Skip to main content

Genetic Transformation of Sugarcane and Field Performance of Transgenic Sugarcane

  • Chapter
  • First Online:
Biotechnologies of Crop Improvement, Volume 2

Abstract

Sugarcane is an important industrial cash crop contributing more than 70% of the sugar and 40% of biofuel production globally. The complex polyploid-aneuploid type of genome of sugarcane makes it difficult to generate hybrids through conventional breeding programs. Thus, genetic improvement of sugarcane through transgenic approaches has fascinated the attention of most biotechnologists around the world. Moreover, plant biotechnology has the potential to improve economically important traits in sugarcane as well as diversify sugarcane beyond traditional applications such as sucrose production. Although being a recalcitrant species for transformation, several advances have been made in the area of sugarcane transformation. Traits such as disease resistance, improved tolerance to salt and drought, and increased sucrose content through metabolic engineering and expression of recombinant proteins (biopharming) have been some of the areas which appear promising as far as the application of transgenic sugarcane is concerned. Stability of the transgene expression is another major bottleneck when transforming a polyploid crop like sugarcane. This chapter will help to focus on the efficient molecular tools and improved transgenic methodologies used during sugarcane transformation in addition to the field performance of transgenic sugarcane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altpeter F, Oraby H (2010) Sugarcane. In: Kempken F, Jung C (eds) Genetic modification of plants, biotechnology in agriculture and forestry, vol 64. Springer-Verlag, Berlin/Heidelberg. https://doi.org/10.1007/978-3-642-02391-0_23

    Chapter  Google Scholar 

  • Arencibia AD, Carmona ER, Cornide MT, Castiglione S, O’Relly J, Chinea A, Oramas P, Sala F (1999) Somaclonal variation in insect-resistant transgenic sugarcane (Saccharum hybrid) plants produced by cell electroporation. Transgenic Res 8:349–360

    Article  CAS  Google Scholar 

  • Arencibia AD, Carmona ER, Tellez P, Chan M, Yu S, Trujillo LE, Oramas P (1998) An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res 7:213–222

    Article  CAS  Google Scholar 

  • Arvinth S, Arun S, Selvakesavan RK, Srikanth J, Mukunthan N, Ananda Kumar P, Premachandran MN, Subramonian N (2010) Genetic transformation and pyramiding of aprotinin-expressing sugarcane with cry1Ab for shoot borer (Chilo infuscatellus) resistance. Plant Cell Rep 29(4):383–395

    Article  CAS  PubMed  Google Scholar 

  • Augustine SM, Ashwin Narayan J, Syamaladevi DP, Appunu C, Chakravarthi M, Ravichandran V, Tuteja N, Subramonian N (2015) Introduction of pea DNA helicase 45 into sugarcane (Saccharum spp. hybrid) enhances cell membrane thermostability and upregulation of stress-responsive genes leads to abiotic stress tolerance. Mol Biotechnol 57:475–488. https://doi.org/10.1007/s12033-015-9841-x

    Article  PubMed  CAS  Google Scholar 

  • Basnayake SWV, Morgan TC, Wu LG, Birch RG (2012) Field performance of transgenic sugarcane expressing isomaltulose synthase. Plant Biotechnol J 10:217–225

    Article  CAS  PubMed  Google Scholar 

  • Belintani NG, Guerzoni JTS, Moreira RMP, Vieira LGE (2012) Improving low-temperature tolerance in sugarcane by expressing the ipt gene under a cold inducible promoter. Biol Plant 56(1):71–77

    Article  CAS  Google Scholar 

  • Beyene G, Buenrostro-Nava MT, Damaj MB, Gao SJ, Molina J, Mirkov TE (2011) Unprecedented enhancement of transient gene expression from minimal cassettes using a double terminator. Plant Cell Rep 30:13–25

    Article  CAS  PubMed  Google Scholar 

  • Bower R, Birch RG (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J 2:409–416

    Article  CAS  Google Scholar 

  • Braga DPV, Arrigoni EDB, Silva-Filho MC, Ulian EC (2003) Expression of the Cry1Ab protein in genetically modified sugarcane for the control of Diatraea saccharalis (Lepidoptera: Cram- bidae). J New Seeds 5:209–222

    Article  Google Scholar 

  • Braithwaite KS, Geijskes RJ, Smith GR (2004) A variable region of the sugarcane bacilliform virus (SCBV) genome can be used to generate promoters for transgene expression in sugarcane. Plant Cell Rep 23:319–326

    Article  CAS  PubMed  Google Scholar 

  • Brumbley SM, Snyman SJ, Gnanasambandam A, Joyce P, Hermann SR, da Silva JAG, McQualter RB, Wang ML, Egan BT, Patterson AH, Albert HH, Moore PH (2008) Sugarcane. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants: transgenic sugar, tuber and fiber crops. Wiley-Blackwell, Oxford, pp 1–58

    Google Scholar 

  • Caffall HK, He C, Smith-Jones M, Mayo K, Mai P, Dong S, Ke J, Dunder E, Yarnall M, Whinna R, DeMaio J, Weining G, Sheldon J, Allen M, Costello T, Setliff K, Jain R, Snyder A, Lovelady C, Jepson I (2016) Long-term T-DNA insert stability and transgene expression consistency in field propagated sugarcane. Plant Mol Biol 93:451–463. https://doi.org/10.1007/s11103-016-0572-6

    Article  PubMed  CAS  Google Scholar 

  • Chakravarthi M, Philip A, Subramonian N (2015) Truncated ubiquitin 5′ regulatory region from Erianthus arundinaceus drives enhanced transgene expression in heterologous systems. Mol Biotechnol 57:820–835

    Article  CAS  PubMed  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    Article  CAS  PubMed  Google Scholar 

  • Christy LA, Aravinth S, Saravanakumar M, Kanchana M, Mukunthan N, Srikanth J, Thomas G, Subramonian N (2009) Engineering sugarcane cultivars with bovine pancreatic trypsin inhibitor (aprotinin) gene for protection against top borer (Scirpophaga excerptalis Walker). Plant Cell Rep 28:175–184

    Article  CAS  PubMed  Google Scholar 

  • Clark AJ, Harold G, Yull FE (1997) Mammalian cDNA and prokaryotic reporter sequences silence adjacent transgenes in transgenic mice. Nucleic Acids Res 25:1009–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Hont A, Souza GM, Menossi M, Vincentz M, van-Sluys MA, Glaszmann JC, Ulian E (2008) Sugarcane: a major source of sweetness, alcohol, and bio-energy. In: Moore PH, Ming R (eds) Plant genetics and genomics: crops and models, vol 1. Springer, New York, pp 483–513

    Chapter  Google Scholar 

  • Dale P, McPartlan H (1992) Field performance of transgenic potato plants compared with controls regenerated from tuber discs and shoot cuttings. Theor Appl Genet 84:585–591

    PubMed  CAS  Google Scholar 

  • Damaj MB, Kumpatla SP, Emani C, Beremand PD, Reddy AS, Rathore KS, Buenrostro-Nava MT, Curtis IS, Thomas TL, Mirkov TE (2010) Sugarcane DIRIGENT and O-methyl transferase promoters confer stem-regulated gene expression in diverse monocots. Planta 231:1439–1458

    Article  CAS  PubMed  Google Scholar 

  • Dermawan H, Karan R, Jung JH, Zhao Y, Parajuli S, Sanahuja G, Altpeter F (2016) Development of an intragenic gene transfer and selection protocol for sugarcane resulting in resistance to acetolactate synthase-inhibiting herbicide. Plant Cell Tissue Organ Cult 126:459. https://doi.org/10.1007/s11240-016-1014-5

    Article  CAS  Google Scholar 

  • Dong S, Delucca P, Geijskes RJ, Ke J, Mayo K, Mai P, Sainz M, Caffall K, Moser T, Yarnall M, Setliff K, Jain R, Rawls E, Smith-Jones M, Dunder E (2014) Advances in Agrobacterium-mediated sugarcane transformation and stable transgene expression. Sugar Tech 16(4):366–371

    Article  CAS  Google Scholar 

  • Enriquez GA, Trujillo LA, Menndez C, Vazquez RI, Tiel K, Dafhnis F, Arrieta J, Selman G, Hernandez L (2000) Sugarcane (Saccharum hybrid) genetic transformation mediated by Agrobacterium tumefaciens: production of transgenic plants expressing proteins with agronomic and industrial value. Dev Plant Genet Breed 5:76–81

    CAS  Google Scholar 

  • Errabii T, Gandonou C, Essalmani H, Abrini J, Idaomar M, Senhaji N (2006) Growth, proline and ion accumulation in sugarcane callus cultures under drought-induced osmotic stress and its subsequent relief. Afr J Biotechnol 4:1250–1255

    Google Scholar 

  • Falco MC, Tulmann Neto A, Ulian EC (2000) Transformation and expression of a gene for herbicide resistance in Brazilian sugarcane. Plant Cell Rep 19:1188–1194

    Article  CAS  Google Scholar 

  • Gallo-Meagher M, Irvine JE (1996) Herbicide resistant sugarcane containing the bar gene. Crop Sci 36:1367–1374

    Article  CAS  Google Scholar 

  • Gandonou CB, Errabii T, Abrini J, Idaomar M, Senhaji NS (2006) Selection of callus cultures of sugarcane (Saccharum sp.) tolerant to NaCl and their response to salt stress. Plant Cell Tissue Organ Cult 87:9–16

    Article  CAS  Google Scholar 

  • Gao S, Yang Y, Wang C, Guo J, Zhou D, Wu Q et al (2016) Transgenic sugarcane with a cry1ac gene exhibited better phenotypic traits and enhanced resistance against sugarcane borer. PLoS One 11(4):e0153929. https://doi.org/10.1371/journal.pone.0153929

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilbert RA, Gallo-Meagher M, Comstock JC, Miller JD, Jain M, Abouzid A (2005) Agronomic evaluation of sugarcane lines transformed for resistance to sugarcane mosaic virus strain E. Crop Sci 45:2060–2067

    Article  Google Scholar 

  • Gilbert RA, Glynn NC, Comstock JC, Davis MJ (2009) Agronomic performance and genetic characterization of sugarcane transformed for resistance to sugarcane yellow leaf virus. Field Crop Res 111:39–46

    Article  Google Scholar 

  • Guerzoni JTS, Belintani NG, Moreira RMP, Hoshino AA, Domingues DS, Filho JCB, Vieira LGE (2014) Stress-induced D1-pyrroline-5-carboxylate synthetase (P5CS) gene confers tolerance to salt stress in transgenic sugarcane. Acta Physiol Plant 36:2309–2319

    Article  CAS  Google Scholar 

  • Hamerli D, Birch RG (2011) Transgenic expression of trehalulose synthase results in high concentrations of the sucrose isomer trehalulose in mature stems of field-grown sugarcane. Plant Biotechnol J 9:32–37

    Article  CAS  PubMed  Google Scholar 

  • Hammond SM, Caudy AA, Hannon GJ (2001) Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet 2:110–119

    Article  CAS  PubMed  Google Scholar 

  • Harrison MD, Geijskes J, Coleman HD, Shand K, Kinkema M, Palupe A, Hassall R, Sainz M, Lloyd R, Miles S, Dale JL (2011) Accumulation of recombinant cellobiohydrolase and endoglucanase in the leaves of mature transgenic sugar cane. Plant Biotechnol J 9:884–896

    Article  CAS  PubMed  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of D1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136. https://doi.org/10.1104/122.4.1129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hotta CT, Lembke CG, Domingues DS, Ochoa EA, Cruz GMQ, Melotto-Passarin DM, Marconi TG, Santos MO, Mollinari M, Margarido GRA, Crivellari AC, dos Santos WD, de Souza AP, Hoshino AA, Carrer H, Souza AP, Garcia AAF, Buckeridge MS, Menossi M, Marie-Anne VS, Souza GM (2011) The biotechnology roadmap for sugar cane improvement. Trop Plant Biol 3:75–87

    Article  CAS  Google Scholar 

  • Jackson MA, Anderson DJ, Birch RG (2013) Comparison of Agrobacterium and particle bombardment using whole plasmid or minimal cassette for production of high-expressing, low-copy transgenic plants. Transgenic Res 22:143–151

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Chengalrayan K, Abouzid A, Gallo M (2007) Prospecting the utility of a PMI/mannose selection system for the recovery of transgenic sugarcane (Saccharum spp. hybrid) plants. Plant Cell Rep 26:581–590

    Article  CAS  PubMed  Google Scholar 

  • Jakowitsch J, Papp I, Moscone EA, van Der Winden J, Matzke M, Matzke Antonius JM (1999) Molecular and cytogenetic characterization of a transgene locus that induces silencing and methylation of homologous promoters intrans. Plant J 17:131–140

    Article  CAS  PubMed  Google Scholar 

  • Jing-Sheng X, Shiwu G, Liping X, Rukai C (2008) Construction of expression vector of CryIA(c) gene and its transformation in sugarcane. Sugar Tech 10(3):269–273

    Article  CAS  Google Scholar 

  • Joyce P, Hermann S, O’Connell A, Dinh Q, Shumbe L, Lakshmanan P (2014) Field performance of transgenic sugarcane produced using Agrobacterium and biolistics methods. Plant Biotechnol J 12:411–424

    Article  CAS  PubMed  Google Scholar 

  • Joyce PA, McQualter RB, Bernard MJ, Smith GR (1998) Engineering for resistance to SCMV in sugarcane. Acta Hortic 461:385–392

    Google Scholar 

  • Kalunke RM, Kolge AM, Babu KH, Prasad DT (2009) Agrobacterium-mediated transformation of sugarcane for borer resistance using cry 1Aa3 gene and one-step regeneration of transgenic plants. Sugar Tech 11(4):355–359

    Article  CAS  Google Scholar 

  • Kinkema M, Geijskes J, de Lucca P, Palupe A, Shand K, Coleman HD, Brinin A, Brett Williams B, Sainz M, Dale JL (2014) Improved molecular tools for sugar cane biotechnology. Plant Mol Biol 84:497–508. https://doi.org/10.1007/s11103-013-0147-8

    Article  PubMed  CAS  Google Scholar 

  • Kinkema M, Miles S (2013) Compositions and methods for increased expression in sugar cane. Patent application WO/2013/090137

    Google Scholar 

  • Kohli A, Griffiths S, Palacios N, Twyman R, Vain P, Laurie D, Christou P (1999) Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspot in the CaMV 35S promoter and confirms the predominance of microhomology mediated recombination. Plant J 17:591–601

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Shriram V, Kavi-Kishor PB, Jawali N, Shitole MG (2010) Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. Plant Biotechnol Rep 4:37–48. https://doi.org/10.1007/s11816-009-0118-3

    Article  Google Scholar 

  • Kumar T, Uzma, Khan MR, Abbas Z, Ali GM (2014) Genetic Improvement of Sugarcane for Drought and Salinity Stress Tolerance Using Arabidopsis Vacuolar Pyrophosphatase (AVP1) Gene. Mol Biotechnol 56(3):199–209. https://doi.org/10.1007/s12033-013-9695-z

    Article  CAS  Google Scholar 

  • Lakshmanan P (2005) Somatic embryogenesis in sugarcane- an addendum: sugarcane biotechnology: challenges and opportunities. In Vitro Cell Dev Biol-Plant 42:202–205

    Google Scholar 

  • Leibbrandt N, Snyman S (2001) Initial field testing of transgenic glufosinate ammonium-resistant sugarcane. In: Proceedings of the South African Sugar Technologists’ Association pp 108–111

    Google Scholar 

  • Leibbrandt NB, Snyman SJ (2003) Stability of gene expression and agronomic performance of a transgenic herbicide-resistant sugarcane line in South Africa. Crop Sci 43(2):671–677

    Article  CAS  Google Scholar 

  • Liu AW, Oard SV, Oard JH (2003) High transgene expression levels in sugarcane (Saccharum officinarum L.) driven by the rice ubiquitin promoter RUBQ2. Plant Sci 165:743–750

    Article  CAS  Google Scholar 

  • Manickavasagam M, Ganapathi A, Anbazhagan VR, Sudhakar B, Selvaraj N, Vasudevan A, Kasthurirengan S (2004) Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep 23:134–143

    Article  CAS  PubMed  Google Scholar 

  • McQualter RB, Harding RM, Dale JL, Smith GR (2001) Virus derived transgenes confer resistance to Fiji disease in transgenic sugarcane plants. Proc Int Soc Sugar Cane Technol 24(2):584–585

    Google Scholar 

  • Meng L, Ziv M, Lemaux PG (2006) Nature of stress and transgene locus influences transgene expression stability in barley. Plant Mol Biol 62:15–28

    Article  CAS  PubMed  Google Scholar 

  • Meyer P (1995) Understanding and controlling transgene expression. Trends Biotechnol 13:332–337

    Article  CAS  Google Scholar 

  • Molinari HBC, Marur CJ, Daros E, Campos MKF, Carvalho JFRP, Bespalhok JCF, Pereira LFP, Vieira LGE (2007) Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Plant 130:218–229. https://doi.org/10.1111/1399-3054.2007.00909

    Article  CAS  Google Scholar 

  • Moyle RL, Birch RG (2013) Sugarcane loading stem gene promoters drive transgene expression preferentially in the stem. Plant Mol Biol 82:51–58

    Article  CAS  PubMed  Google Scholar 

  • Mudge SR, Basnayake SWV, Moyle RL, Osabe K, Graham MW, Morgan TE, Birch RG (2013) Mature-stem expression of a silencing-resistant sucrose isomerase gene drives isomaltulose accumulation to high levels in sugarcane. Plant Biotechnol J 11:502–509

    Article  CAS  PubMed  Google Scholar 

  • Nayyar S, Sharma BK, Kaur A, Kalia A, Sanghera GS, Thind KS et al (2017) Red rot resistant transgenic sugarcane developed through expression of β-1,3-glucanase gene. PLoS One 12(6):e0179723. https://doi.org/10.1371/journal.pone.0179723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noguera A, Enrique R, Perera MF, Ostengo S Racedo J, Costilla D, Zossi S, Cuenya MI, Filippone MP, Welin B, Castagnaro AP (2015) Genetic characterization and field evaluation to recover parental phenotype in transgenic sugarcane: a step toward commercial release. Mol Breed 35:115. https://doi.org/10.1007/s11032-015-0300-y

    Article  CAS  Google Scholar 

  • Parisi C, Tillie P, Rodríguez-Cerezo E (2016) The global pipeline of GM crops out to 2020. Nat Biotechnol 34:32–36

    Article  CAS  Google Scholar 

  • Patade VY, Suprasanna P, Bapat VA (2008) Gamma irradiation of embryogenic callus cultures and in vitro selection for salt tolerance in sugarcane (Saccharum officinarum L.). Agric Sci China 7:101–105

    Article  Google Scholar 

  • Petrasovits LA, Zhao L, McQualter RB, Snell KD, Somleva MN, Patterson NA, Nielsen LK, Brumbley SM (2012) Enhanced polyhydroxybutyrate production in transgenic sugarcane. Plant Biotechnol J 10:569–578. https://doi.org/10.1111/j.1467-7652.2012.00686.x

    Article  PubMed  CAS  Google Scholar 

  • Philip A, Syamaladevi DP, Chakravarthi M, Gopinath K, Subramonian N (2013) 5′ regulatory region of ubiquitin 2 gene from Porteresia coarctata makes efficient promoters for transgene expression in monocots and dicots. Plant Cell Rep 32:1199–1210

    Article  CAS  PubMed  Google Scholar 

  • Plasterk RHA, Ketting RF (2000) The silence of the genes. Curr Opin Genet Dev 10:562–567

    Article  CAS  PubMed  Google Scholar 

  • Pribil M, Hermann SR, Dun GD, Karno XX, Ngo C, O’Neill S, Wang L, Bonnett GD, Chandler PM, Beveridge CA, Lakshmanan P (2007) Altering sugarcane shoot architecture through genetic engineering: prospects for increasing cane and sugar yield. In: Proceedings of the 2007 conference of the Australian Society of Sugar Cane Technologists held at Cairns, Queensland, Australia, 8–11 May 2007, pp 251–257. Australian Society of Sugar Cane Technologists

    Google Scholar 

  • Que Q, Elumalai S, Li X, Zhong H, Nalapalli S, Schweiner M, Fei X, Nuccio M, Kelliher T, GuW CZ, Chilton M-DM (2014) Maize transformation technology development for commercial event generation. Front Plant Sci 5:379. https://doi.org/10.3389/fpls.2014.00379

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramiro DA, Melotto-Passarin DM, Barbosa MDA, Santos FD, Gomez SGP, Junior NSM, Lam E, Carrer H (2016) Expression of Arabidopsis Bax Inhibitor-1 in transgenic sugarcane confers drought tolerance. Plant Biotechnol J 14:1826–1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan M, Yan X, Yao Z, Chuanyu Y, Bixia Z, Ying G et al (2007) Effects on enzyme activities and microbe in rhizosphere soil of ScMV-CP transgenic sugarcane. Chin Agric Sci Bull 23:381–386. https://doi.org/10.3969/j.issn.1000-6850.2007.04.088

    Article  Google Scholar 

  • Schubert D, Lechtenberg B, Forsbach A, Gils M, Bahadur S, Schmidt R (2004) Silencing in Arabidopsis T-DNA transformants: the predominant role of a gene-specific RNA sensing mechanism versus position effects. Plant Cell 16:2561–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyman SJ, Meyer GM, Carson D, Botha FC (1996) Establishment of embryogenic callus and transient gene expression in selected sugarcane varieties. S Afr J Bot 62:151–154

    Article  Google Scholar 

  • Srikanth J, Subramonian N, Premachandran MN (2011) Advances in transgenic research for insect resistance in sugarcane. Trop Plant Biol 4:52–61

    Article  CAS  Google Scholar 

  • Stoger E, Williams S, Keen D, Christou P (1998) Molecular characteristics of transgenic wheat and the effect on transgene expression. Transgenic Res 7:463–471

    Article  CAS  Google Scholar 

  • Taparia Y, Fouad WM, Gallo M, Altpeter F (2012a) Rapid production of transgenic sugarcane with the introduction of simple loci following biolistic transfer of a minimal expression cassette and direct embryogenesis. In Vitro Cell Dev Biol Plant 48:15

    Article  CAS  Google Scholar 

  • Taparia Y, Gallo M, Altpeter F (2012b) Comparison of direct and indirect embryogenesis protocols, biolistic gene transfer and selection parameters for efficient genetic transformation of sugarcane. Plant Cell Tissue Organ Cult 111:131–141

    Article  CAS  Google Scholar 

  • van der Vyver C, Conradie T, Kossmann J, Lloyd J (2013) In vitro selection of transgenic sugarcane callus utilizing a plant gene encoding a mutant form of acetolactate synthase. In Vitro Cell Dev Biol-Plant 49:198–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vickers JE, Grof CPL, Bonnett GD, Jackson PA, Morgan TE (2005) Effects of tissue culture, biolistic transformation, and introduction of PPO and SPS gene constructs on performance of sugarcane clones in the field. Aust J Agric Res 56:57–68

    Article  CAS  Google Scholar 

  • Waclawovsky AJ, Paloma MS, Lembke CG, Moore PH, Souza GM (2010) Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnol J 8:263–276

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Ghazanfar A (2006) Possible involvement of some secondary metabolites in salt tolerance of sugarcane. J Plant Physiol 163:723–730. https://doi.org/10.1016/005.07.007

    Article  PubMed  CAS  Google Scholar 

  • Wang Z-Z, Zhang S-Z, Yang B-P, Li Y-R (2005) Trehalose synthase gene transfer mediated by Agrobacterium tumefaciens enhances resistance to osmotic stress in sugarcane. Sugar Tech 7(1):49–54

    Article  CAS  Google Scholar 

  • Wei H, Wang ML, Moore PH, Albert HH (2003) Comparative expression analysis of two sugarcane polyubiquitin promoters and flanking sequences in transgenic plants. J Plant Physiol 160:1241–1251

    Article  CAS  PubMed  Google Scholar 

  • Weng LX, Deng HH, Xu JL, Li Q, Zhang YQ, Jiang ZD, Li QW, Chen JW, Zhang LH (2011) Transgenic sugarcane plants expressing high levels of modified cry1Ac provide effective control against stem borers in field trials. Transgenic Res 20(4):759–772

    Article  CAS  PubMed  Google Scholar 

  • Wilmink A, Dons JJM (1993) Selective agents and marker genes for use in transformation of monocotyledonous plants. Plant Mol Biol Rep 11:165–185

    Article  CAS  Google Scholar 

  • Wu H, Awan FS, Vilarinho A, Zeng Q, Kannan B, Phipps T, McCuiston J, Wang W, Caffall K, Altpeter F (2015) Transgene integration complexity and expression stability following biolistic or Agrobacterium-mediated transformation of sugarcane. In Vitro Cell Dev Biol Plant 51:603

    Article  CAS  Google Scholar 

  • Yao W, Ruan M, Qin L, Yang C, Chen R, Chen B, Zhang M (2017) Field performance of transgenic sugarcane lines resistant to sugarcane mosaic virus. Front Plant Sci 8:104. https://doi.org/10.3389/fpls.2017.00104

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Xu J, Birch RG (1998) Engineered detoxification confers resistance against a pathogenic bacterium. Nat Biotechnol 17:1021–1024

    Article  CAS  Google Scholar 

  • Zhang M, Zhuo X, Wang J, Wu Y, Yao W, Chen R (2014) Effective selection and regeneration of transgenic sugarcane plants using positive selection system. In Vitro Cell Dev Biol-Plant. https://doi.org/10.1007/s11627-014-9644-y

    Article  CAS  Google Scholar 

  • Zhang SZ, Zheng XQ, Lin JF, Guo LQ, Zan LM (2000) Cloning of trehalose synthase gene and transformation into sugarcane. J Agric Biotechnol 8(4):385–388

    Google Scholar 

  • Zhao Y, Qian Q, Wang H, Huang D (2007) Hereditary behavior of bar gene cassette is complex in rice mediated by particle bombardment. J Genetics Genomics 34:824–835

    Article  CAS  Google Scholar 

  • Zhou D, Xu L, Gao S, Guo J, Luo J, You Q, Que Y (2016) Cry1Ac Transgenic Sugarcane Does Not Affect the Diversity of Microbial Communities and Has No Significant Effect on Enzyme Activities in Rhizosphere Soil within One Crop Season. Front Plant Sci 7:265

    Google Scholar 

  • Zhu YZ, McCafferty H, Osterman G, Lim S, Agbayani R, Lehrer A, Schenck S, Komor E (2011) Genetic transformation with untranslatable coat protein gene of sugarcane yellow leaf virus reduces virus titers in sugarcane. Transgenic Res 20:503–512. https://doi.org/10.1007/s11248-010-9432-3

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nerkar, G., Thorat, A., Sheelavantmath, S., Kassa, H.B., Devarumath, R. (2018). Genetic Transformation of Sugarcane and Field Performance of Transgenic Sugarcane. In: Gosal, S., Wani, S. (eds) Biotechnologies of Crop Improvement, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-90650-8_9

Download citation

Publish with us

Policies and ethics