Skip to main content

Genetic Mapping of Complex Traits in Cucurbits

  • Chapter
  • First Online:
Genetics and Genomics of Cucurbitaceae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 20))

Abstract

The broad phenotypic diversity displayed among species belonging to the Cucurbitaceae family for interesting agronomical traits is mostly under polygenic control. Important crops included in this family, such as melon, cucumber, watermelon and squash, have been studied intensively in the last decades to understand the genetic control of this diversity. The development of genomic sequencing projects for different cucurbit species has facilitated the generation of saturated genetic maps, making possible the consistent identification and localization of QTLs involved in interesting traits related to yield, fruit quality, fruit morphology, vegetative growth or disease resistance, among others. In the current chapter, the mapping approaches for genetic dissection of complex traits in the four major cucurbit species mentioned above has been compiled, including a summary of the identified QTLs for the most relevant traits for each species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelmohsin ME, Pitrat M. Pleiotropic effect of sex expression on fruit shape in melon. In: Pitrat M, editor. 9th EUCARPIA meeting on genetics and breeding of Cucurbitaceae. Avignon: INRA; 2008. p. 551–6.

    Google Scholar 

  • Argyris JM, Ruiz-Herrera A, Madriz-Masis P, Sanseverino W, Morata J, Pujol M, et al. Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly. BMC Genomics. 2015;16:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ayub R, Guis M, BenAmor M, Gillot L, Roustan JP, Latche A, et al. Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nat Biotechnol. 1996;14:862–6.

    Article  CAS  PubMed  Google Scholar 

  • Baudracco-Arnas S, Pitrat M. A genetic map of melon (Cucumis melo L) with RFLP, RAPD, isozyme, disease resistance and morphological markers. Theor Appl Genet. 1996;93:57–64.

    Article  CAS  PubMed  Google Scholar 

  • Blanca J, Cañizares J, Roig C, Ziarsolo P, Nuez F, Picó B. Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics. 2011;12:104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bo K, Ma Z, Chen J, Weng Y. Molecular mapping reveals structural rearrangements and quantitative trait loci underlying traits with local adaptation in semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis Qi et Yuan). Theor Appl Genet. 2015;128:25–39.

    Article  CAS  PubMed  Google Scholar 

  • Boissot N, Thomas S, Sauvion N, Marchal C, Pavis C, Dogimont C. Mapping and validation of QTLs for resistance to aphids and whiteflies in melon. Theor Appl Genet. 2010;121:9–20.

    Article  PubMed  Google Scholar 

  • Boualem A, Fergany M, Fernandez R, Troadec C, Martin A, Morin H, et al. A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science. 2008;321:836–8.

    Article  CAS  PubMed  Google Scholar 

  • Boualem A, Troadec C, Kovalski I, Sari MA, Perl-Treves R, Bendahmane A. A conserved ethylene biosynthesis enzyme leads to andromonoecy in two Cucumis species. PLoS One. 2009;4:e6144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bradeen JM, Staub JE, Wye C, Antonise R, Peleman J. Towards an expanded and integrated linkage map of cucumber (Cucumis sativus L.). Genome. 2000;44:111–9.

    Article  Google Scholar 

  • Brotman Y, Normantovich M, Goldenberg Z, Zvirin Z, Kovalski I, Stovbun N, et al. Dual resistance of melon to Fusarium oxysporum races 0 and 2 and to Papaya ring-spot virus is controlled by a pair of head-to-head-oriented NB-LRR genes of unusual architecture. Mol Plant. 2013;6:235–8.

    Article  CAS  PubMed  Google Scholar 

  • Brown RN, Myers JR. A genetic map of squash (Cucurbita ssp.) with randomly amplified polymorphic DNA markers and morphological markers. J Am Soc Hortic Sci. 2002;127:568–75.

    CAS  Google Scholar 

  • Bu F, Chen H, Shi Q, Zhou Q, Gao D, Zhang Z, Huang S. A major quantitative trait locus conferring subgynoecy in cucumber. Theor Appl Genet. 2016;129:97–104. doi:10.1007/s00122-015-2612-z.

    Google Scholar 

  • Burger Y, Saar U, Katzir N, Paris HS, Yeselson Y, Levin I, et al. A single recessive gene for sucrose accumulation in Cucumis melo fruit. J Am Soc Hortic Sci. 2002;127:938–43.

    CAS  Google Scholar 

  • Call AD, Wehner TC. Gene list 2010 for cucumber. Cucurbit Genet Coop Rep. 2011;34:69–103.

    Google Scholar 

  • Cohen S, Tzuri G, Harel-Beja R, Itkin M, Portnoy V, Sa’ar U, et al. Co-mapping studies of QTLs for fruit acidity and candidate genes of organic acid metabolism and proton transport in sweet melon (Cucumis melo L.). Theor Appl Genet. 2012;125:343–53.

    Article  CAS  PubMed  Google Scholar 

  • Cohen S, Itkin M, Yeselson Y, Tzuri G, Portnoy V, Harel-Baja R, et al. The PH gene determines fruit acidity and contributes to the evolution of sweet melons. Nat Commun. 2014;5:4026.

    Article  CAS  PubMed  Google Scholar 

  • Cuevas HE, Staub JE, Simon PW, Zalapa JE, McCreight JD. Mapping of genetic loci that regulate quantity of beta-carotene in fruit of US Western Shipping melon (Cucumis melo L.). Theor Appl Genet. 2008;117:1345–59.

    Article  CAS  PubMed  Google Scholar 

  • Danin-Poleg Y, Tadmor Y, Tzuri G, Reis N, Hirschberg J, Katzir N. Construction of a genetic map of melon with molecular markers and horticultural traits, and localization of genes associated with ZYMV resistance. Euphytica. 2002;125:373–84.

    Article  CAS  Google Scholar 

  • Deleu W, Esteras C, Roig C, Gonzalez-To M, Fernandez-Silva I, Gonzalez-Ibeas D, et al. A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biol. 2009;9:90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diaz A, Fergany M, Formisano G, Ziarsolo P, Blanca J, Fei ZJ, et al. A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biol. 2011;11:111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz A, Zarouri B, Fergany M, Eduardo I, Alvarez JM, Pico B, et al. Mapping and introgression of QTL involved in fruit shape transgressive segregation into ‘Piel de Sapo’ melon (Cucumis melo L.). Plos One. 2014;9:e104188.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diaz A, Forment J, Argyris JM, Fukino N, Tzuri G, Harel-Beja R, et al. Anchoring the consensus ICuGI genetic map to the melon (Cucumis melo L.) genome. Mol Breed. 2015;35:7.

    Article  CAS  Google Scholar 

  • Dogimont C, Chovelon V, Pauquet J, Boualem A, Bendahmane A. The Vat locus encodes for a CC-NBS-LRR protein that confers resistance to Aphis gossypii infestation and A. gossypii-mediated virus resistance. Plant J. 2014;80:993–1004.

    Article  CAS  PubMed  Google Scholar 

  • Eduardo I, Arus P, Monforte AJ, Obando J, Fernandez-Trujillo JP, Martinez JA, et al. Estimating the genetic architecture of fruit quality traits in melon using a genomic library of near isogenic lines. J Am Soc Hortic Sci. 2007;132:80–9.

    Google Scholar 

  • Essafi A, Diaz-Pendon JA, Moriones E, Monforte AJ, Garcia-Mas J, Martin-Hernandez AM. Dissection of the oligogenic resistance to Cucumber mosaic virus in the melon accession PI 161375. Theor Appl Genet. 2009;118:275–84.

    Article  CAS  PubMed  Google Scholar 

  • Esteras C, Gómez P, Monforte AJ, Blanca J, Vicente-Dólera N, et al. High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genom. 2012;13:80.

    Article  CAS  Google Scholar 

  • Esteras C, Formisano G, Roig C, Díaz A, Blanca J, et al. SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theor Appl Genet. 2013;126:1285–303.

    Article  CAS  PubMed  Google Scholar 

  • Fazio G, Staub JE, Stevens MR. Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor Appl Genet. 2003;107:864–74.

    Article  CAS  PubMed  Google Scholar 

  • Feder A, Burger J, Gao S, Lewinsohn E, Katzir N, Schaffer AA, et al. A Kelch domain-containing F-Box coding gene negatively regulates flavonoid accumulation in muskmelon. Plant Phys. 2015;169:1714–26.

    Google Scholar 

  • Fernandez-Silva I, Eduardo I, Blanca J, Esteras C, Pico B, Nuez F, et al. Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor Appl Genet. 2008;118:139–50.

    Article  CAS  PubMed  Google Scholar 

  • Ferriol M, Picó B, Nuez F. Morphological and molecular diversity of a collection of Cucurbita maxima landraces. Am Soc Hort Sci. 2004;129:60–9.

    CAS  Google Scholar 

  • Fita A, Pico B, Monforte AJ, Nuez F. Genetics of root system architecture using near-isogenic lines of melon. J Am Soc Hortic Sci. 2008;133:448–58.

    Google Scholar 

  • Fukino N, Ohara T, Monforte A, Sugiyama M, Sakata Y, Kunihisa M, et al. Identification of QTLs for resistance to powdery mildew and SSR markers diagnostic for powdery mildew resistance genes in melon (Cucumis melo L.). Theor Appl Genet. 2008;118:165–75.

    Article  CAS  PubMed  Google Scholar 

  • Fukino N, Ohara T, Sugiyama M, Kubo N, Hirai M, Sakata Y, et al. Mapping of a gene that confers short lateral branching (slb) in melon (Cucumis melo L.). Euphytica. 2012;187:133–43.

    Article  CAS  Google Scholar 

  • Fukino N, Yoshioka Y, Sugiyama M, Sakata Y, Matsumoto S. Identification and validation of powdery mildew (Podosphaera xanthii)-resistant loci in recombinant inbred lines of cucumber (Cucumis sativus L.). Mol Breed. 2013;32:267–77.

    Article  CAS  Google Scholar 

  • Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, Gonzalez VM, et al. The genome of melon (Cucumis melo L.). Proc Natl Acad Sci U S A. 2012;109:11872–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonda I, Lev S, Bar E, Sikron N, Portnoy V, Davidovich-Rikanati R, et al. Catabolism of L-methionine in the formation of sulfur and other volatiles in melon (Cucumis melo L.) fruit. Plant J. 2013;74:458–72.

    Article  CAS  PubMed  Google Scholar 

  • Gong L, Stift G, Kofler R, Pachner M, Lelley T. Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L. Theor Appl Genet. 2008a;117:37–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong L, Pachner M, Kalai K, Lelley T. SSR-based genetic linkage map of Cucurbita moschata and its synteny with Cucurbita pepo. Genome. 2008b;51:878–87.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalo MJ, Oliver M, Garcia-Mas J, Monforte AJ, Dolcet-Sanjuan R, Katzir N, et al. Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theor Appl Genet. 2005;110:802–11.

    Article  CAS  PubMed  Google Scholar 

  • Guiu-Aragones C, Monforte AJ, Saladie M, Correa RX, Garcia-Mas J, Martin-Hernandez AM. The complex resistance to cucumber mosaic cucumovirus (CMV) in the melon accession PI161375 is governed by one gene and at least two quantitative trait loci. Mol Breed. 2014;34:351–62.

    Article  CAS  Google Scholar 

  • Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet. 2013;45:51–U82.

    Article  CAS  PubMed  Google Scholar 

  • Harel-Beja R, Tzuri G, Portnoy V, Lotan-Pompan M, Lev S, Cohen S, et al. A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theor Appl Genet. 2010;121:511–33.

    Article  CAS  PubMed  Google Scholar 

  • Hashizume T, Shimamoto I, Harushima Y, Yui M, Sato T, Imai T, Hirai M. Construction of a linkage map for watermelon (Citrullus lanatus (Thunb.) Matsum & Nakai) using random amplified polymorphic DNA (RAPD). Euphytica. 1996;90:265–73.

    Article  CAS  Google Scholar 

  • Hashizume T, Shimamoto I, Hirai M. Construction of a linkage map and QTL analysis of horticultural traits for watermelon Citrullus lanatus (Thunb.) Matsum & Nakai using RAPD, RFLP and ISSR markers. Theor Appl Genet. 2003;106:779–85.

    Article  CAS  PubMed  Google Scholar 

  • He X, Li Y, Pandey S, Yandell BS, Pathak M, Weng Y. QTL mapping of powdery mildew resistance in WI 2757 cucumber (Cucumis sativus L.). Theor Appl Genet. 2013;126:2149–61.

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, et al. The genome of the cucumber, Cucumis sativus L. Nat Genet. 2009;41:1275–81.

    Article  CAS  PubMed  Google Scholar 

  • Hughes MB. The inheritance of 2 characters of Cucumis melo and their interrelationship. Proc Amer Soc Hort Sci. 1948;52:399–402.

    Google Scholar 

  • Hwang J, Oh J, Kim Z, Staub JE, Chung SM, Park Y. Fine genetic mapping of a locus controlling short internode length in melon (Cucumis melo L.). Mol Breed. 2014;34:949–61.

    Article  CAS  Google Scholar 

  • Iman MK, Abo-Bakr MA, Hanna HY. Inheritance of some economic characters in crosses between sweet melon and snake cucumber. I. Inheritance of qualitative characters. Assiut J Ag Sci. 1972;3:363–80.

    Google Scholar 

  • Joobeur T, King JJ, Nolin SJ, Thomas CE, Dean RA. The fusarium wilt resistance locus Fom-2 of melon contains a single resistance gene with complex features. Plant J. 2004;39:283–97.

    Article  CAS  PubMed  Google Scholar 

  • Kennard WC, Havey MJ. Quantitative trait analysis of fruit quality in cucumber: QTL detection, confirmation, and comparison with mating-design variation. Theor Appl Genet. 1995;91:53–61.

    PubMed  Google Scholar 

  • Kennard WC, Poetter K, Dijkhuizen A, Meglic V, Staub JE, Havey MJ. Linkages among RFLP, RAPD, isozyme, disease-resistance, and morphological markers in narrow and wide crosses of cucumber. Theor Appl Genet. 1994;89:42–8.

    CAS  Google Scholar 

  • Kim H, Han D, Kang J, Choi Y, Levi A, Lee GP, et al. Sequence-characterized amplified polymorphism markers for selecting rind stripe pattern in watermelon (Citrullus lanatus L.). Hort Environ Biotech. 2015;56:341–9.

    Article  CAS  Google Scholar 

  • Lambel S, Lanini B, Vivoda E, Fauve J, Wechter WP, Harris-Shultz KR, et al. A major QTL associated with Fusarium oxysporum race 1 resistance identified in genetic populations derived from closely related watermelon lines using selective genotyping and genotyping-by-sequencing for SNP discovery. Theor Appl Genet. 2014;127:2105–15.

    Article  CAS  PubMed  Google Scholar 

  • Lee YH, Jeon HJ, Hong KH, Kim BD. Use of random amplified polymorphic DNA for linkage group analysis in an interspecific cross hybrid F2 generation of Cucurbita. J Kor Soc Hortic Sci. 1995;36:323–30.

    CAS  Google Scholar 

  • Leida C, Moser C, Esteras C, Sulpice R, Lunn JE, de Langen F, et al. Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genet. 2015;16:28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levi A, Thomas CE, Zhang XP, Joobeur T, Dean RA, Wehner TC, et al. A genetic linkage map for watermelon based on randomly amplified polymorphic DNA markers. J Am Soc Hortic Sci. 2001;126(6):730–7.

    CAS  Google Scholar 

  • Levi A, Newman M, Reddy UK, Zhang X, Xu Y. ISSR and AFLP markers differ among American watermelon cultivars with limited genetic diversity. Am Soc Hort Sci. 2004;129:553–8.

    CAS  Google Scholar 

  • Levi A, Wechter P, Massey L, Carter L, Hopkins D. An extended genetic linkage map for watermelon based on a testcross and a BC2F2 population. Am J Plant Sci. 2011;2:93–110.

    Article  CAS  Google Scholar 

  • Lewinsohn E, Sitrit Y, Bar E, Azulay Y, Meir A, Zamir D, et al. Carotenoid pigmentation affects the volatile composition of tomato and watermelon fruits, as revealed by comparative genetic analyses. J Agric Food Chem. 2005;53:3142–8.

    Article  CAS  PubMed  Google Scholar 

  • Li XZ, Yuan XJ, Jiang S, Pan JS, Deng SL, Wang G, He HL, Wu AZ, Zhu LH, Koba T, Cai R. Detecting QTLs for plant architecture traits in cucumber (Cucumis sativus L.). Breed Sci. 2008;58:453–60.

    Article  Google Scholar 

  • Liu S, Gao P, Wang X, Davis AR, Baloch AM, Luan F. Mapping of quantitative trait loci for lycopene content and fruit traits in Citrullus lanatus. Euphytica. 2015;202:411–26.

    Article  CAS  Google Scholar 

  • Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, et al. QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet. 2014;127:1491–9.

    Article  PubMed  Google Scholar 

  • Lu HW, Miao H, Tian GL, Wehner TC, Gu XF, Zhang SP. Molecular mapping and candidate gene analysis for yellow fruit flesh in cucumber. Mol Breed. 2015;35:64–72.

    Article  CAS  Google Scholar 

  • McGregor CE, Waters V, Vashisth T, Abdel-Haleem H. Flowering time in watermelon is associated with a major quantitative trait locus on chromosome 3. J Am Soc Hortic Sci. 2014;139:48–53.

    Google Scholar 

  • Meru G, McGregor C. Genetic mapping of seed traits correlated with seed oil percentage in watermelon. HortScience. 2013;48:955–9.

    Google Scholar 

  • Meru G, McGregor C. Quantitative trait loci and candidate genes associated with fatty acid content of watermelon seed. J Am Soc Hortic Sci. 2014;139:433–41.

    CAS  Google Scholar 

  • Miao H, Zhang S, Wang X, Zhang Z, Li M, Mu S, et al. A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica. 2011;182:167–76.

    Article  Google Scholar 

  • Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arus P. Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet. 2004;108:750–8.

    Article  CAS  PubMed  Google Scholar 

  • Monforte AJ, Diaz A, Cano-Delgado A, van der Knaap E. The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. J Exp Bot. 2014;65:4625–37.

    Article  CAS  PubMed  Google Scholar 

  • Moreno E, Obando JM, Dos-Santos N, Fernandez-Trujillo JP, Monforte AJ, Garcia-Mas J. Candidate genes and QTLs for fruit ripening and softening in melon. Theor Appl Genet. 2008;116:589–602.

    Article  CAS  PubMed  Google Scholar 

  • Navot N, Sarfatti M, Zamir D. Linkage relationships of genes affecting bitterness and flesh color in watermelon. J Hered. 1990;81:162–5.

    Google Scholar 

  • Nie J, He H, Peng J, Yang X, Bie B, Zhao J, Wang Y, Si L, Pan J-S, Cai R. Identification and fine mapping of pm5.1: a recessive gene for powdery mildew resistance in cucumber (Cucumis sativus L.). Mol Breed. 2015;35:7.

    Article  CAS  Google Scholar 

  • Nieto C, Morales M, Orjeda G, Clepet C, Monfort A, Sturbois B, et al. An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J. 2006;48:452–62.

    Article  CAS  PubMed  Google Scholar 

  • Nimmakayala P, Levi A, Abburi L, Abburi VL, Tomason YR, Saminathan T, et al. Single nucleotide polymorphisms generated by genotyping by sequencing to characterize genome-wide diversity, linkage disequilibrium, and selective sweeps in cultivated watermelon. BMC Genomics. 2014;15:767.

    Article  PubMed  PubMed Central  Google Scholar 

  • Obando-Ulloa JM, Moreno E, Garcia-Mas J, Nicolai B, Lammertyn J, Monforte AJ, et al. Climacteric or non-climacteric behavior in melon fruit – 1. Aroma volatiles. Postharvest Biol Technol. 2008;49:27–37.

    Article  CAS  Google Scholar 

  • Obando-Ulloa JM, Eduardo I, Monforte AJ, Fernandez-Trujillo JP. Identification of QTLs related to sugar and organic acid composition in melon using near-isogenic lines. Sci Hortic. 2009;121:425–33.

    Article  CAS  Google Scholar 

  • Obando-Ulloa JM, Ruiz J, Monforte AJ, Fernandez-Trujillo JP. Aroma profile of a collection of near-isogenic lines of melon (Cucumis melo L.). Food Chem. 2010;118:815.

    Article  CAS  Google Scholar 

  • Oliver M, Garcia-Mas J, Cardus M, Pueyo N, Lopez-Sese A, Arroyo M, et al. Construction of a reference linkage map for melon. Genome. 2001;44:836–45.

    Article  CAS  PubMed  Google Scholar 

  • Palomares-Rius FJ, Viruel MA, Yuste-Lisbona FJ, Lopez-Sese AI, Gomez-Guillamon ML. Simple sequence repeat markers linked to QTL for resistance to watermelon mosaic virus in melon. Theor Appl Genet. 2011;123:1207–14.

    Article  PubMed  Google Scholar 

  • Pang X, Zhou X, Wan H, Chen J. QTL mapping of Downy mildew resistance in an introgression line derived from interspecific hybridization between cucumber and Cucumis hystrix. J Phytopathol. 2013;161:536–43.

    Article  Google Scholar 

  • Paris H. In summer squash. In: Prohens J, Nuez F, editors. Handbook of plant breeding vegetables I Part 4, vol. 1. New York: Springer; 2008. p. 351–81.

    Google Scholar 

  • Paris MK, Zalapa JE, McCreight JD, Staub JE. Genetic dissection of fruit quality components in melon (Cucumis melo L.) using a RIL population derived from exotic × elite US Western Shipping germplasm. Mol Breed. 2008;22:405–19.

    Google Scholar 

  • Perchepied L, Dogimont C, Pitrat M. Strain-specific and recessive QTLs involved in the control of partial resistance to Fusarium oxysporum f. sp melonis race 1.2 in a recombinant inbred line population of melon. Theor Appl Genet. 2005a;111:65–74.

    Article  CAS  PubMed  Google Scholar 

  • Perchepied L, Bardin M, Dogimont C, Pitrat A. Relationship between loci conferring downy mildew and powdery mildew resistance in melon assessed by quantitative trait loci mapping. Phytopathology. 2005b;95:556–65.

    Article  CAS  PubMed  Google Scholar 

  • Perin C, Hagen LS, De Conto V, Katzir N, Danin-Poleg Y, Portnoy V, et al. A reference map of Cucumis melo based on two recombinant inbred line populations. Theor Appl Genet. 2002a;104:1017–34.

    Article  CAS  PubMed  Google Scholar 

  • Perin C, Hagen LS, Giovinazzo N, Besombes D, Dogimont C, Pitrat M. Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Mol Genet Genomics. 2002b;266:933–41.

    Article  CAS  PubMed  Google Scholar 

  • Perin C, Gomez-Jimenez M, Hagen L, Dogimont C, Pech JC, Latche A, et al. Molecular and genetic characterization of a non-climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit. Plant Physiol. 2002c;129:300–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitrat M. Melon (Cucumis melo L.). In: Prohens J, Nuez F, editors. Handbook of crop breeding, Vegetables, vol. I. New York: Springer; 2008. p. 283–315.

    Google Scholar 

  • Portnoy V, Benyamini Y, Bar E, Harel-Beja R, Gepstein S, Giovannoni JJ, et al. The molecular and biochemical basis for varietal variation in sesquiterpene content in melon (Cucumis melo L.) rinds. Plant Mol Biol. 2008;66:647–61.

    Article  CAS  PubMed  Google Scholar 

  • Prothro J, Sandlin K, Abdel-Haleem H, Bachlava E, White V, Knapp S, et al. Main and Epistatic Quantitative Trait Loci associated with seed size in watermelon. J Am Soc Hortic Sci. 2012a;137:452–7.

    Google Scholar 

  • Prothro J, Sandlin K, Gill R, Bachlava E, White V, Knapp SJ, et al. Mapping of the Egusi seed trait locus (eg) and Quantitative Trait Loci associated with seed oil percentage in watermelon. J Am Soc Hortic Sci. 2012b;137:311–5.

    Google Scholar 

  • Prothro J, Abdel-Haleem H, Bachlava E, White V, Knapp S, McGregor C. Quantitative Trait Loci associated with sex expression in an inter-subspecific watermelon population. J Am Soc Hortic Sci. 2013;138:125–30.

    CAS  Google Scholar 

  • Ramamurthy RK, Waters BM. Identification of fruit quality and morphology QTLs in melon (Cucumis melo) using a population derived from flexuosus and cantalupensis botanical groups. Euphytica. 2015;204:163–77.

    Article  Google Scholar 

  • Reddy UK, Abburi L, Abburi VL, Saminathan T, Cantrell R, Vajja VG, et al. A genome-wide scan of selective sweeps and association mapping of fruit traits using microsatellite markers in watermelon. J Hered. 2015;106:166–76.

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Zhao H, Kou Q, Jiang J, Guo S, Zhang H, et al. A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome. PLoS One. 2012;7:e29453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Y, McGregor C, Zhang Y, Gong G, Zhang H, Guo S, et al. An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus). BMC Plant Biol. 2014;14:33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ren R, Ray R, Li P, Xu J, Zghang M, et al. Construction of a high-density DArTseq SNP based map and identification for genomic regions with segregation distortion in a genetic population derived form a cross between feral and cultivated-type watermelon. Mol Genet Genomics. 2015;290:1457–70.

    Article  CAS  PubMed  Google Scholar 

  • Robinson RW, Decker-Walters DS. Cucurbits. Wallingford, Oxon, UK/New York: CAB International; 1997.

    Google Scholar 

  • Rosa JT. The inheritance of flower types in Cucumis and Citrullus. Hilgardia. 1928;3:233–50.

    Article  Google Scholar 

  • Rubinstein M, Katzenellenbogen M, Eshed R, Rozen A, Katzir N, Colle M, et al. Ultrahigh-density linkage map for cultivated cucumber (Cucumis sativus L.) using a single-nucleotide polymorphism genotyping array. PLoS One. 2015;10(4):e0124101. doi:10.137/journal.pone.0124101.

    Google Scholar 

  • Sandlin K, Prothro J, Heesacker A, Khalilian N, Okashah R, Xiang W, et al. Comparative mapping in watermelon Citrullus lanatus (Thunb.) Matsum. et Nakai. Theor Appl Genet. 2012;125:1603–18.

    Article  PubMed  Google Scholar 

  • Serquen FC, Bacher J, Staub JE. Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (Cucumis sativus L.) using random-amplified polymorphic DNA markers. Mol Breed. 1997;3:257–68.

    Article  CAS  Google Scholar 

  • Shalit M, Katzir N, Tadmor Y, Larkov O, Burger Y, Shalekhet F, et al. Alcohol acetylamtransferease activity and aroma formation in ripening melon fruits. J Agric Food Chem. 2001;49:794–9.

    Article  CAS  PubMed  Google Scholar 

  • Sherman A, Eshed R, Harel-Beja R, Tzuri G, Portnoy V, Cohen S, et al. Combining bulk segregation analysis and microarrays for mapping of the pH trait in melon. Theor Appl Genet. 2013;126:349–58.

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama M, Kawazu Y, Fukino N, Yoshioka Y, Shimomura K, Sakata Y, Okuda M. Mapping of quantitative trait loci for Melon yellow spot virus resistance in cucumber (Cucumis sativus L.). Euphytica. 2015;205:615–25.

    Article  CAS  Google Scholar 

  • Tang Y, Zhang C, Cao S, Wang X, Qi H. The effect of CmLOXs on the production of volatile organic compounds in four aroma types of melon (Cucumis melo). PLoS One. 2015;10:0143567.

    Google Scholar 

  • Tian G, Yang Y, Zhang S, Miao H, Lu H, Wang Y, Xie B, Gu X. Genetic analysis and gene mapping of papaya ring spot virus resistance in cucumber. Mol Breed. 2015;35:110.

    Article  CAS  Google Scholar 

  • Tomason Y, Nimmakayala P, Levi A, Reddy UK. Map-based molecular diversity, linkage disequilibrium and association mapping of fruit traits in melon. Mol Breed. 2013;31:829–41.

    Article  CAS  Google Scholar 

  • Tzuri G, Zhou XJ, Chayut N, Yuan H, Portnoy V, Meir A, et al. A ‘golden’ SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). Plant J. 2015;82:267–79.

    Article  CAS  PubMed  Google Scholar 

  • Vegas J, Garcia-Mas J, Monforte AJ. Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. Theor Appl Genet. 2013;126:1531–44.

    Article  CAS  PubMed  Google Scholar 

  • Wei Q, Wang Y, Qin X, Zhang Y, Zhang Z, Wang J, Li J, Lou Q, Chen J. An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragments (SLAF) sequencing. BMC Genomics. 2014;15:1158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weng Y, Colle M, Wang Y, Yang L, Rubinstein M, Sherman A, Ophir R, Grumet R. QTL mapping in multiple populations and development stages reveals dynamic quantitative trait loci for fruit size in cucumbers of different market classes. Theor Appl Genet. 2015;128:1747–63.

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Koo D-H, Zhang X, Luan F, Havey MJ, Jiang J, Weng Y. Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. Plant J. 2012;71:895–906.

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka Y, Sakata Y, Sugiyama M, Fukino N. Identification of quantitative trait loci for downy mildew resistance in cucumber (Cucumis sativus L.). Euphytica. 2014;198:265–76.

    Article  CAS  Google Scholar 

  • Yuan XJ, Li XZ, Pan JS, Wang G, Jiang S, Li XH, et al. Genetic linkage map construction and location of QTLs for fruit-related traits in cucumber. Plant Breed. 2008a;127:180–8.

    Article  CAS  Google Scholar 

  • Yuan XJ, Pan JS, Cai R, Guan Y, Liu LZ, Zhang WW, et al. Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica. 2008b;164:473–91.

    Article  CAS  Google Scholar 

  • Yundaeng C, Somta P, Tangphatsornruang S, Chankaew S, Srinive P. A single base substitution in BADH/AMADH is responsible for fragrance in cucumber (Cucumis sativus L.), and development of SNAP markers for the fragrance. Theor Appl Genet. 2015;128:1881–92.

    Article  CAS  PubMed  Google Scholar 

  • Yuste-Lisbona FJ, Capel C, Gomez-Guillamon ML, Capel J, Lopez-Sese AI, Lozano R. Codominant PCR-based markers and candidate genes for powdery mildew resistance in melon (Cucumis melo L.). Theor Appl Genet. 2011;122:747–58.

    Article  CAS  PubMed  Google Scholar 

  • Zalapa JE, Staub JE, McCreight JD, Chung SM, Cuevas H. Detection of QTL for yield-related traits using recombinant inbred lines derived from exotic and elite US Western Shipping melon germplasm. Theor Appl Genet. 2007;114:1185–201.

    Article  CAS  PubMed  Google Scholar 

  • Zhang W-W, Pan J-S, He H-L, Zhang C, Li Z, Zhao J-L, et al. Construction of a high density integrated genetic map for cucumber (Cucumis sativus L.). Theor Appl Genet. 2012;124:249–59.

    Article  CAS  PubMed  Google Scholar 

  • Zhang SP, Liu MM, Miao H, Zhang SQ, Yang YH, Xie BY, Whener TC, Gu XF. Chromosomal mapping and QTL analysis of resistance to Downy Mildew in Cucumis sativus. Plant Dis. 2013a;97:245–51.

    Article  CAS  Google Scholar 

  • Zhang S, Miao H, Sun R, Wang X, Huang S, Wehner TC, Gu X. Localization of a new gene for bitterness in cucumber. J Hered. 2013b;104:134–9.

    Article  CAS  PubMed  Google Scholar 

  • Zhang S-P, Miao H, Yang Y-H, Xie B-Y, Wang Y, Gu X-F. A major quantitative trait locus conferring resistance to fusarium wilt was detected in cucumber by using recombinant inbred lines. Mol Breed. 2014;34:1805–15.

    Article  CAS  Google Scholar 

  • Zhang G, Ren Y, Sun H, Guo S, Zhang F, Zhang J, et al. A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.). BMC Genom. 2015;16:1101.

    Article  CAS  Google Scholar 

  • Zhou Q, Miao H, Li S, Zhang S, Wang Y, Weng Y, et al. A sequencing-based linkage map of cucumber. Mol Plant. 2015;8:961–3.

    Article  PubMed  CAS  Google Scholar 

  • Zraidi A, Stift G, Pachner M, Shojaeiyan A, Gong L, Lelley T. A consensus map for Cucurbita pepo. Mol Breed. 2007;20:375–88.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been funded in part by Spanish Ministry of Economy and Competitiveness grants AGL2012-40130-C02-02 and AGL2015-64625-C02-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio J. Monforte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gonzalo, M.J., Monforte, A.J. (2016). Genetic Mapping of Complex Traits in Cucurbits. In: Grumet, R., Katzir, N., Garcia-Mas, J. (eds) Genetics and Genomics of Cucurbitaceae. Plant Genetics and Genomics: Crops and Models, vol 20. Springer, Cham. https://doi.org/10.1007/7397_2016_9

Download citation

Publish with us

Policies and ethics