Skip to main content
Log in

Molecular mapping reveals structural rearrangements and quantitative trait loci underlying traits with local adaptation in semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis Qi et Yuan)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Comparative genetic mapping revealed the origin of Xishuangbanna cucumber through diversification selection after domestication. QTL mapping provided insights into the genetic basis of traits under diversification selection during crop evolution.

Abstract

The Xishuangbanna cucumber, Cucumis sativus L. var. xishuangbannanesis Qi et Yuan (XIS), is a semi-wild landrace from the tropical southwest China with some unique traits that are very useful for cucumber breeding, such as tolerance to low light, large fruit size, heavy fruit weight, and orange flesh color in mature fruits. In this study, using 124 recombinant inbred lines (RILs) derived from the cross of the XIS cucumber with a cultivated cucumber inbred line, we developed a linkage map with 269 microsatellite (or simple sequence repeat) markers which covered 705.9 cM in seven linkage groups. Comparative analysis of orders of common marker loci or marker-anchored draft genome scaffolds among the wild (C. sativus var. hardwickii), semi-wild, and cultivated cucumber genetic maps revealed that the XIS cucumber shares major chromosomal rearrangements in chromosomes 4, 5, and 7 between the wild and cultivated cucumbers suggesting that the XIS cucumber originated through diversifying selection after cucumber domestication. Several XIS-specific minor structural changes were identified in chromosomes 1 and 6. QTL mapping with the 124 RILs in four environments identified 13 QTLs for domestication and diversifying selection-related traits including 2 for first female flowering time (fft1.1, fft6.1), 5 for mature fruit length (fl1.1, fl3.1, fl4.1, fl6.1, and fl7.1), 3 for fruit diameter (fd1.1, fd4.1, and fd6.1), and 3 for fruit weight (fw2.1, fw4.1, and fw6.1). Six of the 12 QTLs were consistently detected in all four environments. Among the 13 QTLs, fft1.1, fl1.1, fl3.1, fl7.1, fd4.1, and fw6.1 were major-effect QTLs for respective traits with each explaining at least 10 % of the observed phenotypic variations. Results from this study provide insights into the cytological and genetic basis of crop evolution leading to the XIS cucumber. The molecular markers associated with the QTLs should be useful in exploring the XIS cucumber genetic resources for cucumber breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbo S, van-Oss RP, Gopher A, Saranga Y, Ofner I, Peleg Z (2014) Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trend Plant Sci 19:351–360

    Article  CAS  Google Scholar 

  • Alonso-Blanco C, Aarts MGM, Bentsink L, Keurentjes JJB, Reymond M, Vreugdenhil D, Koornneef M (2009) What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell 21:1877–1896

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ando K, Grumet R (2010) Transcriptional profiling of rapidly growing cucumber fruit by 454-pyrosequencing analysis. J Am Soc Hortic Sci 135:291–302

    Google Scholar 

  • Ando K, Carr KM, Grumet R (2012) Transcriptome analyses of early cucumber fruit growth identifies distinct gene modules associated with phases of development. BMC Genomics 13:518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bo K, Shen J, Qian CT, Song H, Chen JF (2011) Genetic analysis of the important agronomic traits on Beijingjietou × Xishuangbanna cucumber recombinant inbred lines. J Nanjing Agric Univ 34:20–24

    Google Scholar 

  • Bo K, Song H, Shen J, Qian C, Staub JE, Simon PW, Lou Q, Chen J (2012) Inheritance and mapping of the ore gene controlling the quantity of β-carotene in cucumber (Cucumis sativus L.) endocarp. Mol Breed 30:335–344

    Article  CAS  Google Scholar 

  • Candolle AD (1959) Origin of cultivated plants. Hafner Publishing, New York

    Google Scholar 

  • Cavagnaro PF, Senalik DA, Yang L, Simon PW, Harkins TT, Kodira CD, Huang S, Weng Y (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics 11:569

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen J, Zhang S, Zhang X (1994) The Xishuangbanna gourd (Cucumis sativus L. var. xishuangbannanesis Qi et Yuan), a traditionally cultivated plant of the Hanai people, Xishuangbanna, Yunnan, China. Cucurbit Genet Coop Rep 17:18–20

    Google Scholar 

  • Cheng ZC, Gu XF, Zhang SP, Miao H, Zhang RW, Liu MM, Yang SJ (2010) QTL mapping of fruit length in cucumber. China Veg Issue 12:20–25

    Google Scholar 

  • de Wilde WJJ, Duyfjes BEE (2010) Cucumis sativus L. forma hardwickii (Royle) W.J. de Wilde and Duyfjes and feral forma sativus. Thai For Bull (Bot) 38:98–107

    Google Scholar 

  • Dijkhuizen A, Staub JE (2002) QTL conditioning yield and fruit quality traits in cucumber (Cucumis sativus L.): effects of environment and genetic background. J New Seeds 4:1–30

    Article  Google Scholar 

  • Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    Article  CAS  PubMed  Google Scholar 

  • Duthie JF (1903) Flora of the Upper Gangetic Plain, and of the Adjacent Siwalik and Sub-Himalayan tracts. Superintendent of Government Printing Publication, Calcutta

    Book  Google Scholar 

  • Eduardo I, Arus P, Monforte AJ, Obando J, Fernandez-Trujillo JP, Martinez JA, Alarcon AL, Alvarez JM, van der Knaap E (2007) Estimating the genetic architecture of fruit quality traits in melon using a genomic library of near isogenic lines. J Am Soc Hortic Sci 132:80–89

    Google Scholar 

  • Fazio F, Staub JE, Stevens MR (2003) Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor Appl Genet 107:864–874

    Article  CAS  PubMed  Google Scholar 

  • Fukino N, Yoshioka Y, Sugiyama M, Sakata Y, Matsumoto S (2013) Identification and validation of powdery mildew (Podosphaera xanthii)-resistant loci in recombinant inbred lines of cucumber (Cucumis sativus L.). Mol Breed 32:267–277

    Article  CAS  Google Scholar 

  • Garcia-Mas J, Benjak A, Sanseverino W et al (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci USA 109:11872–11877

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gross BL, Olsen KM (2010) Genetic perspectives on crop domestication. Trend Plant Sci 15:529–537

    Article  CAS  Google Scholar 

  • He XM, Li Y, Pandey S, Yandell B, Pathak M, Weng Y (2013) QTL mapping of powdery mildew resistance in WI 2757 cucumber. Theor Appl Genet 126:2149–2161

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann AA, Rieseberg LH (2008) Revisiting the impact of inversions in evolution, from population genetic markers to drivers of adaptive shifts and speciation? Annu Rev Ecol Evol Syst 39:21–42

    Article  PubMed Central  PubMed  Google Scholar 

  • Hooker JD (1876) Cucumis sativus var. sikkimensis cultivated in the Himalaya Mountains. Curtis’ Bot Mag 102: tab. 6206. http://archive.org/details/mobot31753002721766)

  • Huang S, Li R, Zhang Z et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Kennard WC, Havey MJ (1995) Quantitative trait analysis of fruit quality in cucumber: QTL detection, confirmation, and comparison with mating design variation. Theor Appl Genet 91:53–61

    PubMed  Google Scholar 

  • Kirkbride JH (1993) Biosystematic monograph of the genus Cucumis (Cucurbitaceae). Parkway Publishers, Boone, pp 84–88

    Google Scholar 

  • Kirkpatrick M (2010) How and why chromosome inversions evolve. PLoS Biol 8:e1000501

    Article  PubMed Central  PubMed  Google Scholar 

  • Li HH, Zhang LY, Wang JK (2010) Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agron Sinica 36:918–931

    Article  Google Scholar 

  • Li DW, Cuevas H, Yang LM, Li YH, Garcia-Mas J, Zalapa J, Staub JE, Luan FS, Reddy U, He XM, Gong ZH, Weng Y (2011) Syntenic relationships between cucumber (Cucumis sativus L.) and melon (C. melo L.) chromosomes as revealed by comparative genetic mapping. BMC Genomics 12:396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lippman Z, Tanksley SD (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 158:413–422

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu LZ, Yuan XJ, Cai R, Pan JS, He HL, Yuan LH, Guan Y, Zhu LH (2008) Quantitative trait loci for resistance to powdery mildew in cucumber under seedling spray inoculation and leaf disc infection. J Phytopathol 156:691–697

    Article  Google Scholar 

  • Lowry DB, Willis JH (2010) A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLoS Biol 8:e1000500

    Article  PubMed Central  PubMed  Google Scholar 

  • Lv J, Qi JJ, Shi QX, Shen D, Zhang SP, Shao GG, Li H, Weng Y, Shang Y, Gu XF, Li XX, Zhu XG, Zhang JZ, van Treuren R, van Dooijeweert W, Zhang ZH, Huang SW (2012) Genetic diversity and population structure of cucumber (Cucumis sativus L.). PLoS One 7:e46919

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer RS, Purugganan MD (2013) Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet 14:840–852

    Article  CAS  PubMed  Google Scholar 

  • Miao H, Gu XF, Zhang SP, Zhang ZH, Huang SW, Wang Y, Cheng ZC, Zhang RW, Mu S, Li M, Zhang ZX, Fang ZY (2011) Mapping QTLs for fruit-associated traits in Cucumis sativus L. Sci Agric Sin 44:5031–5040

    Google Scholar 

  • Miao H, Gu XF, Zhang SP, Zhang ZH, Huang SW, Wang Y, Fang ZY (2012) Mapping QTLs for seedling-associated traits in cucumber. Acta Hortic Sin 39:879–887

    CAS  Google Scholar 

  • Monforte AJ, Eduardo I, Abad S, Arus P (2005) Inheritance mode of fruit traits in melon. Heterosis for fruit shape and its correlation with genetic distance. Euphytica 144:31–38

    Article  Google Scholar 

  • Monforte AJ, Diaz AI, Cano-Delgado A, van de Knaap E (2014) The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. J Exp Bot 65:4625–4637

    Article  PubMed  Google Scholar 

  • Olsen KM, Wendel JF (2013) A bountiful harvest: genomic insights into crop domestication phenotypes. Annu Rev Plant Biol 64:47–70

    Article  CAS  PubMed  Google Scholar 

  • Perin C, Hagen LS, Giovinazzo N, Besombes D, Dogimont C, Pitrat M (2002) Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo). Mol Genet Genomics 266:933–941

    Article  CAS  PubMed  Google Scholar 

  • Qi CZ (1983) A new type of cucumber, Cucumis sativus L. var. xishuangbannanesis Qi et Yuan. Acta Hortic Sin 10:259–263

    Google Scholar 

  • Qi JJ, Liu X, Shen D, Miao H, Xie BY, Li XX, Zeng P, Wang SH, Shang Y, Gu XF, Du YC, Li Y, Lin T, Yuan JH, Yang XY, Chen JF, Chen HM, Xiong XY, Huang K, Fei ZJ, Mao LY, Tian L, Städler T, Renner SS, Kamoun S, Lucas WJ, Zhang ZH, Huang SW (2013) A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet 45:1510–1515

    Article  CAS  PubMed  Google Scholar 

  • Qian CT, Chen JF, Luo QF, Cao QH, Luo XD (2003) Meiotic behavior of pollen mother cells in cucumber (Cucumis sativus L.). J Wuhan Bot Res 21:193–197

    Google Scholar 

  • Ren Y, Zhang Z, Liu J, Staub JE, Han Y, Cheng Z, Li X et al (2009) An integrated genetic and cytogenetic map of the cucumber genome. PLoS One 4(6):e5795

    Article  PubMed Central  PubMed  Google Scholar 

  • Renner SS, Pandey AK (2013) The Cucurbitaceae of India: accepted names, synonyms, geographic distribution, and information on images and DNA sequences. PhytoKeys 20:53–118

    Article  PubMed  Google Scholar 

  • Rodriguez GR, Munos S, Anderson C, Sim SC, Michel A, Causse M, Gardener BBM, Francis D, van der Knaap E (2011) Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol 156:275–285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Royle JF (1835) Illustrations of the Botany of the Himalayan Mountains. Wm. H. Alland and Co, London

    Google Scholar 

  • Sakata Y, Kubo N, Morishita M, Kitadani E, Sugiyama M, Hirai M (2006) QTL analysis of powdery mildew resistance in cucumber. Theor Appl Genet 112:243–250

    Article  CAS  PubMed  Google Scholar 

  • Sebastian P, Schaefer H, Telford IRH, Renner SS (2010) Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc Natl Acad Sci USA 107:14269–14273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shen D (2009) Genetic diversity QTL mapping of orange flesh color of Cucumis sativus L. var. xishuangbannanesis. Ph.D. thesis, Chinese Academy of Agricultural Sciences, Beijing

  • Wang S, Basten CJ, Zeng ZB (2012) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)

  • Weng Y, Sun ZY (2012) Chapter 1 Major Cucurbits. In: Wang YH, Behera TK, and Kole C (eds) Genetics, genomics and breeding of cucurbits, CRC Press, New York, pp 1–16

  • Yang LM, Koo DH, Li Y, Zhang X, Luan F, Havey MJ, Jiang J, Weng Y (2012) Chromosome rearrangements during domestication of cucumber as revealed from high-density genetic mapping and draft genome assembly. Plant J 71:895–906

    Article  CAS  PubMed  Google Scholar 

  • Yang LM, Li DW, Li YH, Gu XF, Huang SW, Garcia-Mas J, Weng Y (2013) A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci. BMC Plant Biol 13:53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang LM, Koo D-H, Li DW, Zhang T, Jiang JM, Luan FS, Renner SS, Hénaff E, Sanseverino W, Garcia-Mas J, Casacuberta J, Senalik DA, Simon PW, Chen JF, Weng Y (2014) Next-generation sequencing, FISH mapping and synteny-based modeling reveal mechanisms of decreasing dysploidy in Cucumis. Plant J 77:16–30

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Pan J, Cai R, Guan Y, Liu L, Zhang W, Li Z, He H, Zhang C, Si L, Zhu L (2008) Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica 164:473–491

    Article  CAS  Google Scholar 

  • Zeng Z (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang SP, Liu MM, Miao H, Zhang SQ, Yang YH, Xie BY, Gu XF (2011) QTL mapping of resistance genes to powdery mildew in cucumber. Sci Agric Sin 44:3584–3593

    Google Scholar 

  • Zhang SP, Liu MM, Miao H, Zhang SQ, Yang YH, Xie BY, Wehner TC, Gu XF (2013) Chromosomal mapping and QTL analysis of resistance to downy mildew in Cucumis sativus. Plant Dis 97:245–251

    Article  CAS  Google Scholar 

  • Zhao X, Lu JY, Zhang ZH, Hu JJ, Huang SW, Jin WW (2011) Comparison of the distribution of the repetitive DNA sequences in three variants of Cucumis sativus reveals their phylogenetic relationships. J Genet Genomics 38:39–45

    Article  PubMed  Google Scholar 

  • Zhuang FY, Chen JF, Staub JE, Qian CT (2004) Assessment of genetic relationships among Cucumis spp. by SSR and RAPD marker analysis. Plant Breed 123:167–172

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Kristin Haider for technical assistance. KB’s work in YW’s laboratory was partially funded by the China Scholarship Council. This research was supported by the US Department of Agriculture Current Research Information System Project 3655-21000-048-00D and a US Department of Agriculture Specialty Crop Research Initiative grant (project number 2011-51181-30661) to Y.W. Work pertinent to this project in JC Lab was supported by the Natural Science Foundation of China (30972007 and 31272174) and the ‘973’ Program (2012CB113904) from the National Basic Research Program of China and ‘863’ project (2012AA100102).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinfeng Chen or Yiqun Weng.

Additional information

Communicated by Alan H. Schulman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2014_2410_MOESM1_ESM.pdf

Table S1 Major statistics of the CC3 × SWCC8 RIL linkage map developed in the present study.Table S2 Information of 269 markers placed on the CC3 × SWCC8 RIL genetic map, QTL and melon fruit shape homolog locations.Fig. S1 Alignments of marker loci in seven cucumber chromosomes based on comparison of the semi-wild CC3 × SWCC8 RIL genetic map (this study, center), the cultivated Gy14 × 9930 F2 map (Yang et al. 2012), as well as the wild cucumber Gy14 × PI 183967 (C. s. var. hardwickii) RIL map (Ren et al. 2009). Marker loci connected with red dotted lines are shared across three maps; green and blue lines connect shared markers between the Gy14 × 9930 F2 and the CC3 × SWCC8 RIL maps, as well as between the CC3 × SWCC8 RIL and the Gy14 × PI 183967 RIL maps, respectively. LG = linkage group.Fig. S2 Frequency distribution of first female flowering time (FFT), fruit length (FL), fruit diameter (FD), and fruit weight (FW) among 436 CC3 × SWCC8 F2 plants in WI2012H experiment.Fig. S3 Whole genome view of QTL locations for first female flowering time (FFT, A), fruit length (FL, B), fruit diameter (FD, C), fruit length to diameter ratio (L/D, D), and fruit weight (FW, E) detected in four experiments (NJ2009F, NJ2012S, WI2012H, WI 2013H). LOD profile screen snapshots were taken from WinQTL Cartographer 2.5. For each trait, the X axis represents linkage map of seven chromosomes, and the Y axis is LOD scores; the horizontal line represents LOD threshold obtained with 1,000 permutation tests (P = 0.05). To the right of the global view is the LOD profile of the major-effect QTL for FFT at chromosome 1 (fft1.1, A1), FL at chromosome 1 (fl1.1, B1), FD at chromosome 1 (fd1.1, C1), L/D at chromosome 1 (fld1.1, D1), and FW at chromosome 6 (fw6.1, E1).Fig. S4 Frequency distribution of 394 SWCC8 × CC3 F2 plants from WI2013H field trial based on fruit length (green), and genotypes (AA: red; AB: blue; BB: black) at the marker SSR12331 locus which was closely linked with the major-effect QTL fl1.1 for fruit length. Plants with shorter fruits were enriched with the B allele from SWCC8 while those with longer fruits had higher frequency of the A allele from CC3. (PDF 2847 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bo, K., Ma, Z., Chen, J. et al. Molecular mapping reveals structural rearrangements and quantitative trait loci underlying traits with local adaptation in semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis Qi et Yuan). Theor Appl Genet 128, 25–39 (2015). https://doi.org/10.1007/s00122-014-2410-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2410-z

Keywords

Navigation