Skip to main content
Log in

The structure and evolution of coronal holes

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

When observed at soft X-ray wavelengths coronal holes are seen as open features, devoid of X-ray emission and bounded by apparently divergent coronal loop structures. Inspection of the topology of the photospheric magnetic fields associated with these features suggests that holes are formed when the remnants of active region fields, emerging in both hemispheres over a period of several solar rotations, combine to form a large area of essentially unipolar field. Remnants of opposite polarity fields surround these features resulting in a divergent magnetic configuration at the hole boundaries. Holes are seen to form and evolve while the large scale divergent field pattern is reinforced and to close when large scale remnants occur which disrupt the general field pattern. Two types of holes are observed in the early Skylab observations. The first are elongated features which are aligned approximately north-south extending from one solar pole to a polar filament channel in the opposite hemisphere. The polar holes and somewhat lower latitude holes appear to lie in unipolar areas which are completely confined by opposite polarity fields.

Studies of the rotation properties of an elongated hole, which extended from the north pole to a latitude of approximately 20° S, showed it to rotate with a synodic rate of (13.25±0.03)−(0.4±0.1 sin2φdeg day−1. Possible explanations for the almost rigid rotational characteristics of this feature are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschuler, M. D., Trotter, D. E. and Orrall, F. Q.: 1972, Solar Phys. 26, 354.

    Google Scholar 

  • Antonucci, E. and Svalgaard, L.: 1974, Solar Phys. 34, 3.

    Google Scholar 

  • Babcock, H. W.: 1961, Astrophys. J. 133, 572.

    Google Scholar 

  • Bumba, V. and Howard, R.: 1969, Solar Phys. 7, 28.

    Google Scholar 

  • Dodson-Prince, H. W. and Hedeman, E. R. : 1968, in K. O. Kiepenheuer (ed.), ‘Structure and Development of Solar Active Regions’, IAU Symp. 35, 56.

  • Dulk, G. A. and Sheridan, K. V.: 1974, Solar Phys. 36, 191.

    Google Scholar 

  • Golub, L., Krieger, A. S., Silk, J. K., Timothy, A. F., and Vaiana, G. S.: 1974, Astrophys. J. 189, L93.

    Google Scholar 

  • Hansen, R. T., Hansen, S. F., and Loomis, H. G.: 1969, Solar Phys. 10, 135.

    Google Scholar 

  • Harvey, J., Krieger, A. S., Timothy, A. F., and Vaiana, G. S.: 1974, ‘Comparison of Skylab X-ray and Ground Based Helium Observations’, to be published in the Proceedings of the Working Session on the Preliminary Results of the Skylab Solar Experiments and Correlated Ground Observations, Arcetri Astrophysical Observatory, Florence, Italy.

    Google Scholar 

  • Krieger, A. S., Timothy, A. F., and Roelof, E. C.: 1973, Solar Phys. 29, 505.

    Google Scholar 

  • Krieger, A. S., Timothy, A. F., Vaiana, G. S., Lazarus, A. J., and Sullivan, J. D.: 1974, in Proceedings of the Third Solar Wind Conference at Asilomar Conference Grounds, California.

  • Leighton, R. B.: 1964, Astrophys. J. 140, 1547.

    Google Scholar 

  • Munro, R. H. and Withbroe, G. L.: 1972, Astrophys. J. 176, 511.

    Google Scholar 

  • Neupert, W. M. and Pizzo, V.: 1974, to be published in J. Geophys. Res.

  • Newkirk, G. A.: 1967, Ann. Rev. Astron. Astrophys. 5, 213.

    Google Scholar 

  • Newkirk, G., Jr., Trotter, D. E., Altschuler, M. D., and Howard, R.: 1973. ‘A Microfilm Atlas of Magnetic Fields in the Solar Corona’, NCAR Technical Note, NCAR-TN/STR-85.

  • Newton, H. W. and Nunn, M. L.: 1951, Monthly Notices Roy. Astron. Soc. 111, 413.

    Google Scholar 

  • Pneuman, G. W.: 1971, Solar Phys. 19, 16.

    Google Scholar 

  • Svalgaard, L.: 1972, J. Geophys. Res. 77, 4027.

    Google Scholar 

  • Švestka, Z.: 1968, Solar Phys. 4, 18.

    Google Scholar 

  • U.S. Department of Commerce, Environmental Science Services Administration: 1973, Solar Geophyscial Data, pp. 345–7.

  • Vaiana, G. S., Krieger, A. S., and Timothy, A. F.: 1973a, Solar Phys. 32, 81.

    Google Scholar 

  • Vaiana, G. S., Davis, J. M., Giacconi, R., Krieger, A. S., Silk, J. K., Timothy, A. F., and Zombeck, M.: 1973b, Astrophys. J. 185, L47.

    Google Scholar 

  • Van Speybroeck, L. P., Krieger, A. S., and Vaiana, G. S.: 1970, Nature 227, 818.

    Google Scholar 

  • Weber, E. J.: 1969, Solar Phys. 9, 150.

    Google Scholar 

  • Weber, E. J. and Davis, L., Jr.: 1967, Astrophys. J. 148, 217.

    Google Scholar 

  • Wilcox, J. M. and Howard, R.: 1970, Solar Phys. 13, 251.

    Google Scholar 

  • Wilcox, J. M. and Tannenbaum, A. S.: 1971, Space Sci. Lab. Rep. Ser. 12.

  • Wilcox, J. M., Schatten, K. H., Tannenbaum, A. S., and Howard, R.: 1970, Solar Phys. 14, 255.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Harvard College Observatory - Smithsonian Astrophysical Observatory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timothy, A.F., Krieger, A.S. & Vaiana, G.S. The structure and evolution of coronal holes. Sol Phys 42, 135–156 (1975). https://doi.org/10.1007/BF00153291

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00153291

Keywords

Navigation