Skip to main content
Log in

Mapping of quantitative trait loci for lycopene content and fruit traits in Citrullus lanatus

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Lycopene content is an important factor for determining watermelon fruit quality. However, the low DNA polymorphism among cultivated watermelon (Citrullus lanatus) has hindered the ability to establish high quality genetic maps and study the quantitative trait loci (QTL) controlling the lycopene content trait. In this study, we successfully constructed a genetic map of watermelon to determine lycopene content and other horticultural fruit traits using a F2 population developed from a cross between the two lines of watermelon LSW-177 and Cream of Saskatchewan. The genetic map contained 16 linkage groups covering a total length of 2,039.5 cM, which included 37 SSRs (Simple Sequence Repeat) and 107 CAPSs (Cleaved Amplified Polymorphic Sequences), with all of the CAPS markers developed from high-throughput re-sequencing of data from this study. Three CAPS markers (WII04E07-33,WII04E07-37,WII04E07-40) caused the F2 population to perfectly co-segregate for each F2 population plants. We also obtained 12 QTLs for all of the traits measured. Only one QTL (LCYB4.1) was detected with a high value of trait variation (83.50 %) that related to lycopene content and mapped on Chromosome 4 between CAPS markers WII04E07-33 and WII04E07-40, which could nearly account for all of the differences in lycopene content between the two parental strains. In this study, we highlighted 2,458 CAPS loci that were suitable for primer design with a polymorphism of 48.9 %, which is approximately a 12-fold increase from previous studies. The present map and QTLs will facilitate future studies on determining lycopene content related genes and cloning watermelon genes, while also providing for useful markers for breeding for lycopene content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bang H (2005) Environmental and genetic strategies to improve carotenoids and quality in watermelon. Dissertation for Ph D Degree at Texas A & M university U.S.A

  • Bang H, Kim S, Leskovar D, King S (2007) Development of a codominant CAPS marker for allelic selection between canary yellow and red watermelon based on SNP in lycopene β-cyclase (LCYB) gene. Mol Breed 20:63–72

    Article  CAS  Google Scholar 

  • Bang H, Davis AR, Kim S, Leskovar DI, King SR (2010) Flesh color inheritance and gene interactions among canary yellow, pale yellow, and red watermelon. J Am Soc Hortic Sci 135:362–368

    Google Scholar 

  • Bo K, Song H, Shen J, Qian C, Staub JE, Simon PW, Lou Q, Chen J (2011) Inheritance and mapping of the ore gene controlling the quantity of β-carotene in cucumber (Cucumis sativus L.) endocarp. Mol Breed 30:335–344

    Article  Google Scholar 

  • Chen FQ, Foolad MR, Hyman J, St. Clair DA, Beelaman RB (1999) Mapping of QTLs for lycopene and other fruit traits in a Lycopersicon esculentum × L. pimpinellifolium cross and comparison of QTLs across tomato species. Mol Breed 5:283–299

    Article  CAS  Google Scholar 

  • Clayberg CD (1992) Interaction and linkage test of flesh color genes in Cucumis melo L. Cucurbit Genet Coop Rep 15:53

    Google Scholar 

  • Cuevas HE, Staub JE, Simon PW, Zalapa JE, McCreight JD (2008) Mapping of genetic loci that regulate quantity of beta-carotene in fruit of US Western Shipping melon (Cucumis melo L.). Theor Appl Genet 117:1345–1359

    Article  CAS  PubMed  Google Scholar 

  • Cuevas HE, Song H, Staub JE, Simon PW (2010) Inheritance of beta-carotene-associated flesh color in cucumber (Cucumis sativus L.) fruit. Euphytica 171:301–311

  • Danin-Poleg Y, Reis N, Tzuri G (2001) Development and characterization of microsatellite in Cucumis. Theor Appl Genet 102:61–72

    Article  CAS  Google Scholar 

  • Davis AR, Collins JK, Perkins Veazie PM, Levi A (2008) LSW-177 and LSW-194: red-fleshed watermelon lines with low-total soluble solids. HortScience 43:538–539

    Google Scholar 

  • Fazio G, Staub JE, Chung SM (2002) Development and characterization of PCR markers in cucumber. HortScience 127:545–557

    CAS  Google Scholar 

  • Femandez-Silva I, Eduardo I, Blanca J, Esteras C, Pico B, Nuez F, Arus P, Garcia-Mas J, Monforte AJ (2008) Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor Appl Genet 118:139–150

    Article  Google Scholar 

  • Feng D, Ling WH, Duan RD (2010) Lycopene suppresses LPS-induced NO and IL-6 production by inhibiting the activation of ERK, p38MAPK, and NF-k B in macrophages. Inflamm Res 59:115–121

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Silva I, Eduardo I, Blanca J, Esteras C, Pico B, Nuez F, Arus P, Garcia-Mas J, Monforte AJ (2008) Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor Appl Genet 118:139–150

    Article  CAS  PubMed  Google Scholar 

  • Gonzalo MJ, Oliver M, Garcia-Mas J, Monfort A, Dolcet-Sanjuan R, Katzir N, Arus P, Monforte AJ (2005) Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theor Appl Genet 110:802–811

    Article  CAS  PubMed  Google Scholar 

  • Grassi S, Piro G, Lee JM, Zheng Y, Fei ZJ, Dalessandro G, Giovannoni JJ, Lenucci MS (2013) Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit. BMC Genomics 14:781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo SG, Xu Y, Zhang HY, Gong GY (2006) QTL analysis of soluble solids content in watermelon under different environments. Molecular Plant Breeding 4:393–398

    CAS  Google Scholar 

  • Gusmini G, Wehner TC (2006) Qualitative inheritance of rind pattern and flesh color in watermelon. J Hered 97:177–185

    Article  CAS  PubMed  Google Scholar 

  • Harel-Beja R, Tzuri G, Portnoy V, Lotan-Pompan M, Lev S, Cohen S, Dai N, Yeselson L, Meir A, Libhaber SE, Avisar E, Melame T, van Koert P, Verbakel H, Hofstede R, Volpin H, Oliver M, Fougedoire A, Stalh C, Fauve J, Copes B, Fei Z, Giovannoni J, Ori N, Lewinsohn E, Sherman A, Burger J, Tadmor Y, Schaffer AA, Katzir N (2010) A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theor Appl Genet 121:511–533

    Article  CAS  PubMed  Google Scholar 

  • Hashizume T, Shimamoto I, Hirai M (2003) Construction of a linkage map and QTL analysis of horticultural traits for watermelon [Citrullus lanatus (THUNB.) MATSUM & NAKAI] using RAPD, RFLP and ISSR markers. Theor Appl Genet 106:779–785

    CAS  PubMed  Google Scholar 

  • Henderson W, Scott G, Wehner T (1998) Interaction of flesh color genes in watermelon. J Hered 89:50–53

    Article  Google Scholar 

  • Henry RJ (2008) Plant genotyping II: SNP technology. CABI, Wallingford

    Book  Google Scholar 

  • Isaacson T (2002) Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants. Plant Cell 14:333–342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Isaacson T, Ohad I, Beyer P, Hirschberg J (2004) Analysis in vitro of the enzyme CRTISO establishes a poly-cis-carotenoid biosynthesis pathway in plants. Plant Physiol 136:4246–4255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Joobeur T, Gusmini G, Zhang X, Levi A, Xu Y, Wehner TC, Oliver M, Dean AR (2006) Construction of a watermelon BAC library and identification of SSRs anchored to melon or Arabidopsis genomes. Theor Appl Genet 2:1553–1562

    Article  Google Scholar 

  • Kinkade MP, Foolad MR (2013) Validation and fine mapping of lyc12.1, a QTL for increased tomato fruit lycopene content. Theor Appl Genet 126:2163–2175

    Article  CAS  PubMed  Google Scholar 

  • Kole C, Abbott AG (2008) Principles and practices of plant genomics, vol 1. Genome mapping Science Publishers, Enfield

    Google Scholar 

  • Lambel S, Lanini B, Vivoda E, Fauve J, Wechter WP, Harris-Shultz KR, Massey L, Levi A (2014) A major QTL associated with Fusarium oxysporum race 1 resistance identified in genetic populations. Theor Appl Genet 127:2105–2115

    Article  CAS  PubMed  Google Scholar 

  • Levi A, Thomas CE, Trebitsh T, Salman A, King J, Karalius J, Newman M, Reddy OUK, Xu Y, Zhang X (2006) An extended linkage map for watermelon based on SRAP, AFLP, SSR, ISSR, and RAPD markers. J Am Soc Hortic Sci 131:393–402

    CAS  Google Scholar 

  • Li N, Zhang HY, Chen NL, Wang YJ, Xu Y, Gong GY, Guo SG (2008) Comparison of versatility and polymorphism of SSRs in the cucurbitaceae. Acta Agriculture Boreali-Sinica 23:1109–1114

    Google Scholar 

  • Ling KS, Harris KR, Meyer JD, Levi A, Guner N, Wehner TC, Bendahmane A, Havey MJ (2009) Non-synonymous single nucleotide polymorphisms in the watermelon eIF4E gene are closely associated with resistance to Zucchini yellow mosaic virus. Theor Appl Genet 120:191–200

    Article  CAS  PubMed  Google Scholar 

  • Liu QH, Wang HL, Zhou ZC (2009) Comparative study on lycopene content of different watermelon. North Hortic 8:44–46

    Google Scholar 

  • Luan FS, Delannay I, Staub JE (2008) Chinese melon (Cucumis melo L.) diversity analyses provide strategies for germplasm curation, genetic improvement, and evidentiary support of domestication patterns. Euphytica 164:445–461

    Article  CAS  Google Scholar 

  • Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arus P (2004) Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108:750–758

    Article  CAS  PubMed  Google Scholar 

  • Morales M, Orjeda G, Nieto C, van Leeuwen H, Monfort A, Charpentier M, Caboche M, Arus P, Puigdomenech P, Aranda MA, Dogimont C, Bendahmane A, Garcia-Mas J (2005) A physical map covering the nsv locus that confers resistance to Melon necrotic spot virus in melon (Cucumis melo L.). Theor Appl Genet 111:914–922

    Article  CAS  PubMed  Google Scholar 

  • Mortensen A, Skibsted LH, Sampson J, Rice-Evans C, Everett SA (1997) Comparative mechanisms and rates of free radical scavenging by carotenoid antioxidants. FEBS Lett 418:91–97

    Article  CAS  PubMed  Google Scholar 

  • Navot N, Sarfatti M, Zamir D (1990) Linkage relationships of genes affecting bitterness and flesh color in watermelon. J Hered 81:162–165

    Google Scholar 

  • Perin C, Hagen LS, Giovinazzo N, Besombes D, Dogimont C, Pitrat M (2002) Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Mol Genet Genom 266:933–941

    Article  CAS  Google Scholar 

  • Poole CF (1994) Genetics of cultivated cucurbits. J Hered 35:122–128

    Google Scholar 

  • Ren Y, Zhao H, Kou QH, Jiang J, Guo SG, Zhang HY, Hou WJ, Zou XH, Sun HH, Gong GY, Levi A, Xu Y (2012) A High Resolution Genetic Map Anchoring Scaffolds of the Sequenced Watermelon Genome. PLoS ONE 7:e29453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ren Y, McGregor C, Zhang Y, Gong GY, Zhang HY, Guo SG, Sun HH, Cai WT, Zhang J, Xu Y (2014) An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus). BMC Plant Biol 14:33

    Article  PubMed Central  PubMed  Google Scholar 

  • Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of Betaandold-goldcolor mutations in tomato. Proc Natl Acad Sci USA 97:11102–11107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sandlin K, Prothro J, Heesacker A, Khalilian N, Okashah R, Xiang W, Bachlava E, Caldwell DG, Taylor CA, Seymour DK, White V, Chan E, Tolla G, White C, Safran D, Graham E, Knapp S, McGregor C (2012) Comparative mapping in watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai]. Theor Appl Genet 125:1603–1618

    Article  PubMed  Google Scholar 

  • Shen D, Fang ZY, Li XX, Li QH, Cheng JQ, Song JP, Wang HP, Qiu Y (2011) Inheritance of fruit flesh color in Cucumis sativus L. J Plant Genet Resour 12:216–222

    CAS  Google Scholar 

  • Shimotsuma M (1963) Cytogenetical studies in the genus Citrullus. VI. Inheritance of several characters in watermelons. Jpn J Breed 13:235–240

    Article  Google Scholar 

  • Silberstein L, Kovalski I, Brotman Y, Perin C, Dogimont C, Pitrat M, Klingler J, Thompson G, Portnoy V, Katzir N, Perl-Treves R (2003) Linkage map of Cucumis melo including phenotypic traits and sequence-characterized genes. Genome 46:761–773

    Article  CAS  PubMed  Google Scholar 

  • Tezuka T, Waki K, Yashiro K, Kuzuya M, Ishikawa T, Takatsu Y, Miyagi M (2009) Construction of a linkage map and identification of DNA markers linked to Fom-1, a gene conferring resistance to Fusarium oxysporum f.sp. melonis race 2 in melon. Euphytica 168:177–188

    Article  CAS  Google Scholar 

  • Yi K, Xu XL, Lu XY, Xu Y, Xiao LT, Wang YJ, Kang G (2003) Construction of molecular genetic map of watermelon by SSR and ISSR technology. J Hunan Agric Univ (Nat Sci) 29:333–347

    CAS  Google Scholar 

  • Yuan LP, Lu XQ, Liu WG, Zhao JS, Lu JS, Yan ZH, He N, Guan LY, Zhu HJ (2012) Measurement of lycopene contents in watermelon. China Cucurbits Veg 25:1–4

    CAS  Google Scholar 

  • Zalapa JE, Staub JE, McCreight JD, Chung SM, Cuevas H (2007) Detection of QTL for yield-related traits using recombinant inbred lines derived from exotic and elite US Western Shipping melon germplasm. Theor Appl Genet 114:1185–1201

    Article  CAS  PubMed  Google Scholar 

  • Zhang RB, Xu Y, Yi K, Zhang HY, Liu LG, Gong GY, Levi A (2004) A genetic linkage map for watermelon derived from recombinant inbred lines. J Am Soc Hortic Sci 129:237–243

    CAS  Google Scholar 

  • Zhang F, Gong G, Wang Q, He H, Xu Y (2006) Analysis of watermelon quality structure. J Fruit Sci 23:266–269

    CAS  Google Scholar 

  • Zhang H, Wang H, Guo S, Ren Y, Gong G, Weng Y, Xu Y (2011) Identification and validation of a core set of microsatellite markers for genetic diversity analysis in watermelon, Citrullus lanatus Thunb. Matsum. and Nakai. Euphytica 186:329–342

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Nature Science Foundation of China (31272186). This work was also supported by the China Agriculture Research System (CARS-26-02).

Conflict of interest

The authors declare that there are no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feishi Luan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Gao, P., Wang, X. et al. Mapping of quantitative trait loci for lycopene content and fruit traits in Citrullus lanatus . Euphytica 202, 411–426 (2015). https://doi.org/10.1007/s10681-014-1308-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1308-9

Keywords

Navigation