Skip to main content
Log in

Transgene integration complexity and expression stability following biolistic or Agrobacterium-mediated transformation of sugarcane

  • Biotechnology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Sugarcane (Saccharum spp. hybrids) accounts for 80% of the table sugar produced worldwide and is also a prime feedstock for biofuel production. However, very few studies are available for directly comparing Agrobacterium tumefaciens-mediated transfer of T-DNA (AMT) and biolistic transfer of minimal expression cassettes (BLT MC) regarding transgene complexity and expression stability. In this study, the transformation efficiency, transgene integration pattern, expression level, and expression stability were compared in the commercially important sugarcane cultivar CP88-1762. A total of 312 transgenic lines derived from AMT and 250 lines derived from BLT MC were identified by PCR from genomic DNA using nptII-specific primers. Lines were analyzed with both qPCR (TaqMan®) and NPTII ELISA to determine the nptII transgene copy number and expression level. The results of Southern blot analysis on selected lines were highly correlated to the qPCR results. There were no significant differences between the two transformation systems for transformation efficiency, frequency of single copy integration, or level and stability of transgene expression when carried out with the same expression cassette, tissue culture, and selection procedure in 12 independent experiments. These findings suggested that both BLT MC and AMT provide suitable platforms for generation of elite sugarcane events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

References

  • Agrawal PK, Kohli A, Twyman RM, Christou P (2005) Transformation of plants with multiple cassettes generates simple transgene integration patterns and high expression levels. Mol Breed 16:247–260

    Article  CAS  Google Scholar 

  • Altpeter F, Oraby H (2010) Sugarcane. In: Kempken F, Jung C (eds) Genetic modification of plants. Springer, Heidelberg, pp 453–472

    Chapter  Google Scholar 

  • Altpeter F, Sandhu S (2010) Genetic transformation–biolistics. In: Davey MR, Anthony P (eds) Plant cell culture: essential methods. Scion Publishing Ltd, Oxfordshire, pp 217–240

    Chapter  Google Scholar 

  • Altpeter F, Vasil V, Srivastava V, Stöger E, Vasil IK (1996) Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Rep 16:12–17

    Article  CAS  PubMed  Google Scholar 

  • Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, Daniell H, Datta K, Datta S, Dix PJ (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15:305–327

    Article  Google Scholar 

  • Arencibia AD, Carmona ER, Tellez P, Chan M-T, Yu S-M, Trujillo LE, Oramas P (1998) An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res 7:213–222

    Article  CAS  Google Scholar 

  • Beltrán J, Jaimes H, Echeverry M, Ladino Y, López D, Duque MC, Chavarriaga P, Tohme J (2009) Quantitative analysis of transgenes in cassava plants using real-time PCR technology. In Vitro Cell Dev Biol Plant 45:48–56

    Article  Google Scholar 

  • Bower R, Birch RG (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J 2:409–416

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Breitler JC, Labeyrie A, Meynard D, Legavre T, Guiderdoni E (2002) Efficient microprojectile bombardment-mediated transformation of rice using gene cassettes. Theor Appl Genet 104:709–719

    Article  CAS  PubMed  Google Scholar 

  • Breitler JC, Vassal JM, Del Mar CM, Meynard D, Marfà V, Melé E, Royer M, Murillo I, San Segundo B, Guiderdoni E (2004) Bt rice harbouring cry genes controlled by a constitutive or wound-inducible promoter: protection and transgene expression under Mediterranean field conditions. Plant Biotechnol J 2:417–430

    Article  CAS  PubMed  Google Scholar 

  • Chengalrayan K, Gallo-Meagher M (2001) Effect of various growth regulators on shoot regeneration of sugarcane. In Vitro Cell Dev Biol Plant 37:434–439

    Article  CAS  Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689

    Article  CAS  PubMed  Google Scholar 

  • Dai S, Zheng P, Marmey P, Zhang S, Tian W, Chen S, Beachy RN, Fauquet C (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breed 7:25–33

    Article  CAS  Google Scholar 

  • Fu X, Fontana S, Bong BB, Tinjuangjun P, Sudhakar D, Twyman RM, Christou P, Kohli A (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res 9:11–19

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Long D, Lenk I, Nielsen KK (2008) Comparative analysis of transgenic tall fescue (Festuca arundinacea Schreb.) plants obtained by Agrobacterium-mediated transformation and particle bombardment. Plant Cell Rep 27:1601–1609

    Article  CAS  PubMed  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  CAS  PubMed  Google Scholar 

  • Ingham DJ, Beer S, Money S, Hansen G (2001) Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotechniques 31:132–141

    CAS  PubMed  Google Scholar 

  • Jackson MA, Anderson DJ, Birch RG (2013) Comparison of Agrobacterium and particle bombardment using whole plasmid or minimal cassette for production of high-expressing, low-copy transgenic plants. Transgenic Res 22:143–151

    Article  CAS  PubMed  Google Scholar 

  • Jayaraj J, Liang GH, Muthukrishnan S, Punja ZK (2008) Generation of low copy number and stably expressing transgenic creeping bentgrass plants using minimal gene cassette bombardment. Biol Plant 52:215–221

    Article  CAS  Google Scholar 

  • Joyce P, Hermann S, O’Connell A, Dinh Q, Shumbe L, Lakshmanan P (2014) Field performance of transgenic sugarcane produced using Agrobacterium and biolistics methods. Plant Biotechnol J 12:411–424

    Article  CAS  PubMed  Google Scholar 

  • Kemper EL, Joséda Silva M, Arruda P (1996) Effect of microprojectile bombardment parameters and osmotic treatment on particle penetration and tissue damage in transiently transformed cultured immature maize (Zea mays L.) embryos. Plant Sci 121:85–93

    Article  Google Scholar 

  • Khanna HK, Raina SK (2002) Elite indica transgenic rice plants expressing modified Cry1Ac endotoxin of Bacillus thuringiensis show enhanced resistance to yellow stem borer (Scirpophaga incertulas). Transgenic Res 11:411–423

    Article  CAS  PubMed  Google Scholar 

  • Kohli A, Gahakwa D, Vain P, Laurie DA, Christou P (1999) Transgene expression in rice engineered through particle bombardment: molecular factors controlling stable expression and transgene silencing. Planta 208:88–97

    Article  CAS  Google Scholar 

  • Liu M, Yang J, Cheng Y, An L (2009) Optimization of soybean (Glycine max (L.) Merrill) in planta ovary transformation using a linear minimal gus gene cassette. J of Zhejiang Univ-Sc B 10:870–876

    Article  CAS  Google Scholar 

  • Loc NT, Tinjuangjun P, Gatehouse AMR, Christou P, Gatehouse JA (2002) Linear transgene constructs lacking vector backbone sequences generate transgenic rice plants which accumulate higher levels of proteins conferring insect resistance. Mol Breed 9:231–244

    Article  CAS  Google Scholar 

  • Lowe BA, Prakash NS, Way M, Mann MT, Spencer TM, Boddupalli RS (2009) Enhanced single copy integration events in corn via particle bombardment using low quantities of DNA. Transgenic Res 18:831–840

    Article  CAS  PubMed  Google Scholar 

  • Meng L, Ziv M, Lemaux PG (2006) Nature of stress and transgene locus influences transgene expression stability in barley. Plant Mol Biol 62:15–28

    Article  CAS  PubMed  Google Scholar 

  • Meyer P (1995) Understanding and controlling transgene expression. Trends Biotechnol 13:332–337

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Report 15:8–15

    Article  CAS  Google Scholar 

  • Prakash NS, Bhojaraja R, Shivbachan SK, Priya GGH, Nagraj TK, Prasad V, Babu VS, Jayaprakash TL, Dasgupta S, Spencer TM (2009) Marker-free transgenic corn plant production through co-bombardment. Plant Cell Rep 28:1655–1668

    Article  Google Scholar 

  • Que Q, Elumalai S, Li X, Zhong H, Nalapalli S, Schweiner M, Fei X, Nuccio M, Kelliher T, Gu W, Chen Z, Chilton M-DM (2014) Maize transformation technology development for commercial event generation. Front Plant Sci 5:379. doi:10.3389/fpls.2014.00379

    Article  PubMed Central  PubMed  Google Scholar 

  • Romano A, Raemakers K, Bernardi J, Visser R, Mooibroek H (2003) Transgene organisation in potato after particle bombardment-mediated (co-) transformation using plasmids and gene cassettes. Transgenic Res 12:461–473

    Article  CAS  PubMed  Google Scholar 

  • Sandhu S, Altpeter F (2008) Co-integration, co-expression and inheritance of unlinked minimal transgene expression cassettes in an apomictic turf and forage grass (Paspalum notatum Flugge). Plant Cell Rep 27:1755–1765

    Article  CAS  PubMed  Google Scholar 

  • Schubert D, Lechtenberg B, Forsbach A, Gils M, Bahadur S, Schmidt R (2004) Silencing in Arabidopsis T-DNA transformants: the predominant role of a gene-specific RNA sensing mechanism versus position effects. The Plant Cell 16:2561–2572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shou H, Frame BR, Whitham SA, Wang K (2004) Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol Breed 13:201–208

    Article  CAS  Google Scholar 

  • Snyder GW, Ingersoll JC, Smigocki AC, Owens LD (1999) Introduction of pathogen defense genes and a cytokinin biosynthesis gene into sugarbeet (Beta vulgaris L.) by Agrobacterium or particle bombardment. Plant Cell Rep 18:829–834

    Article  CAS  Google Scholar 

  • Stoger E, Williams S, Keen D, Christou P (1998) Molecular characteristics of transgenic wheat and the effect on transgene expression. Transgenic Res 7:463–471

    Article  CAS  Google Scholar 

  • Taparia Y, Fouad WM, Gallo M, Altpeter F (2012a) Rapid production of transgenic sugarcane with the introduction of simple loci following biolistic transfer of a minimal expression cassette and direct embryogenesis. In Vitro Cell Dev Biol Plant 48:15–22

    Article  CAS  Google Scholar 

  • Taparia Y, Gallo M, Altpeter F (2012b) Comparison of direct and indirect embryogenesis protocols, biolistic gene transfer and selection parameters for efficient genetic transformation of sugarcane. Plant Cell Tissue Organ Cult 111:131–141

    Article  CAS  Google Scholar 

  • Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780–789

    Article  CAS  PubMed  Google Scholar 

  • Vain P, McMullen MD, Finer JJ (1993) Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep 12:84–88

    Article  CAS  PubMed  Google Scholar 

  • Vianna GR, Albino MMC, Dias BBA, Silva LD, Rech EL, Aragao FJL (2004) Fragment DNA as vector for genetic transformation of bean (Phaseolus vulgaris L.). Sci Hortic 99:371–378

    Article  CAS  Google Scholar 

  • Vidal JR, Kikkert JR, Donzelli BD, Wallace PG, Reisch BI (2006) Biolistic transformation of grapevine using minimal gene cassette technology. Plant Cell Rep 25:807–814

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Altpeter F (2015) Sugarcane (Saccharum Spp. Hybrids). In: Wang K (ed) Agrobacterium protocols. Springer, Heidelberg, Germany, pp 307–316

    Google Scholar 

  • Yao Q, Cong L, Chang JL, Li KX, Yang GX, He GY (2006) Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment. J Exp Bot 57:3737–3746

    Article  CAS  PubMed  Google Scholar 

  • Yao Q, Cong L, He G, Chang J, Li K, Yang G (2007) Optimization of wheat co-transformation procedure with gene cassettes resulted in an improvement in transformation frequency. Mol Biol Rep 34:61–67

    Article  CAS  PubMed  Google Scholar 

  • Zalewski W, Orczyk W, Gasparis S, Nadolska-Orczyk A (2012) HvCKX2 gene silencing by biolistic or Agrobacterium-mediated transformation in barley leads to different phenotypes. BMC Plant Biol 12:206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang W-J, Dewey RE, Boss W, Phillippy BQ, Qu R (2013) Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses. Plant Mol Biol 81:273–286

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Qian Q, Wang H-Z, Huang D-N (2007) Co-transformation of gene expression cassettes via particle bombardment to generate safe transgenic plant without any unwanted DNA. In Vitro Cell Dev Biol Plant 43:328–334

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Syngenta for financial support, Dr. Robert Gilbert (Everglades Research and Educational Center, UF-IFAS, Belle Glade, FL) for providing tops of sugarcane cultivar CP88-1762 and Sun Gro Horticulture, Apopka, FL for donation of the Fafard # 2 potting mix.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredy Altpeter.

Additional information

Editor: John Finer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Awan, F.S., Vilarinho, A. et al. Transgene integration complexity and expression stability following biolistic or Agrobacterium-mediated transformation of sugarcane. In Vitro Cell.Dev.Biol.-Plant 51, 603–611 (2015). https://doi.org/10.1007/s11627-015-9710-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-015-9710-0

Keywords

Navigation