnection. Solar Physics 163, 145–170.

    Article  ADS  Google Scholar 

  • van Loon, H., Labitzke, K. (1988): Association between the 11-year solar cycle, the QBO and the atmosphere, Part II. Surface and 700 mb on the northern hemisphere in winter. Journal of Climate 1, 905–920.

    Article  ADS  Google Scholar 

  • van Loon, H., Labitzke, K. (1990): Association between the 11-year solar cycle and the atmosphere. Part IV. The stratosphere, not grouped by the phase of the QBO. Journal of Climate 3, 827–837.

    Article  ADS  Google Scholar 

  • Van Speybroeck, L. P., Krieger, A. S., Vaiana, G. S. (1970): X-ray photographs of the Sun on March 7, 1970. Nature 227, 818–822.

    Article  ADS  Google Scholar 

  • Vandegriff, J., Wagstaff, K., Ho, G., Plauger, J. (2005): Forecasting space weather: predicting interplanetary shocks using neural networks. Advances in Space Research 36(12), 2323–2327.

    Article  ADS  Google Scholar 

  • Vasyliunas, V. M. (1975): Theoretical models of magnetic field line merging. I. Reviews of Geophysics and Space Physics 13, 303–336.

    Article  ADS  Google Scholar 

  • Vaughan, A. H., Preston, G. W. (1980): A survey of chromospheric Ca II H and K emission in field stars of the solar neighborhood. Publications of the Astronomical Society of the Pacific 92, 385–391.

    Article  ADS  Google Scholar 

  • Veck, N. J., Parkinson, J. H. (1981): Solar abundances form X-ray flare observations. Monthly Notices of the Royal Astronomical Society 197, 41–55.

    ADS  Google Scholar 

  • Vegard, L. (1913): On spectra of the aurora borealis. Physikalishe Zeitschrift 14, 677.

    Google Scholar 

  • Veronig, A. M., et al. (2005): Physics of the Neupert effect: Estimates of the effects of source energy, mass transport, and geometry using RHESSI and GOES data. Astrophysical Journal 621, 482–497.

    Article  ADS  Google Scholar 

  • Vestrand, W. T. (1991): High-energy flare observations from the Solar Maximum Mission. Philosophical Transactions of the Royal Astronomical Society A336, 349–362.

    Article  ADS  Google Scholar 

  • Vial, J. C., Bocchialini, K., Boumier, P. (Eds., 1999): Space Solar Physics. Theoretical and Observational Issues in the Context of the SOHO Mission. Lecture Notes in Physics No. 507. Heidelberg: Springer Verlag.

    Google Scholar 

  • Vial, J. C., Kaldeich-Schürmann (Eds., 1999): SOHO-8: Plasma Dynamics and Diagnostics in the Solar Transition Region and Corona. ESA SP-446 1999.

    Google Scholar 

  • Voitenko, Y., Goossens, M. (2004): Cross-field heating of coronal ions by low frequency Alfvén waves. Astrophysical Journal (Letters) 605, L149–L152.

    Article  ADS  Google Scholar 

  • Völk, H. J. (1975): Cosmic ray propagation in interplanetary space. Review of Geophysics and Space Physics 13, 547–566.

    Article  ADS  Google Scholar 

  • von Humboldt, F. W. H. A. (1799–1804): Voyage aux régions équinoxiales du Nouveau Continent, fait en 1799, 1800, 1801, 1802, 1803, et 1804 par Al [exandre] de Humboldt et A [imé] Bonpland. Paris, 1805–1834.

    Google Scholar 

  • von Steiger, R., et al. (1992): Variable carbon and oxygen abundances in the solar wind as observed in Earth’s magnetosheath by AMPTE/CCE. Astrophysical Journal 389, 791–799.

    Article  ADS  Google Scholar 

  • von Steiger, R., et al. (2000): Composition of quasi-stationary solar wind flows from Ulysses/solar wind ion composition spectrometer. Journal of Geophysical Research 105, A12, 27217–27238.

    Article  ADS  Google Scholar 

  • von Steiger, R., Lallement, R., Lee, M. A. (Eds., 1996): The heliosphere in the local interstellar medium. Space Science Reviews 78, 1–399. Reprinted by: Kluwer Academic Publishers, Dordrecht, the Netherlands and the International Space Science Institute, Bern, Switzerland.

    Google Scholar 

  • Vorontsov, S. V., et al. (2002): Helioseismic measurement of solar torsional oscillations. Science 296, 101–103.

    Article  ADS  Google Scholar 

  • Vourlidas, A., et al. (2003): Direct detection of a coronal mass ejection-associated shock in large angle and spectrometeric coronagraph experiment white-light images. Astrophysical Journal 598, 1392–1402.

    Article  ADS  Google Scholar 

  • Vourlidas, A., Subramanian, P., Dere, K. P., Howard, R. A. (2000): Large angle spectrometric coronagraph measurements of the energetics of coronal mass ejections. Astrophysical Journal 534, 456–467.

    Article  ADS  Google Scholar 

  • Vrsnak, B., Ruzjak, V., Romplt, B. (1991): Stability of prominences exposing helical-like patterns. Solar Physics 136, 151–167.

    Article  ADS  Google Scholar 

W

  • Wagner, W. J. (1984): Coronal mass ejections. Annual Review of Astronomy and Astrophysics 22, 267–289.

    Article  ADS  Google Scholar 

  • Wagner, W. J., Mac Queen, R. M. (1983): The excitation of type II radio bursts in the corona. Astronomy and Astrophysics 120, 136–138.

    ADS  Google Scholar 

  • Waldmeier, M. (1938): Chromosphärische eruptionen I. Zeitschrift für Astrophysik 16, 276–290.

    ADS  Google Scholar 

  • Waldmeier, M. (1940): Chromosphärische eruptionen II. Zeitschrift für Astrophysik 20, 46–66.

    ADS  Google Scholar 

  • Waldmeier, M. (1951): Spektralphotometrische klassifikation der protuberanzen. Zeitschrift für Astrophysik 28, 208–218.

    ADS  Google Scholar 

  • Waldmeier, M. (1951, 1957): Die Sonnenkorona I, II. Basel: Birkhäuser 1951, 1957.

    Google Scholar 

  • Waldmeier, M. (1961): The Sunspot Activity in the Years 1610–1960. Zurich: Schulthess.

    Google Scholar 

  • Waldmeier, M. (1975): The coronal hole at the 7 March 1970 eclipse. Solar Physics 40, 351–358.

    Article  ADS  Google Scholar 

  • Waldmeier, M. (1981): Cyclic variations of the polar coronal hole. Solar Physics 70, 251–258.

    Article  ADS  Google Scholar 

  • Wallerstein, G. (1988): Mixing in stars. Science 240, 1743–1750.

    Article  ADS  Google Scholar 

  • Walsh, R. W., Ireland, J. (2003): The heating of the solar corona. The Astronomy and Astrophysics Review 12, 1–41.

    Article  ADS  Google Scholar 

  • Walsh, R. W., Ireland, J., Danesy, D., Fleck, B. (Eds., 2004): SOHO-15: Coronal Heating. ESA SP-575 2004.

    Google Scholar 

  • Wang, H., Chang, L., Deng, Y, Zhang, H. (2005): Reevaluation of the magnetic structure and evolution associated with the Bastille Day flare on 2000 July 12. Astrophysical Journal 627, 1031–1039.

    Article  ADS  Google Scholar 

  • Wang, H., et al. (2002): Rapid changes of magnetic fields associated with six X-class flares. Astrophysical Journal 576, 497–504.

    Article  ADS  Google Scholar 

  • Wang, H., Qiu, J., Jing, J., Zhang, H. (2003): Study of ribbon separation of a flare associated with a quiescent filament eruption. Astrophysical Journal 593, 564–570.

    Article  ADS  Google Scholar 

  • Wang, T. J., et al. (2002): Doppler shift oscillations of hot solar coronal plasma seen by SUMER: A signature of loop oscillations? Astrophysical Journal (Letters) 574 L101–L104.

    Article  ADS  Google Scholar 

  • Wang, T. J., et al. (2003): Hot coronal loop oscillations observed with SUMER: Examples and statistics. Astronomy and Astrophysics 406, 1105–1121.

    Article  ADS  Google Scholar 

  • Wang, Y.-M. (1993): Flux-tube divergence, coronal heating, and the solar wind. Astrophysical Journal (Letters) 410, L123–L126.

    Article  ADS  Google Scholar 

  • Wang, Y.-M. (1994a): Polar plumes and the solar wind. Astrophysical Journal (Letters) 435,L153–L156.

    Article  ADS  Google Scholar 

  • Wang, Y.-M. (1994b): Two types of slow solar wind. Astrophysical Journal (Letters) 437, L67–L70.

    Article  ADS  Google Scholar 

  • Wang, Y.-M. (1998): Network activity and the evaporative formation of polar plumes. Astrophysical Journal (Letters) 501, L145–L150.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., et al. (1997a): Solar wind stream interactions and the wind speed- expansion factor relationship. Astrophysical Journal (Letters) 488, L51–L54.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., et al. (1997b): The green line corona and its relation to the photospheric magnetic field. Astrophysical Journal 485, 419–429.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., et al. (1998a): Coronagraph observations of inflows during high solar activity. Geophysical Research Letters 26, 1203–1206.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., et al. (1998b): Origin of streamer material in the outer corona. Astrophysical Journal (Letters) 498, L165–L168.

    Article  ADS  Google Scholar 

  • Wang, Y. -M., et al. (1998): Observations of correlated white-light and extreme ultraviolet jets from polar coronal holes. Astrophysical Journal 508, 899–907.

    Article  ADS  Google Scholar 

  • Wang, Y. -M., et al. (2000): The dynamical nature of coronal streamers. Journal of Geophysical Research 105, A11, 25133–25142.

    Article  ADS  Google Scholar 

  • Wang, Y. -M., et al. (2007): The solar eclipse of 2006 and the origin of raylike features in the white-light corona. Astrophysical Journal 660, 882–892.

    Article  ADS  Google Scholar 

  • Wang, Y. -M., Nash, A. G., Sheeley, N. R. Jr. (1989): Magnetic flux transport on the Sun. Science 245, 712–718.

    Article  ADS  Google Scholar 

  • Wang, Y. -M., Sheeley, N. R. Jr. (1990a): Solar wind speed and coronal flux-tube expansion. Astrophysical Journal 355, 726–732.

    Article  ADS  Google Scholar 

  • Wang, Y. -M., Sheeley, N. R. Jr. (1990b): Magnetic flux transport and the sunspot- cycle evolution of coronal holes and their wind streams. Astrophysical Journal 365, 372–386.

    Article  ADS  Google Scholar 

  • Wang, Y. -M., Sheeley, N. R. Jr. (1992): On potential field models of the solar corona. Solar Physics 392, 310–319.

    Google Scholar 

  • Wang, Y. -M., Sheeley, N. R. Jr. (2004): Footprint switching and the evolution of coronal holes. Astrophysical Journal 612, 1196–1205.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., et al. (1999a): Coronagraph observations of inflows during high solar activity. Geophysical Research Letters 26, 1203–1206.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., et al. (1999b): Streamer disconnection events observed with the LASCO coronagraph. Geophysical Research Letters 26, 1349–1352.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Hawley, S. H., Sheeley, N. R. Jr. (1996): The magnetic nature of coronal holes. Science 271, 464–469.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Lean, J. L., Sheeley, N. R. Jr. (2005) Modeling the Sun’s magnetic field and irradiance since 1713. Astrophysical Journal 625, 522–538.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Pick, M., Mason, G. M. (2006): Coronal holes, jets, and the origin of 3He particle events. Astrophysical Journal 639, 495–509.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N. R. Jr. (1991a): Magnetic flux transport and the Sun’s dipole moment: New twists to the Babcock-Leighton model. Astrophysical Journal 375, 761–770.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N. R. Jr. (1991b): Why fast solar wind originates from slowly expanding coronal flux tubes. Astrophysical Journal (Letters) 372, L45–L48.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N. R. Jr. (1997): The high-latitude solar wind near sunspot maximum. Geophysical Research Letters 24(24), 3141–3144.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N. R. Jr. (2002a): Coronal white-light jets near sunspot maximum. Astrophysical Journal 575, 542–552.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N. R. Jr. (2002b): Observations of core fallback during coronal mass ejections. Astrophysical Journal 567, 1211–1224.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N. R. Jr. (2002c): Sunspot activity and the long-term variation of the Sun’s open magnetic flux. Journal of Geophysical Research 107(A10), 1302.

    Article  Google Scholar 

  • Wang, Y.-M., Sheeley, N. R. Jr. (2003): On the topological evolution of the coronal magnetic field during the solar cycle. Astrophysical Journal 599, 1404–1417.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N. R. Jr. (2006): Observations of flux rope formation in the outer corona. Astrophysical Journal 650, 1172–1183.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N. R. Jr., Nash, A. G. (1990): Latitudinal distribution of solar-wind speed from magnetic observations of the Sun. Nature 347, 439–444.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N. R. Jr., Nash, A. G. (1991): A new solar cycle model including meridional circulation. Astrophysical Journal 383, 431–442.

    Article  ADS  Google Scholar 

  • Warren, H. P. (2000): Fine structure in solar flares. Astrophysical Journal (Letters) 536,L105–L108.

    Article  ADS  Google Scholar 

  • Warren, H. P., et al. (1997): Doppler shifts and nonthermal broadening in the quiet solar transition region: O VI. Astrophysical Journal (Letters) 484, L91–L94.

    Article  ADS  Google Scholar 

  • Warren, H. P., et al. (2007): Observations of transient active region heating with Hinode. Publications of the Astronomical Society of Japan 59, S675–S681.

    ADS  Google Scholar 

  • Warren, H. P., Winebarger, A. R., Hamilton, P. S. (2002): Hydrodynamic modeling of active region loops. The Astrophysical Journal (Letters) 579, L41–L44.

    Article  ADS  Google Scholar 

  • Watko, J. A., Klimchuk, J. A. (2000): Width variations along coronal loops observed by TRACE. Solar Physics 193, 77–92.

    Article  ADS  Google Scholar 

  • Webb, D. F. (1992): The solar sources of coronal mass ejections. In: Eruptive Solar Flares (Eds. Z. Svestka, B. V. Jackson and M. E. Machado). Berlin: Springer-Verlag, pp. 234–247.

    Google Scholar 

  • Webb, D. F. (1995): Coronal mass ejections: The key to major interplanetary and geomagnetic disturbances. Reviews of Geophysics, Supplement 33, 577–583.

    Article  ADS  MathSciNet  Google Scholar 

  • Webb, D. F., Burkepile, J., Forbes, T. G., Riley, P. (2003): Observational evidence of new current sheets trailing coronal mass ejections. Journal of Geophysical Research 108(A12), 1440.

    Article  Google Scholar 

  • Webb, D. F., et al. (1998): The solar origin of the January 1997 coronal mass ejection, magnetic cloud and geomagnetic storm. Geophysical Research Letters 25, 2469–2472.

    Article  ADS  Google Scholar 

  • Webb, D. F., et al. (2000): Relationship of halo coronal mass ejections, magnetic clouds, and magnetic storms. Journal of Geophysical Research 105(A4), 7491–7508.

    Article  ADS  MathSciNet  Google Scholar 

  • Webb, D. F., et al. (2005): Commission 49: Interplanetary plasma and heliosphere. Proceedings of the International Astronomical Union 1, 103–120.

    Google Scholar 

  • Webb, D. F., et al. (2006): Solar mass ejection imager (SMEI) observations of coronal mass ejections (CMEs) in the heliosphere. Journal of Geophysical Research 111, A12101.

    Article  ADS  Google Scholar 

  • Webb, D. F., et al. (2008): Studying geoeffective icmes between the Sun and Earth: space weather implications of smei observations. Submitted to Space Weather.

    Google Scholar 

  • Webb, D. F., Howard, R. A. (1994): The solar cycle variation of coronal mass ejections and the solar wind mass flux. Journal of Geophysical Research 99, 4201–4220.

    Article  ADS  Google Scholar 

  • Webb, D. F., Hundhausen, A. J. (1987): Activity associated with the solar origin of coronal mass ejections. Solar Physics 108, 383–401.

    Article  ADS  Google Scholar 

  • Webb, D. F., Krieger, A. S., Rust, D. M. (1976): Coronal X-ray enhancements associated with Hα filament disappearances. Solar Physics 48, 159–186.

    Article  ADS  Google Scholar 

  • Weber, E. J., Davis, L. Jr. (1967): The angular momentum of the solar wind. Astrophysical Journal 148, 217–227.

    Article  ADS  Google Scholar 

  • Wedemeyer-Böhm, S., Steiner, O., Bruls, J., Rammacher, W. (2007): What is heating the quiet-sun chromosphere? Physics of the Chromospheric Plasmas ASP Conversence Series 368, 93.

    ADS  Google Scholar 

  • Weiss, J. E., Weiss, N. O. (1979): Andrew Marvell and the Maunder minimum. Quarterly Journal of the Royal Astronomical Society 20, 115–118.

    ADS  Google Scholar 

  • Weiss, N. O. (1990): Periodicity and aperiodicity in solar magnetic activity. Philosophical Transactions of the Royal Society (London) A330, 617–625.

    Article  ADS  Google Scholar 

  • Weizsäcker, C. F. Von (1938): Über Elementumwandlungen in Innern der Sterne II (Element transformation inside stars II), Physikalische Zeitschrift 39, 633–646. English translation in A Source Book in Astronomy and Astrophysics 1900–1975 (Eds. K. R. Lang and O. Gingerich). Cambridge: Harvard University Press 1979, pp. 309–319.

    MATH  Google Scholar 

  • Whang, Y. C., Burlaga, L. F. (1994): Interaction of global merged interaction region shock with the heliopause and its relation to the 2- and 3-kHz radio emissions. Journal of Geophysical Research 99(A11), 21457–21466.

    Article  ADS  Google Scholar 

  • Wheatland, M. S., Sturrock, P. A., Acton, L. W. (1997): Coronal heating and the vertical temperature structure of the quiet corona. Astrophysical Journal 482, 510–518.

    Article  ADS  Google Scholar 

  • White, O. R. (Ed., 1997): The Solar Output and Its Variation. Boulder: Colorado Associated University Press.

    Google Scholar 

  • White, O. R., Livingston, W. C. (1981): Solar luminosity variation III. Calcium K variation from solar minimum to maximum in cycle 21. Astrophysical Journal 249, 798–816.

    Article  ADS  Google Scholar 

  • White, O. R., Livingston, W. C., Wallace, L. (1987): Variability of chromospheric and photospheric lines in solar cycle 21. Journal of Geophysical Research 92, 823–827.

    Article  ADS  Google Scholar 

  • White, W. B., et al. (1997): Response of global upper ocean temperature to changing solar irradiance. Journal of Geophysical Research 102, 3255–3266.

    Article  ADS  Google Scholar 

  • Wiegelmann, T., et al. (2005): Comparing magnetic field extrapolations with measurements of magnetic loops. Astronomy and Astrophysics 433, 701–705.

    Article  ADS  Google Scholar 

  • Wiegelmann, T., Xia, L.-D., Marsch, E. (2005): Links between magnetic fields and plasma flows in a coronal hole. Astronomy and Astrophysics 432, L1–L4.

    Article  ADS  Google Scholar 

  • Wigley, T. M. L. (1976): Spectral analysis: Astronomical theory of climatic change. Nature 264, 629–631.

    Article  ADS  Google Scholar 

  • Wigley, T. M. L., Kelly, P. M. (1990): Holocene climatic change, 14C wiggles and variations in solar irradiance. Philosophical Transactions of the Royal Society (London) A330, 547–560.

    Article  ADS  Google Scholar 

  • Wigley, T. M. L., Raper, S. C. B. (1990): Climatic change due to solar irradiance changes. Geophysical Research Letters 17, 2169–2172.

    Article  ADS  Google Scholar 

  • Wilcox, J. M. (1968): The interplanetary magnetic field, solar origin and terrestrial effects. Space Science Reviews 8, 258–328.

    Article  ADS  Google Scholar 

  • Wilcox, J. M., Ness, N. F. (1965): Quasi-stationary co-rotating structure in the interplanetary medium. Journal of Geophysical Research 70, 5793–5805.

    Article  ADS  Google Scholar 

  • Wild, J. P. (1950): Observations of the spectrum of high-intensity solar radiation at meter wavelengths. II – Outbursts, III – Isolated Bursts. Australian Journal of Scientific Research A3, 399–408, 541–557.

    Google Scholar 

  • Wild, J. P. (1963): Fast phenomena in the solar corona. In: The Solar Corona. Proceedings of IAU Symposium No. 16 (Ed. J. W. Evans). New York: Academic Press, pp. 115–127.

    Google Scholar 

  • Wild, J. P., Mc Cready, L. L. (1950): Observations of the spectrum of high-intensity solar radiation at meter wavelengths. I – The apparatus and spectral types. Australian Journal of Scientific Research A3, 387–398.

    ADS  Google Scholar 

  • Wild, J. P., Murray, J. D., Rowe, W. C. (1953): Evidence of harmonics in the spectrum of a solar radio outburst. Nature 172, 533–534.

    Article  ADS  Google Scholar 

  • Wild, J. P., Roberts, J. A., Murray, J. D. (1954): Radio evidence of the ejection of very fast particles from the Sun. Nature 173, 532–534.

    Article  ADS  Google Scholar 

  • Wild, J. P., Sheridan, K. V., Neylan, A. A. (1959): An investigation of the speed of the solar disturbances responsible for type III radio bursts. Australian Journal of Physics 12, 369–398.

    ADS  Google Scholar 

  • Wild, J. P., Smerd, S. F. (1972): Radio bursts from the solar corona. Annual Review of Astronomy and Astrophysics 10, 159–196.

    Article  ADS  Google Scholar 

  • Wild, J. P., Smerd, S. F., Weiss, A. A. (1963): Solar bursts. Annual Review of Astronomy and Astrophysics 1, 291–366.

    Article  ADS  Google Scholar 

  • Wilhelm, K. (2006): Solar coronal-hole plasma densities and temperatures. Astronomy and Astrophysics 455, 697–708.

    Article  ADS  Google Scholar 

  • Wilhelm, K., et al. (1995): SUMER – Solar Ultraviolet Measurements of Emitted Radiation. Solar Physics 162, 189–232.

    Article  ADS  Google Scholar 

  • Wilhelm, K., et al. (1998): The solar corona above polar coronal holes as seen by SUMER on SOHO. Astrophysical Journal 500, 1023–1038.

    Article  ADS  Google Scholar 

  • Wilhelm, K., et al. (2000): On the source regions of the fast solar wind in polar coronal holes. Astronomy and Astrophysics 353, 749–756.

    ADS  Google Scholar 

  • Wills-Davey, M. J., Thompson, D. J. (1999): Observations of a propagating disturbance in TRACE. Solar Physics 190, 467–483.

    Article  ADS  Google Scholar 

  • Willson, R. C, et al. (1981): Observations of solar irradiance variability. Science 211, 700–702.

    Article  ADS  Google Scholar 

  • Willson, R. C. (1982): Solar irradiance variations and solar activity. Journal of Geophysical Research 87, 4319–4324.

    Article  ADS  Google Scholar 

  • Willson, R. C. (1984): Measurements of solar total irradiance and its variability. Space Science Reviews 38, 203–242.

    Article  ADS  Google Scholar 

  • Willson, R. C. (1991): The Sun’s luminosity over a complete solar cycle. Nature 351, 42–44.

    Article  ADS  Google Scholar 

  • Willson, R. C. (1997): Total solar irradiance trend during solar cycles 21 and 22. Science 277, 1963–1965.

    Article  ADS  Google Scholar 

  • Willson, R. C., et al. (1986): Long-term downward trend in total solar irradiance. Science 234, 1114–1117.

    Article  ADS  Google Scholar 

  • Willson, R. C., Hudson, H. S. (1988): Solar luminosity variations in solar cycle 21. Nature 332, 810–812.

    Article  ADS  Google Scholar 

  • Willson, R. C., Hudson, H. S. (1991): The Sun’s luminosity over a complete solar cycle. Nature 351, 42–44.

    Article  ADS  Google Scholar 

  • Willson, R. C., Mordvinov, A. V. (2003): Secular total solar irradiance trend during solar cycles 21–23. Geophysical Research Letters 30, 1199.

    Article  ADS  Google Scholar 

  • Willson, R. F., Lang, K. R. (1984): Very large array observations of solar active regions IV. Structure and evolution of radio bursts from 20 centimeter loops. Astrophysical Journal 279,427–437.

    Article  ADS  Google Scholar 

  • Willson, R. F., Lang, K. R., Gary, D. E. (1993): Particle acceleration and flare triggering in large-scale magnetic loops joining widely separated active regions. Astrophysical Journal 418,490–495.

    Article  ADS  Google Scholar 

  • Wilson, A. (Ed., 2002): SOHO-11: From Solar Min to Max: Half a Solar Cycle with SOHO. ESA SP-508 2002.

    Google Scholar 

  • Wilson, A., Pallé, P. L. (Eds., 2001): SOHO-10/GONG 2000: Helio- and Asteroseismology at the Dawn of the Millenium. ESA SP-464 2001.

    Google Scholar 

  • Wilson, J. W., et al. (2004): Deep space environments for human exploration. Advances in Space Research 34, 1281–1287.

    Article  ADS  Google Scholar 

  • Wilson, O. C. (1966a): Stellar chromospheres. Science 151, 1487–1498.

    Article  ADS  Google Scholar 

  • Wilson, O. C. (1966b): Stellar convection zones, chromospheres, and rotation. Astrophysical Journal 144, 695–708.

    Article  ADS  Google Scholar 

  • Wilson, O. C. (1978): Chromospheric variations in main-sequence stars. Astrophysical Journal 226, 379–396.

    Article  ADS  Google Scholar 

  • Wilson, O. C., Wooley, R. (1970): Calcium emission intensities as indicators of stellar age. Monthly Notices of the Royal Astronomical Society 148, 463–475.

    ADS  Google Scholar 

  • Wilson, P. R., McIntosh, P. S. (1991): The reversal of the solar polar magnetic fields. Solar Physics 136, 221–237.

    Article  ADS  Google Scholar 

  • Wilson, P. R., McIntosh, P. S., Snodgrass, H. B. (1990): The reversal of the solar polar magnetic fields I. The surface transport of magnetic flux. Solar Physics 127, 1–9.

    Article  ADS  Google Scholar 

  • Wilson, R. M., Hildner, E. (1984): Are interplanetary magnetic clouds manifestations of coronal transients at 1 AU? Solar Physics 91, 169–180.

    Article  ADS  Google Scholar 

  • Wimmer-Schwingruber, R. F. (2006): Coronal mass ejections. Space Science Reviews 123(1–3), 471–480.

    Article  ADS  Google Scholar 

  • Winebarger, A. R., et al. (2002): Steady flows detected in extreme-ultraviolet loops. The Astrophysical Journal (Letters) 567, L89–L92.

    Article  ADS  Google Scholar 

  • Winebarger, A. R., Warren, H. P. (2005): Cooling active region loops observed with SXT and TRACE. Astrophysical Journal 626, 543–550.

    Article  ADS  Google Scholar 

  • Winebarger, A. R., Warren, H. P., Mariska, J. T. (2003): Transition Region and Coronal Explorer and Soft X-ray Telescope active region loop observations: Comparisons with static solutions of the hydrodynamic equations. The Astrophysical Journal 587, 439–449.

    Article  ADS  Google Scholar 

  • Winograd, I. J., et al. (1988): A 250,000-year climatic record from great basin vein calcite: Implications for Milankovitch theory. Science 242, 1275–1280.

    Article  ADS  Google Scholar 

  • Withbroe, G. L. (1981): Activity and outer atmosphere of the sun. In: Activity and Outer Atmospheres of the Sun and Stars, 11th Advanced Course of the Swiss National Academy of Sciences. Sauverny: Observatoire de Geneve.

    Google Scholar 

  • Withbroe, G. L. (1988): The temperature structure, mass, and energy flow in the corona and inner solar wind. Astrophysical Journal 325, 442–467.

    Article  ADS  Google Scholar 

  • Withbroe, G. L. (1989): The solar wind mass flux. Astrophysical Journal (Letters) 337, L49–L52.

    Article  ADS  Google Scholar 

  • Withbroe, G. L., et al. (1982): Probing the solar wind acceleration region using spectroscopic techniques. Space Science Reviews 33, 17–52.

    Article  ADS  Google Scholar 

  • Withbroe, G. L., Feldman, W. C., Ahluwalia, H. S. (1991): The solar wind and its coronal origins. In: Solar Interior and Atmosphere (Eds. A. N. Cox, W. C. Livingston and M. S. Matthews). Tucson: University of Arizona Press, pp. 1087–1106.

    Google Scholar 

  • Withbroe, G. L., Noyes, R. W. (1977): Mass and energy flow in the solar chromosphere and corona. Annual Review of Astronomy and Astrophysics 15, 363–387.

    Article  ADS  Google Scholar 

  • Witte, M., et al. (1992): The interstellar neutral-gas experiment on Ulysses. Astronomy and Astrophysics Supplement 92(2), 333–348.

    ADS  Google Scholar 

  • Woch, J., et al. (1997): SWICS/Ulysses observations: The three-dimensional structure of the heliosphere in the declining/minimum phase of the solar cycle. Geophysical Research Letters 24(22), 2885–2888.

    Article  ADS  Google Scholar 

  • Wolfenstein, L. (1978): Neutrino oscillations in matter. Physical Review D 17, 2369–2374.

    Article  ADS  Google Scholar 

  • Wolff, C. L. (1972a): Free oscillations of the Sun and their possible stimulation by solar flares. The Astrophysical Journal 176, 833–842.

    Article  ADS  Google Scholar 

  • Wolff, C. L. (1972b): The five-minute oscillations as nonradial pulsations of the entire Sun. Astrophysical Journal (Letters) 177, L87–L92.

    Article  ADS  Google Scholar 

  • Wolfson, R. (1983): The active solar corona. Scientific American 248, 104–119, February.

    Article  ADS  Google Scholar 

  • Wollaston, W. H. (1802): A method of examining refractive and dispersive power by prismatic reflection. Philosophical Transactions of the Royal Society of London 92, 365–380.

    Article  ADS  Google Scholar 

  • Woo, R. (2006): Ultra-fine-scale filamentary structures in the outer corona and the solar magnetic field. Astrophysical Journal (Letters) 639, L95–L98.

    Article  ADS  Google Scholar 

  • Woo, R., et al. (1995): Fine-scale filamentary structure in coronal streamers. Astrophysical Journal (Letters) 449, L91–L94.

    ADS  Google Scholar 

  • Woo, R., Habbal, S. R. (1997): Extension of coronal structure into interplanetary space. Geophysical Research Letters 24(10), 1159–1162.

    Article  ADS  Google Scholar 

  • Woo, R., Habbal, S. R. (2005): Origin and acceleration of the slow solar wind. Astrophysical Journal (Letters) 629, L129–L132.

    Article  ADS  Google Scholar 

  • Woo, R., Habbal, S. R., Feldman, U. (2004): Role of closed magnetic fields in solar wind flow. Astrophysical Journal 612, 1171–1174.

    Article  ADS  Google Scholar 

  • Wood, B. E., et al. (1999): Comparison of two coronal mass ejections observed by EIT and LASCO with a model of an erupting magnetic flux rope. Astrophysical Journal 512, 484–495.

    Article  ADS  Google Scholar 

  • Wood, B. E., et al. (2005): New mass-loss measurements from atmospheric Lyman alpha absorption. Astrophysical Journal Letters 628, L143–L146.

    Article  ADS  Google Scholar 

  • Woodard, M. F. (1997): Implications of localized, acoustic absorption for heliotomographic analysis of sunspots. The Astrophysical Journal 485, 890–894.

    Article  ADS  Google Scholar 

  • Woodard, M. F. (2002): Solar subsurface flow inferred directly from frequency wavenumber correlations in the seismic velocity field. The Astrophysical Journal 565, 634–639.

    Article  ADS  Google Scholar 

  • Woodard, M. F., Hudson, H. (1983a): Frequencies, amplitudes and line widths of solar oscillations from total solar irradiance observations. Nature 305, 589–593.

    Article  ADS  Google Scholar 

  • Woodard, M. F., Hudson, H. (1983b): Solar oscillations observed in the total irradiance. Solar Physics 82, 67–73.

    Article  ADS  Google Scholar 

  • Woodard, M. F., Noyes, R. C. (1985): Change of the solar oscillation eigenfrequencies with the solar cycle. Nature 318, 449–450.

    Article  ADS  Google Scholar 

  • Woods, T. N., et al. (2004): Solar irradiance variability during the October 2003 solar storm period. Geophysical Research Letters 31, L10802.

    Article  ADS  Google Scholar 

  • Woods, T. N., et al. (2005): The Solar Euv Experiment (SEE): mission overview and first results. Journal of Geophysical Research 110, A01312.

    Article  Google Scholar 

  • Woods, T. N., Kopp, G., Chamberlin, P. C. (2006): Contributions of the solar ultraviolet irradiance to the total solar irradiance during large flares. Journal of Geophysical Research 111, A10S14.

    Article  Google Scholar 

  • Woods, T. N., Rottman, G. J. (2002): Solar ultraviolet variability over time periods of aeronomic interest. In: Comparative Aeronomy in the Solar System. Geophysical Monograph Series 130 (Eds. M. Mendillo, A. Nagy, J. Hunter Waite Jr.) Washington: American Geophysical Union, pp. 221–234.

    Google Scholar 

  • Wu, S. T., et al. (1989): Flare energetics. In: Energetic Phenomena on the Sun (Eds. M. R. Kundu, B. Woodgate and E. J. Schmahl). Boston: Kluwer Academic Publishers, pp. 377–492.

    Google Scholar 

X

  • Xia, L.-D., Marsch, E., Wilhelm, K. (2004): On the network structures in solar equatorial coronal holes – Observations of SUMER and MDI on SOHO. Astronomy and Astrophysics 424, 1025–1037.

    Article  ADS  Google Scholar 

  • Xie, H., Ofman, L., Vinãs, A. (2004): Multiple ions resonant heating and acceleration by Alfvén/cyclotron fluctuations in the corona and the solar wind. Journal of Geophysical Research 109, A08103.

    Article  Google Scholar 

Y

  • Yamada, M. (1999): Review of controlled laboratory experiments on physics of magnetic reconnection. Journal of Geophysical Research 104(A7), 14529–14541.

    Article  ADS  Google Scholar 

  • Yamamoto, T. T., et al. (2005): Magnetic helicity injection and sigmoidal coronal loops. Astrophysical Journal 624, 1072–1079.

    Article  ADS  Google Scholar 

  • Yamauchi, Y., et al. (2004): The magnetic structure of hydrogen alpha macrospicules in solar coronal holes. Astrophysical Journal 605, 511–520.

    Article  ADS  Google Scholar 

  • Yamauchi, Y., Suess, S. T., Steinberg, J. T., Sakurai, T. (2004): Differential velocity between solar wind protons and alpha particles in pressure balance structures. Journal of Geophysical Research 109, A03104.

    Article  Google Scholar 

  • Yan, Y., et al. (2007): Diagnostics of radio fine structures around 3 GHz with Hinode data in the impulsive phase of an X3.4/4B flare event on 2006 December 13. Publications of the Astronomical Society of Japan 59, S815–S821.

    ADS  Google Scholar 

  • Yashiro, S., et al. (2004): A catalog of white light coronal mass ejections observed by the SOHO spacecraft. Journal of Geophysical Research 109(A7), A07105.

    Article  Google Scholar 

  • Yiou, F., et al. (1985): 10Be in ice at Vostok Antarctica during the last climatic cycle. Nature 316, 616–617.

    Article  ADS  Google Scholar 

  • Yokoyama, T., et al. (2001): Clear evidence of reconnection inflow of a solar flare. Astrophysical Journal (Letters) 546, L69–L72.

    Article  ADS  Google Scholar 

  • Yokoyama, T., Shibata, K. (1995): Magnetic reconnection as the origin of x-ray jets and Hα surges on the Sun. Nature 375, 42–44.

    Article  ADS  Google Scholar 

  • Yoshida, T., Tsuneta, S. (1996): Temperature structure of solar active regions. Astrophysical Journal 459, 342–346.

    Article  ADS  Google Scholar 

  • Yoshimori, M. (1989): Observational studies of gamma-rays and neutrons from solar flares. Space Science Reviews 51, 85–115.

    Article  ADS  Google Scholar 

  • Yoshimori, M., et al. (1983): Gamma-ray observations from Hinotori. Solar Physics 86, 375–382.

    Article  ADS  Google Scholar 

  • Yoshimori, M., et al. (1991): The Wide Band Spectrometer on the SOLAR-A. Solar Physics 136, 69–88.

    Article  ADS  Google Scholar 

  • Young, C. A (1896): The Sun. New York: Appleton.

    Google Scholar 

  • Young, C. A. (1869): On a new method of observing contacts at the Sun’s limb, and other spectroscopic observations during the recent eclipse. American Journal of Sciences and Arts 48, 370–378. Reproduced in: Early Solar Physics (Ed. A. J. Meadows). Oxford: Pergamon Press 1970, pp. 125–134.

    Google Scholar 

  • Young, P. R., et al. (2007): Solar transition region features observed with Hinode/EIS. Publications of the Astronomical Society of Japan 59, S727–S733.

    ADS  Google Scholar 

  • Yurchyshyn, V. B., et al. (2001): Orientation of the magnetic fields in interplanetary flux ropes and solar filaments. Astrophysical Journal 563, 381–388.

    Article  ADS  Google Scholar 

  • Yurchyshyn, V., et al. (2005): Statistical distributions of speeds of coronal mass ejections. Astrophysical Journal 619, 599–603.

    Article  ADS  Google Scholar 

  • Yurchyshyn, V., Wang, H., Abramenko, V. (2004): Correlation between speeds of coronal mass ejections and the intensity of geomagnetic storms. Space Weather 2, S02001.

    Article  ADS  Google Scholar 

Z

  • Zaatri, A., et al. (2006): North-south asymmetry of zonal and meridional flows determined from ring diagram analysis of GONG data. Solar Physics 236, 227–244.

    Article  ADS  Google Scholar 

  • Zank, G. P., Gaisser, T. K. (Eds., 1992): Particle Acceleration in Cosmic Plasmas. New York: American Institute of Physics.

    Google Scholar 

  • Zarro, D. M., Canfield, R. C. (1989): H-alpha redshifts as a diagnostic of solar flare heating. Astrophysical Journal (Letters) 338, L33–L36.

    Article  ADS  Google Scholar 

  • Zarro, D. M., et al. (1999): SOHO EIT observations of extreme-ultraviolet “dimming” associated with a halo coronal mass ejection 520, L139–L142.

    Google Scholar 

  • Zhang, G., Burlaga, L. F. (1988): Magnetic clouds, geomagnetic disturbances, and cosmic ray decreases. Journal of Geophysical Research 93, 2511–2518.

    Article  ADS  Google Scholar 

  • Zhang, J., Dere, K. P. (2006): A statistical study of main and residual accelerations of coronal mass ejections. Astrophysical Journal 649, 1100–1109.

    Article  ADS  Google Scholar 

  • Zhang, J., Dere, K., Howard, R. A. (2001): Relationship between coronal mass ejections and flares. Eos Transactions American Geophysical Union 82, 47.

    Google Scholar 

  • Zhang, J., et al. (2001): On the temporal relationship between coronal mass ejections and flares. Astrophysical Journal 559, 452–462.

    Article  ADS  Google Scholar 

  • Zhang, J., et al. (2004): A study of the kinematic evolution of coronal mass ejections. Astrophysical Journal 604, 420–432.

    Article  ADS  Google Scholar 

  • Zhang, K., et al. (2003): A three-dimensional spherical nonlinear interface dynamo. Astrophysical Journal 596, 663–679.

    Article  ADS  Google Scholar 

  • Zhang, M. (2006): Helicity observations of weak and strong fields. Astrophysical Journal (Letters) 646, L85–L88.

    Article  ADS  Google Scholar 

  • Zhang, M., Golub, L. (2003): The dynamical morphologies of flares associated with the two types of solar coronal mass ejections. Astrophysical Journal 595, 1251–1258.

    Article  ADS  Google Scholar 

  • Zhang, M., Low, B. C. (2003): Magnetic flux emergence into the solar corona III. The role of magnetic helicity conservation. Astrophysical Journal 584, 479–496.

    Article  ADS  Google Scholar 

  • Zhang, M., Low, B. C. (2005): The hydromagnetic nature of solar coronal mass ejections. Annual Review of Astronomy and Astrophysics 43, 103–137.

    Article  ADS  Google Scholar 

  • Zhang, Q., et al. (1994): A method of determining possible brightness variations of the Sun in past centuries from observations of solar-type stars. Astrophysical Journal (Letters) 427, L111–L114.

    Article  ADS  Google Scholar 

  • Zhang, T. X. (2003): Preferential heating of particles by h-cyclotron waves generated by a global magnetohydrodynamic mode in solar coronal holes. Astrophysical Journal (Letters) 597, L69–L72.

    Article  ADS  Google Scholar 

  • Zhao, J., Kosovichev, A. G. (2003): Helioseismic observations of the structure and dynamics of a rotating sunspot beneath the solar surface. The Astrophysical Journal 591, 446–453.

    Article  ADS  Google Scholar 

  • Zhao, J., Kosovichev, A. G. (2004): Torsional oscillation, meridional flows, and vorticity inferred in the upper convection zone of the sun by time-distance helioseismology. The Astrophysical Journal 603, 776–784.

    Article  ADS  Google Scholar 

  • Zhao, J., Kosovichev, A. G. (2006): Surface magnetism effects in time-distance helioseismology. Astrophysical Journal 643, 1317–1324.

    Article  ADS  Google Scholar 

  • Zhao, J., Kosovichev, A. G., Duvall, T. L. Jr. (2001): Investigation of mass flows beneath a sunspot by time-distance helioseismology. The Astrophysical Journal 557, 384–388.

    Article  ADS  Google Scholar 

  • Zhao, X. P., Hoeksema, J. T. (1997): Is the geoeffectiveness of the 6 January 1997CME predictable from solar observations? Geophysical Research Letters 24, 2965–2968.

    Article  ADS  Google Scholar 

  • Zhou, G. P., Wang, J. X., Zhang, J. (2006): Large-scale source regions of Earth-directed coronal mass ejections. Astronomy and Astrophysics 445, 1133–1141.

    Article  ADS  Google Scholar 

  • Zhou, X., Tsurutani, B. T. (2001): Interplanetary shock triggering of nightside geomagnetic activity: Substorms, pseudo breakups, and quiescent events. Journal of Geophysical Research 106, 18957–18968.

    Article  ADS  Google Scholar 

  • Zirin, H., Moore, R., Walters, J. (1976): Proceedings of the workshop: The solar constant and the Earth’s atmosphere. Solar Physics 46, 377–409.

    Google Scholar 

  • Zirker, J. B. (1977): Coronal holes – an overview. In: Coronal holes and High Speed Wind Streams (Ed. J. B. Zirker). Boulder: Colorado Associated University Press, pp. 1–26.

    Google Scholar 

  • Zirker, J. B. (1993): Coronal heating. Solar Physics 148, 43–60.

    Article  ADS  Google Scholar 

  • Zirker, J. B. (Ed., 1977): Coronal Holes and High Speed Wind Streams. Boulder: Colorado Associated University Press.

    Google Scholar 

  • Zirker, J. B., Engvold, O., Martin, S. F. (1998): Counter-streaming gas flows in solar prominences as evidence for vertical magnetic fields. Nature 396, 440–441.

    Article  ADS  Google Scholar 

  • Zurbuchen, T. H. (2007): A new view of the coupling of the Sun and heliosphere. Annual Review of Astronomy and Astrophysics 45, 297–338.

    Article  ADS  Google Scholar 

  • Zurbuchen, T. H., et al. (1999): The transition between fast and slow solar wind from composition data. Space Science Reviews 87, 353–356.

    Article  ADS  Google Scholar 

  • Zurbuchen, T. H., et al. (2004): On the fast coronal mass ejections in October/November 2003: ACE-SWICS results. Geophysical Research Letters 31(11), L11805.

    Article  ADS  Google Scholar 

  • Zurbuchen, T. H., Fisk, L. A., Gloeckler, G., von Steiger, R. (2002): The solar wind composition throughout the solar cycle: A continuum of dynamic states. Geophysical Research Letters 29(9), 66–1.

    Article  Google Scholar 

  • Zurbuchen, T. H., Richardson, I. G. (2006): In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Science Reviews 123, 31–43.

    Article  ADS  Google Scholar 

  • Zurbuchen, T. H., Schwadron, N. A., Fisk, L. A. (1997): Direct observational evidence for a heliospheric magnetic field with large excursions in latitude. Journal of Geophysical Research 102(A11), 24175–24182.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lang, K.R. (2009). References. In: The Sun from Space. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76953-8_9

Download citation

Publish with us

Policies and ethics