Skip to main content
Log in

Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Two populations [an F2 and a set of 77 double haploid lines (DHLs)] developed from a cross between a ‘Piel de Sapo’ cultivar (PS) and the exotic Korean accession PI 161375 were used to detect QTLs involved in melon fruit quality traits: earliness (EA), fruit shape (FS), fruit weight (FW) and sugar content (SSC); and loci involved in the colour traits: external colour (ECOL) and flesh colour (FC). High variation was found, showing transgressive segregations for all traits. The highest correlation among experiments was observed for FS and the lowest for FW and SSC. Correlations among traits within experiments were, in general, not significant. QTL analysis, performed by Composite Interval Mapping, allowed the detection of nine QTLs for EA, eight for FS, six for FW and five for SSC. Major QTLs (R 2>25%) were detected for all traits. QTLs for different traits were no clearly co-localised, suggesting low pleiotropic effects at QTLs. Sixty-one per cent of them were detected in two or more experiments. QTLs for FS were detected in more trials than QTLs for FW and SSC, confirming that FS is under highly hereditable polygenic control. ECOL segregated as yellow:green in both experimental populations. The genetic control of ECOL was found to be complex, probably involving more than two loci with epistatic interactions. One of these loci was mapped on linkage group 9, but the other loci could not be clearly resolved. FC segregated as white:green:orange. The locus responsible for the green FC was mapped on linkage group 1, and it was proposed to correspond to the previously described locus gf. The genetic control of orange FC was complex: two loci in linkage groups 2 and 12 were associated with orange flesh, but larger population sizes would be necessary to elucidate completely the genetic control of orange flesh in this cross. Exotic alleles from PI161375 showed beneficial effects on EA, FW and SSC, indicating the usefulness of PI 161375 as a new source of genetic variability to improve European and American cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akashi Y, Fukunda N, Wako T, Masuda M, Kato K (2002) Genetic variation and phylogenetic relationships in East and South Asian melons, Cucumis melo L., based on the analysis of five isozymes. Euphytica 125:385–396

    Article  CAS  Google Scholar 

  • Basten CJ, Weir BS, Zeng ZB (1994) Zmap a QTL cartographer. In: Smith C, Gavora JS, Benkel, Chesnais J, Fairfull W, Gibson JP, Kennedy BW, Burnside EB (eds) Proceedings of the 5th World Congress on Genetics Applied to Livestock Production: computing strategies and software. Organizing Committee, 5th World Congress on Genetics Applied to Livestock Production, Guelph, Ontario, pp 65–66

  • Basten CJ, Weir BS, Zeng ZB (2002) QTL Cartographer, version 1.16. Department of Statistics, North Carolina State University, Raleigh, N.C.

  • Bernacchi D, Beck-Bunn T, Eshed J, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1998) Advanced backcross QTL analysis of tomato.: I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet 97:381–397

    Article  CAS  Google Scholar 

  • Chen FQ, Foolad MR, Hyman J, Clair DA, Beelaman RB (1999) Mapping of QTLs for lycopene and other fruit traits in a Lycopersicon esculentum × L. pimpinellifolium cross and comparison of QTLs across tomato species. Mol Breed 5:283–299

    CAS  Google Scholar 

  • Cheng JF, Adelberg J (2000) Interspeciefic hybridisation in Cucumis-progress, problems and perspectives. HortScience 35:11–15

    Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  Google Scholar 

  • Clayberg CD (1992) Interaction and linkage test of flesh colour genes in Cucumis melo L. Cucurbit Genet Coop Rep 15:53

    Google Scholar 

  • Concibido VC, La Vallee B, Mclaird P, Pineda N, Meyer J, Hummel L,·Yang J,·Wu K, Delannay X (2003) Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars Theor Appl Genet 106:575–582

    CAS  Google Scholar 

  • Dolcet-Sanjuan R, Clavería E, Llauradó M, Ortigosa A, Arús P (2001) Carnation (Dianthus caryophyllus L.) dihaploid lines resistant to Fusarium oxysporum f. sp. Dianthi. Acta Hortic 560:141–144

    Google Scholar 

  • Emery GC, Munger HM (1970) Effects of inherited differences in growth habit on fruit size and soluble solids in tomato. J Am Soc Hortic Sci 95:410–412

    Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression-line population of Lycopersicon pennelli in the cultivated tomato enables the identification and fine mapping of yield-associated QTLs. Genetics 141:1147–1162

    CAS  PubMed  Google Scholar 

  • Frary A, Nesbitt TC, Frary A, Grandillo S, Van der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  PubMed  Google Scholar 

  • Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA 97:4718–4723

    CAS  PubMed  Google Scholar 

  • Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1997) QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet 95:881–894

    Article  CAS  Google Scholar 

  • Fulton TM,·Grandillo S,·Beck-Bunn T, Fridman E,·Frampton A,·Lopez J,·Petiard V, Uhlig J,·Zamir D, Tanksley SD (2000) Advanced backcross QTL analysis of a Lycopersicon esculentum × Lycopersicon parviflorum cross Theor Appl Genet 100:1025–1042

  • Higashi K, Hosoya K, Ezura H (1999) Histological analysis of fruit development between two melon (Cucumis melo L. reticulatus) genotypes setting a different size of fruit. J Exp Bot 50:1593–1597

    Article  CAS  Google Scholar 

  • Hughes MN (1948) The inheritance of two characters of Cucumis melo and their interrelationship. Proc Am Soc Hortic Sci 52:399–402

    Google Scholar 

  • Iman MK, Abo-Bakr MA, Hanna HY (1972) Inheritance of some economic characters in crosses between sweet melon and snake cucumber.: I. Inheritance of qualitative characters. Assiut J Agric Sci 3:363–380

    Google Scholar 

  • Jeffrey C (1980): A review of the Cucurbitaceae. Bot. J Linn Soc 81: 233–247

    Google Scholar 

  • Kearsey MJ, Farquhar AGL (1998) QTL analysis in plants: where are we now? Heredity 80:137–142

    PubMed  Google Scholar 

  • Kirkbride JH (1993) Biosystematics monograph of the genus Cucumis (Cucurbitaceae). Botanical identification of cucumbers and melons. Parkway, Boone, N.C.

  • Lander ES, Green P, Abrahamson J, Barlow A, Daley M, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    CAS  PubMed  Google Scholar 

  • Liu J, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA 99:13302–13306

    Article  CAS  PubMed  Google Scholar 

  • Mliki A, Staub JE, Zhangyong S, Ghorbel A (2001) Genetic diversity in melon (Cucumis melo L.): an evaluation of African germplasm Genet Res Crop Evol 48:587–597

  • Monforte AJ, Friedman E, Zamir D, Tanksley SD (2001) Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: deductions about natural variation and implications for germplasm utilization Theor Appl Genet 102:572–590

    Google Scholar 

  • Monforte AJ, Eduardo I, Arús P (2002) Desarrollo de una librería genómica de líneas casi isogénicas en melón. Progreso actual y perspectivas. Acta Hortic 34:577–582

    Google Scholar 

  • Monforte AJ, Garcia-Mas J, Arús, P (2003) Genetic variability in melon based on microsatellite variation. Plant Breed 122:1-6.

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays for tobacco tissue cultures. Phsyiol Plant 15:473–479

    CAS  Google Scholar 

  • Oliver M (2001) Construcció d’un mapa de marcadors moleculars i analisi genetica de caracters agronomics en melo. Ph.D. dissertation, Universitat de Barcelona

  • Oliver M, Garcia-Mas J, Cardús M, Pueyo N, López-Sesé AI, Arroyo M, Gómez-Paniagua H, Arús P, De Vicente MC (2001) Construction of a reference linkage map for melon. Genome 44: 836–845

    CAS  PubMed  Google Scholar 

  • Parthasarathy VA, Sambandam CN (1981) Inheritance in Indian melons. Indian J Genet Plant Breed 41:114–117

    Google Scholar 

  • Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln SE, Lander ES, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato—comparison across species, generations, and environments. Genetics 127:181–197

    CAS  PubMed  Google Scholar 

  • Périn C, Hagen LS, de Conto V, Katzir N, Danin-Poleg Y, Portnoy V, Baudracco-Arnas S, Chadoeuf J, Dogimont C, Pitrat M (2002a). A reference map for Cucumis melo based on two recombinant inbred line populations. Theor Appl Genet 104:1017–1034

    Article  Google Scholar 

  • Périn C, Hagen LS, Giovinazzo N, Besombes D, Dogimont C, Pitrat M (2002b) Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Mol Gen Genomics 266:933–941

    Article  Google Scholar 

  • Pitrat M (1988): Gene list for melon. Cucurbit Genet Coop Rep 21:69–81

    Google Scholar 

  • Saliba-Colombani V,·Causse M, Langlois D, Philouze J, Buret M (2001) Genetic analysis of organoleptic quality in fresh market tomato.1. Mapping QTLs for physical and chemical traits Theor Appl Genet 102:259–272

    Article  CAS  Google Scholar 

  • Stepansky A, Kovalski I, Perl-Treves R (1999) Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst Evol 217: 313–332

    CAS  Google Scholar 

  • Stevens MA (1986) Inheritance of tomato fruit quality components. Plant Breed Rev 4 273–1311

    Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    CAS  PubMed  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    CAS  PubMed  Google Scholar 

  • Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed T, Petiard V, Lopez J, Beck-Bunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–224

    Article  CAS  Google Scholar 

  • Van der Knaap E, Tanksley SD (2001) Identification characterization of a novel locus controlling early in tomato. Theor Appl Genet 103:353–358

    Google Scholar 

  • Van der Knaap E,·Lippman ZB,·Tanksley SD (2002) Extremely elongated tomato fruit controlled by four quantitative trait loci with epistatic interactions Theor Appl Genet 104:241–247

    Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap version 3.0: software for the calculation of genetic linkage maps. CPRO-DLO, Wageningen, The Netherlands

  • Whitaker TW, Davis GN (1962) Cucurbits, botany, cultivation and utilization. Interscience, New York

  • Xiao J, Li J, Grandillo S, Yuan L, Tanksley SD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative Oryza rufipogon. Genetics 150:899–909

    CAS  PubMed  Google Scholar 

  • Zeng Z (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976

    CAS  PubMed  Google Scholar 

  • Zeng Z (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank V. Alfaro, N. Galofré, A. Montejo, I. Eduardo and A. Rodriguez for excellent technical assistance and Semillas Fitó S.A. for providing the seeds of the parentals and support on the agronomic trials. This work was supported in part by grants for the project AGL2000-0360 from The Spanish Ministry of Science and Technology. A.J. Monforte was supported by a contract from the Spanish Ministry of Science and Technology and Instituto Nacional de Investigaciones Agrarias (INIA). M.J. Gonzalo was supported by a fellowship from Institut de Recerca I Tecnologia Agroalimentàries (IRTA). The experiments presented here comply with current Spanish law.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Monforte.

Additional information

Communicated by H.F. Linskens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monforte, A.J., Oliver, M., Gonzalo, M.J. et al. Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108, 750–758 (2004). https://doi.org/10.1007/s00122-003-1483-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1483-x

Keywords

Navigation