Skip to main content
Log in

Nature of stress and transgene locus influences transgene expression stability in barley

  • Orignal paper
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Stress and the nature of the transgene locus can affect transgene expression stability. These effects were studied in two, stably expressing, T6 populations of barley (Hordeum vulgare): bombardment-mediated, multi-copy lines with ubiquitin-driven bar and uidA or single-copy lines from Ds-mediated gene delivery with ubiquitin-driven bar alone. Imposing the environmental stresses, water and nutrient deprivation and heat shock, did not reproducibly affect transgene expression stability; however, high frequencies of heritable transcriptional gene silencing (TGS) occurred following in vitro culture after six generations of stable expression in the multi-copy subline, T3#30, but not in the other lines studied. T3#30 plants with complete TGS had epigenetic modification patterns exactly like those in an identical sibling subline, T3#31, which had significant reduction in transgene expression in the T3 generation and was completely transcriptionally silenced in the absence of imposed stresses in the T6 generation. Complete TGS in T3#30 plants correlated with methylation in the 5′UTR and intron of the ubi1 promoter complex and condensation of chromatin around the transgenes; DNA methylation likely occurred prior to chromatin condensation. Partial TGS in T3#30 also correlated with methylation of the ubi1 promoter complex, as occurred with complete TGS. T3#30 has a complex transgene structure with inverted repeat transgene fragments and a 3′-LTR from a barley retrotransposon, and therefore the transgene locus itself may affect its tendency to silence after in vitro culture and transgene silencing might result from host defense mechanisms activated by changes in plant developmental programming and/or stresses imposed during in vitro growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-dichlorophenoxyacetic acid

BAP:

6-benzylaminopurine

IBA:

indole butyric acid

MS:

Murishige and Skoog

RWC:

relative water content

References

  • Arnaud P, Goubely C, Pélissier T, Deragon J-M (2000) SINE retrotransposons can be used in vivo as nucleation centers for de novo methylation. Mol Cell Biol 20:3434–3441

    Article  PubMed  CAS  Google Scholar 

  • Bregitzer P, Tonks D (2003) Inheritance and expression of transgenes in barley, Hordeum vulgare. L Crop Sci 43:4–12

    Article  CAS  Google Scholar 

  • Bregitzer P, Zhang S, Cho M-J, Lemaux PG (2002) Reduced somaclonal variation in barley is associated with culturing highly differentiated, meristematic tissues. Crop Sci 42:1303–1308

    Article  Google Scholar 

  • Cassells AC, Curry RF (2001) Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers. Plant Cell Tissue Organ Cult 64:145–157

    Article  CAS  Google Scholar 

  • Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574

    Article  PubMed  CAS  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    Article  CAS  Google Scholar 

  • Conner AJ, Mlynárová L, Stiekema WJ, Nap JP (1998) Meiotic stability of transgene expression is unaffected by flanking matrix-associated region. Mol Breeding 4:47–58

    Article  CAS  Google Scholar 

  • Cooper B, Clarke JD, Budworth P, Kreps J, Hutchison D, Park S, Guimil S, Dunn M, Luginbühl P, Ellero C, Goff SA, Glazebrook J (2003) A network of rice genes associated with stress response and seed development. Proc Natl Acad Sci 100:4945–4950

    Article  PubMed  CAS  ADS  Google Scholar 

  • De Wilde C, Van Houdt H, De Buck S, Angenon G, De Jaeger G, Depicker A (2000) Plants as bioreactors for protein production: avoiding the problem of transgene silencing. Plant Mol Biol 43:347–359

    Article  PubMed  Google Scholar 

  • Finnegan EJ, Peacock WJ, Dennis ES (1996) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci 93:8449–8454

    Article  PubMed  CAS  ADS  Google Scholar 

  • Finnegan EJ, Peacock WJ, Dennis ES (2000) DNA methylation, a key regulator of plant development and other processes. Curr Opin Genet Dev 10:217–223

    Article  PubMed  CAS  Google Scholar 

  • Grandbastien MA (1998) Activation of plant retrotransposons under stress conditions. Trends Plant Sci 3:181–187

    Article  Google Scholar 

  • Halpin C (2005) Gene stacking in transgenic plants—The challenge for 21st century plant biotechnology. Plant Biotech J 3:141–155

    Article  CAS  Google Scholar 

  • Hunter CP (1988) Plant regeneration from microspores of barley, Hordeum vulgare. Wye College, University of London, Ashford, Kent

  • Iglesias VA, Moscone EA, Papp I, Neuhuber F, Michalowski S, Phelan T, Spiker S, Matzke M, Matzke AJM (1997) Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco. Plant Cell 9:1251–1264

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen SE, Sakai H, Finnegan EJ, Cao X, Meyerowitz EM (2000) Ectopic hypermethylation of flower-specific genes in Arabidopsis. Curr Biol 10:179–186

    Article  PubMed  CAS  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254

    Article  PubMed  CAS  Google Scholar 

  • James VA, Avart C, Worland B, Snape JW, Vain P (2002) The relationship between homozygous and hemizygous transgene expression levels over generations in populations of transgenic rice plants. Theor Appl Genet 104:553–561

    Article  PubMed  CAS  Google Scholar 

  • Kakutani T, Jeddeloh JA, Flowers SK, Munakata K, Richards EJ (1996) Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proc Natl Acad Sci 93:12406–12411

    Article  PubMed  CAS  ADS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2002) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106

    Article  PubMed  CAS  Google Scholar 

  • Köhne S, Neumann K, Pühler A, Broer I (1998) The heat-treatment induced reduction of the pat gene encoded herbicide resistance in Nicotiana tabacum is influenced by the transgene sequence. J Plant Physiol 153:631–642

    Google Scholar 

  • Koprek T, McElroy D, Louwerse J, Williams-Carrier R, Lemaux PG (2000) An efficient method for dispersing Ds elements in the barley genome as a tool for determining gene function. Plant J 24:253–263

    Article  PubMed  CAS  Google Scholar 

  • Koprek T, Rangel S, McElroy D, Louwerse JD, Williams-Carrier RE, Lemaux PG (2001) Transposon-mediated single-copy gene delivery leads to increased transgene expression stability in barley. Plant Physiol 125:1354–1362

    Article  PubMed  CAS  Google Scholar 

  • Kranthi Kumar P, Subrahmanyam NC (1999) Molecular changes at Rrn loci in barley (Hordeum vulgare L) hybrids with H bulbosum L). Genome 42:1127–1133

    Article  PubMed  Google Scholar 

  • Krishna JP (2001) Environmental influences on gene silencing. ISB News, August 2001

  • Kumpatla SP, Chandrasekharan MB, Iyer LM, Li G, Hall TC (1998) Genome intruder scanning and modulation systems and transgene silencing. Trends Plant Sci 3:97–104

    Article  Google Scholar 

  • Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3:622–673

    Article  CAS  Google Scholar 

  • Li G, Hall TC, Holmes-Davis R (2002) Plant chromatin: development and gene control. Bioessays 24:234–243

    Article  PubMed  CAS  Google Scholar 

  • Martienssen R, Barkan A, Taylor WC, Freeling M (1990) Somatically heritable switches in the DNA modification of Mu transposable elements monitored with a suppressible mutant in maize. Genes Dev 4:331–343

    PubMed  CAS  Google Scholar 

  • Matzke AJM, Neuhuber F, Park YD, Ambros PF, Matzke MA (1994) Homology-dependent gene silencing in transgenic plants: Epistatic silencing loci contain multiple copies of methylated transgenes. Mol Gen Genet 244:219–229

    Article  PubMed  CAS  Google Scholar 

  • Matzke MA, Matzke AJM, Eggleston WB (1996) Paramutation and transgene silencing: a common response to invasive DNA? Trends Plant Sci 11:382–388

    Article  Google Scholar 

  • Matzke MA, Mette MF, Matzke AJM (2000) Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Mol Biol 43:401–415

    Article  PubMed  CAS  Google Scholar 

  • Matzke MA, Aufsatz W, Kanno T, Mette MF, Matzke AJ (2002) Homology-dependent gene silencing and host defense in plants. Adv Genet 46:235–275

    Article  PubMed  CAS  Google Scholar 

  • Meng L, Bregitzer P, Zhang S, Lemaux PG (2003) Exon/intron region in Ubi1 promoter complex involved in transgene silencing in barley. Plant Mol Biol 53:327–340

    Article  PubMed  CAS  Google Scholar 

  • Meng L, Lemaux PG (2003) A simple and rapid method for nuclear run-on transcription assays in plants. Plant Mol Biol Rep 21:65–71

    CAS  Google Scholar 

  • Meyer P, Linn F, Heidmann I, Meyer H, Niedenhof I, Saedler H (1992) Endogenous and environmental factors influence 35S promoter methylation of a maize A1 gene construct in transgenic petunia and its colour phenotype. Mol Gen Genet 231:345–352

    Article  PubMed  CAS  Google Scholar 

  • Meza TJ, Kamfjord D, Hakelien AM, Evans I, Godager LH, Mandal A, Jakobsen KS, Aalen RB (2001) The frequency of silencing in Arabidopsis thaliana varies highly between progeny of siblings and can be influenced by environmental factors. Transgenic Res 10:53–67

    Article  PubMed  CAS  Google Scholar 

  • Morino K, Olsen O-A, Shimamoto K (1999) Silencing of an aleurone-specific gene in transgenic rice is caused by a rearranged transgene. Plant J 17:275–285

    Article  PubMed  CAS  Google Scholar 

  • Neumann K, Dröge-Laser W, Köhne S, Broer I (1997) Heat treatment results in a loss of transgene-encoded activities in several tobacco lines. Plant Physiol 115:939–947

    Article  PubMed  CAS  Google Scholar 

  • Orlando V (2003) Polycomb, epigenomes, and control of cell identity. Cell 112:599–606

    Article  PubMed  CAS  Google Scholar 

  • Palauqui JC, Vaucheret H (1995) Field trial analysis of nitrate reductase co-suppression: a comparative study of 38 combinations of transgene loci. Plant Mol Biol 29:149–159

    Article  PubMed  CAS  Google Scholar 

  • Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    Article  PubMed  CAS  Google Scholar 

  • Ronemus MJ, Galbiati M, Ticknor C, Chen J, Dellaporta SL (1996) Demethylation-induced developmental pleiotropy in Arabidopsis. Science 273:654–657

    PubMed  CAS  ADS  Google Scholar 

  • Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, Dennis ES (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11:445–458

    Article  PubMed  CAS  Google Scholar 

  • Vain P, James V, Worland B, Snape J (2002) Transgene behaviour across two generations in a large random population of transgenic rice plants produced by particle bombardment. Theor Appl Genet 105:878–889

    Article  PubMed  CAS  Google Scholar 

  • Walter C, Broer I, Hillemann D, Pühler A (1992) High frequency, heat treatment-induced inactivation of the phosphinothricin resistance gene in transgenic single cell suspension cultures of Medicago sativa. Mol Gen Genet 235:189–196

    Article  PubMed  CAS  Google Scholar 

  • Wan Y, Lemaux PG (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol 104:37–48

    PubMed  CAS  Google Scholar 

  • Waterhouse PM, Wang M-B, Lough T (2001) Gene silencing as an adaptive defence against viruses. Nature 411:834–842

    Article  PubMed  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Fessenden for technical assistance, Dr. P. Bregitzer for providing T6 seeds of line T3#30; Dr. T. Koprek for generating three Ds-mediated single-copy lines, S. Rangel for generation advance and providing T6 seeds of the three Ds lines, Dr. S. Zhang for helpful discussions, K. Newcomb for care of the plants and B. Alonso for superb graphics assistance on the figures. The Torrey Mesa Research Institute (TMRI) supported LM; the USDA Cooperative Extension Service through the University of California supported PGL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peggy G. Lemaux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, L., Ziv, M. & Lemaux, P.G. Nature of stress and transgene locus influences transgene expression stability in barley. Plant Mol Biol 62, 15–28 (2006). https://doi.org/10.1007/s11103-006-9000-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9000-7

Keywords

Navigation