Skip to main content
Log in

Solar flares and solar wind helium enrichments: July 1965–July 1967

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

It has previously been suggested that the very high relative abundances of helium occasionally observed in the solar wind mark the plasma accelerated by major solar flares. To confirm this hypothesis, we have studied the 43 spectra with He/H ⩾ 15% that were observed among 10300 spectra collected by Vela 3 between July 1965–July 1967. The 43 spectra were distributed among 16 distinct periods of helium enhancement, 12 of which (containing 75% of the spectra) were associated with solar flares. Six new flare-enhancement events are discussed in this paper. It is concluded that the association of helium enhancements with major flares is real, non-random and very strong.

With this study, there are 12 cases of reliable associations between helium enhancements (He/H ⩾ 15%) and flares reported in the literature. The general characteristics of these events are discussed. It is found that the flares are typically large and bright (2B or 3B), often they produce cosmic ray protons, and they are widely distributed in solar longitude. The average transit velocity of the pistons (i.e., flare accelerated driver gas) is in excellent agreement with earlier observations of flare shock velocities. The degree to which the pistons have been slowed in transit is in good agreement with theory. The average percentage of helium in the enhanced regions is 15%, but this number should not be considered more than an extremely rough estimate because of very arbitrary decisions that had to be made as to when we would consider an ‘enhancement’ had ended. The number of positively charged particles in the enhanced region is estimated to be of the order of 4 × 1039.

A qualitative discussion of some of the possibilities for the source of helium enhanced plasma is presented. It is suggested that the helium enriched plasma may be the piston producing the shock causing the Type II radio emission. The size of the Type II emission region and the number of particles in the helium enhancement permit an estimate to be made of the density of the corona at the origin of the piston. From this it is estimated further that the piston must come from below about 0.5 R , in agreement with the 0.2–0.3 R often given for the initial height of the Type II emission source. Recent theoretical discussions have indicated that the corona as a whole can be expected to show helium enrichments at these levels.

It is pointed out that observations of solar wind helium enhancement can be expected to be a useful tool in studying the distribution and relative abundance of helium in different layers of the solar corona, as well as mechanisms for the acceleration of plasma by solar flares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alloucherie, Y.: 1970, J. Geophys. Res. 75, 6899.

    Google Scholar 

  • Bame, S. J., Asbridge, J. R., Hundhausen, A. J., and Strong, I. B.: 1968, J. Geophys. Res. 73, 5761.

    Google Scholar 

  • Billings, Donald E.: 1966, A Guide to the Solar Corona, Academic Press, New York.

    Google Scholar 

  • Brandt, John C.: 1966, Astrophys. J. 143, 265.

    Google Scholar 

  • Delache, P.: 1967, Ann Astrophys. 30, 827.

    Google Scholar 

  • De Young, D. S. and Hundhausen, A. J.: 1971, J. Geophys. Res. 71, 2245

    Google Scholar 

  • Dryer, Murray: 1972, Proceedings of the Conference on the Solar Wind, Asilomar, Calif., 21–26 March, 1971, to be published.

  • Formisano, V., Palmiotto, F., and Moreno, G.: 1970, Solar Phys. 15, 479.

    Google Scholar 

  • Geiss, J., Hirt, P. and Leutwyler, H.: 1970, Solar Phys. 12, 458.

    Google Scholar 

  • Hirshberg, J.: 1968, Planetary Space Sci. 16, 309.

    Google Scholar 

  • Hirshberg, J., Alksne, A., Colburn, D. S., Bame, S. J., and Hundhausen, A. J.: 1970, J. Geophys. Res. 75, 1.

    Google Scholar 

  • Hirshberg, J., Asbridge, J. R., and Robbins, D. E.: 1971, Solar Phys. 18, 313.

    Google Scholar 

  • Hundhausen, A. J.: 1970, Rev. Geophys. and Space Phys. 8, 729.

    Google Scholar 

  • Hundhausen, A. J. and Gentry, R. A.: 1969, J. Geophys. Res 74, 2908.

    Google Scholar 

  • Hundhausen, A. J., Asbridge, J. R., Bame, S. J., Gilbert, H. E., and Strong, I. B.: 1967, J. Geophys. Res. 72, 87.

    Google Scholar 

  • Hundhausen, A. J., Bame, S. J., and Montgomery, M. D.: 1970a, J. Geophys. Res. 75, 4631.

    Google Scholar 

  • Hundhausen, A. J., Bame, S. J., Asbridge, J. R., and Sydoriak, S. J.: 1970b, J. Geophys. Res. 75, 4643.

    Google Scholar 

  • Jokippi, J. R.: 1966, in R. J. Mackin, Jr., and M. Neugebauer (eds.), The Solar Wind, Pergamon Press, N.Y.

    Google Scholar 

  • Kane, S. R., Winckler, J. R., and Hofmann, D. J.: 1968, Planetary Space Sci. 16, 1381.

    Google Scholar 

  • Kuckes, A. F. and Sudan, R. N.: 1971, Solar Phys. 17, 194.

    Google Scholar 

  • Kundu, Mukul R.: 1965, Solar Radio Astronomy, John Wiley and Sons, Inc.

  • Lanzerotti, L. J. and Robbins, M. F.: 1969, Solar Phys. 10, 212.

    Google Scholar 

  • Lazarus, A. J. and Binsack, J. H.: 1969, Ann. I.Q.S.Y. 3, 378.

    Google Scholar 

  • Lin, R. P.: 1970, Solar Phys. 12, 266.

    Google Scholar 

  • Nakada, M. P.: 1969, Solar Phys. 7, 302.

    Google Scholar 

  • Nakada, M. P.: 1970, Solar Phys. 14, 457.

    Google Scholar 

  • Neugebauer, M. and Snyder, C. W.: 1966, in R. J. Mackin and M. Neugebauer (eds.), The Solar Wind, Pergamon Press, N.Y.

    Google Scholar 

  • Newkirk, G.: 1967, Ann. Rev. Astron. Astrophys. 5, 213.

    Google Scholar 

  • Ogilvie, Keith W., Burlaga, L. F., and Wilkerson, T. D.: 1968, J. Geophys. Res. 73, 6809.

    Google Scholar 

  • Ogilvie, K. W. and Wilkerson, T. D.: 1969, Solar Phys. 8, 435.

    Google Scholar 

  • Parker, E. N.: 1963, Interplanetary Dynamical Processes, Interscience Publishers, N.Y.

    Google Scholar 

  • Robbins, D. E., Hundhausen, A. J., and Bame, S. J.: 1970, J. Geophys. Res. Space Phys. 75, 1178.

    Google Scholar 

  • Švestka, Z. and Simon, P.: 1969, Solar Phys. 10, 3.

    Google Scholar 

  • Sweet, P. A.: 1969, Ann. Rev. Astron. Astrophys. 7, 149.

    Google Scholar 

  • Taylor, Harold E.: 1969, Solar Phys. 6, 320.

    Google Scholar 

  • Valdez, Jesusa and Altschuler, Martin D.: 1970, Solar Phys. 15, 446.

    Google Scholar 

  • Vernov, S. N., Lyubimov, G. P., Kontor, N. N., Pereslegina, N. V., and Chuchkov, V. A.: 1970, Preprint, Moscow State University.

  • Wolfe, J. H., Silva, R. W., McKibbin, D. D., and Mason, R. H.: 1966, J. Geophys. Res. 71, 3329.

    Google Scholar 

  • Wilcox, John M. and Ness, Norman F.: 1965, J. Geophys. Res. 70, 5793.

    Google Scholar 

  • Wild, J. P., Smerd, S. F., and Weiss, A. A.: 1963, Ann. Rev. Astron. Astrophys. 1, 291.

    Google Scholar 

  • Yeh, Tyan: 1970, Space Sci. 18, 199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirshberg, J., Bame, S.J. & Robbins, D.E. Solar flares and solar wind helium enrichments: July 1965–July 1967. Sol Phys 23, 467–486 (1972). https://doi.org/10.1007/BF00148109

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00148109

Keywords

Navigation