Skip to main content
Log in

Theoretical model of flares and prominences

I: Evaporating flare model

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

A theoretical model of flare which explains observed quantities in Hα, EUV, soft X-ray and flare-associated solar wind is presented. It is assumed that large mass observed in the soft X-ray flare and the solar wind comes from the chromosphere by the process like evaporation while flare is in progress. From mass and pressure balance in the chromosphere and the corona, the high temperature in the soft X-ray flare is shown to be attained by the larger mass loss to the solar wind compared with the mass remained in the corona, in accord with observations. The total energy of 1032 erg, the electron density of 1013.5 cm−3 in Hα flare, the temperature of the X-ray flare of 107.3K and the time to attain maximum Hα brightness (600 s) are derived consistent with observations. It is shown that the top height of the Hα flare is located about 1000 km lower than that of the active chromosphere because of evaporation. So-called limb flares are assigned to either post-flare loops, surges or rising prominences.

The observed small thickness of the Hα flare is interpreted by free streaming and/or heat conduction. Applications are suggested to explain the maximum temperature of a coronal condensation and the formation of quiescent prominences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfvén, H. and Carlqvist, P.: 1967, Solar Phys. 1, 220.

    Google Scholar 

  • Billings, D. E.: 1966, A Guide to the Solar Corona, Academic Press, New York.

    Google Scholar 

  • Bruzek, A.: 1957, Z. Astrophys. 42, 76.

    Google Scholar 

  • Bruzek, A.: 1964, Astrophys. J. 140, 746.

    Google Scholar 

  • Bruzek, A.: 1969, in D. G. Wentzel and D. A. Tidman (eds.), Plasma Instability in Astrophysics, Gordon and Breach, Sci. Publ., New York-London-Paris, p. 81.

    Google Scholar 

  • Bruzek, A.: 1972, Solar Phys. 26, 94.

    Google Scholar 

  • Bruzek, A. and Demastus, H. L.: 1970, Solar Phys. 12, 447.

    Google Scholar 

  • Bumba, V. and Howard, R.: 1965, Astrophys. J. 142, 796.

    Google Scholar 

  • Dinh, Q. V. and Hirayama, T.: 1974, in preparation.

  • Drake, J. F.: 1971, Solar Phys. 16, 152.

    Google Scholar 

  • Dupree, A. K.: 1972, Astrophys. J. 178, 527.

    Google Scholar 

  • Hirayama, T.: 1972, Solar Phys. 24, 310.

    Google Scholar 

  • Hirayama, T.: 1974, in preparation.

  • Horan, D. M.: 1971, Solar Phys. 21, 188.

    Google Scholar 

  • Hudson, H. S. and Ohki, K.: 1972, Solar Phys. 23, 155.

    Google Scholar 

  • Hundhausen, A. J. and Gentry, R. A.: 1969, J. Geophys. Res. 74, 2908.

    Google Scholar 

  • Hundhausen, A. J., Bame, S. I., and Montgomery, M. D.: 1970, J. Geophys. Res. 75, 4631.

    Google Scholar 

  • Jefferies, J. T.: 1957, Monthly Notices Roy. Astron. Soc. 117, 493.

    Google Scholar 

  • Jefferies, J. T. and Orrall, F. Q.: 1965, Astrophys. J. 141, 505.

    Google Scholar 

  • Kleczek, J.: 1964, in The Physics of Solar Flares, AAS-NASA Symp., NASA SP-50, p. 77.

  • Kuperus, M. and Tandberg-Hanssen, E.: 1967, Solar Phys. 2, 39.

    Google Scholar 

  • Milkey, R. W., Blocher, N. K., Chambers, W. H., Fehlau, P. E., Fuller, J. C., and Kunz, W. E.: 1971, Solar Phys. 20, 400.

    Google Scholar 

  • Moriyama, F. (ed.): 1971, in IASY Report on Solar Phenomena in 1969, Tokyo Astron. Obs.

  • Newkirk, G.: 1967, Ann. Rev. Astron. Astrophys. 5, 213.

    Google Scholar 

  • Noyes, R. W.: 1971, Ann. Rev. Astron. Astrophys. 9, 209.

    Google Scholar 

  • Noyes, R. W. and Kalkofen, W.: 1970, Solar Phys. 15, 20.

    Google Scholar 

  • Ogir, M. B.: 1967, Izv. Krymsk. Astrofiz. Obs. 37, 44.

    Google Scholar 

  • Petschek, H. E.: 1964, in The Physics of Solar Flares, AAS-NASA Symp., NASA SP-50, p. 425.

  • Severny, A. B.: 1964, Ann. Rev. Astron. Astrophys. 2, 363.

    Google Scholar 

  • Smith, S. F. and Ramsey, H. E.: 1964, Z. Astrophys. 60, 1.

    Google Scholar 

  • Smith, H. J. and Smith, E. v. P.: 1963, Solar Flares, MacMillan Co., New York.

    Google Scholar 

  • Spitzer, L.: 1962, Physics of Fully Ionized Gases, 2nd ed. Interscience Publ., New York-London-Sydney, p. 131.

    Google Scholar 

  • Sturrock, P. A.: 1968, in K. O. Kiepenheuer (ed.), ‘Structure and Development of Solar Active Regions’, IAU Symp. 35, D. Reidel Publ. Co., Dordrecht-Holland, p. 470.

    Google Scholar 

  • Suemoto, Z. and Hiei, E.: 1959, Publ. Astron. Soc. Japan 11, 185.

    Google Scholar 

  • Švestka, Z.: 1972, Ann. Rev. Astron. Astrophys. 10, 1.

    Google Scholar 

  • Syrovatsky, S. I.: 1966, Soviet Astron. 10, 270.

    Google Scholar 

  • Takakura, T.: 1971, Solar Phys. 19, 186.

    Google Scholar 

  • Tandberg-Hanssen, E.: 1967, Solar Activity, Blaisdell Publ. Co., Waltham, Mass.-Toronto-London.

    Google Scholar 

  • Vernazza, J. E. and Noyes, R. W.: 1972, Solar Phys. 22, 358.

    Google Scholar 

  • Waldmeier, M.: 1939, Z. Astrophys. 18, 241.

    Google Scholar 

  • Wood, A. T. and Noyes, R. W.: 1972, Solar Phys. 24, 180.

    Google Scholar 

  • Wood, A. T., Noyes, R. W., Dupree, A. K., Huber, M. C. E., Parkinson, W. H., Reeves, E. M., and Withbroe, G. L.: 1972, Solar Phys. 24, 169.

    Google Scholar 

  • Zirin, H.: 1959, Astrophys. J. 129, 414.

    Google Scholar 

  • Zirin, H.: 1964, Astrophys. J. 140, 1216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirayama, T. Theoretical model of flares and prominences. Sol Phys 34, 323–338 (1974). https://doi.org/10.1007/BF00153671

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00153671

Keywords

Navigation