Skip to main content
Log in

Anchoring the consensus ICuGI genetic map to the melon (Cucumis melo L.) genome

  • Short Communication
  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Melon (Cucumis melo L.) genetic maps were compiled by the International Cucurbit Genomics Initiative (ICuGI) before the release of the melon genome. However, due to the use of different marker sets, the position of ICuGI markers in the genome remained unknown, complicating the integration of previous genetic mapping studies in the genome. We looked for the genome position of 870 simple sequence repeat and single nucleotide polymorphism (SNP) markers from the ICuGI map, locating 836 of them in the melon pseudochromosomes v3.5.1, and integrating them with previously available SNPs to reach a total of 1850 markers mapped in the genome sequence. The number of markers per scaffold ranged from 1 to 105, with an average of 13, thus improving on the previous studies in melon. Twenty-three of the markers mapped on virtual chromosome “0”, twelve of them being included in the ICuGI map, which could assist in the anchoring of some unanchored contigs and scaffolds. Genetic and physical distance comparison showed a good collinearity between them, confirming the quality of the ICuGI map. A higher recombination rate was also usually found at the ends of the chromosomes, whereas a drastic reduction was observed in the putative pericentromeric regions. Quantitative trait loci (QTL) previously located in the ICuGI map were also anchored in the genome. This work offers the opportunity to supplement the genetic maps available up to now with the genomic resources resulting from the melon genome sequencing to facilitate comparative mapping in melon between past and new studies, and to overcome some of the current limitations in QTL gene identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Argyris JM, Ruiz-Herrera A, Madriz-Masis P, Sanseverino W, Morata J, Pujol M, Ramos-Onsins SE, Garcia-Mas J (2015) Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly. BMC Genomics 16:4

    Article  PubMed Central  PubMed  Google Scholar 

  • Burger Y, Sa’ar U, Paris HS, Lewinsohn E, Katzir N, Tadmor Y, Schaffer AA (2006) Genetic variability for valuable fruit quality traits in Cucumis melo. Isr J Plant Sci 54:233–242

    Article  CAS  Google Scholar 

  • Cuevas HE, Staub JE, Simon PW, Zalapa JE, McCreight JD (2008) Mapping of genetic loci that regulate quantity of beta-carotene in fruit of US Western Shipping melon (Cucumis melo L.). Theor Appl Genet 117:1345–1359

    Article  CAS  PubMed  Google Scholar 

  • Danin-Poleg Y, Reis N, Tzuri G, Katzir N (2001) Development and characterization of microsatellite markers in Cucumis. Theor Appl Genet 102:61–72

    Article  CAS  Google Scholar 

  • Diaz A, Fergany M, Formisano G, Ziarsolo P, Blanca J, Fei ZJ, Staub JE, Zalapa JE, Cuevas HE, Dace G, Oliver M, Boissot N, Dogimont C, Pitrat M, Hofstede R, van Koert P, Harel-Beja R, Tzuri G, Portnoy V, Cohen S, Schaffer A, Katzir N, Xu Y, Zhang HY, Fukino N, Matsumoto S, Garcia-Mas J, Monforte AJ (2011) A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biol 11:111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diaz A, Zarouri B, Fergany M, Eduardo I, Alvarez JM, Pico B, Monforte AJ (2014) Mapping and introgression of QTL involved in fruit shape transgressive segregation into ‘Piel de Sapo’ melon (Cucumis melo L.). PLoS One 9:e104188

    Article  PubMed Central  PubMed  Google Scholar 

  • Eduardo I, Arus P, Monforte AJ, Obando J, Fernandez-Trujillo JP, Martinez JA, Alarcon AL, Alvarez JM, van der Knaap E (2007) Estimating the genetic architecture of fruit quality traits in melon using a genomic library of near isogenic lines. J Am Soc Hort Sci 132:80–89

    Google Scholar 

  • Fernandez-Silva I, Eduardo I, Blanca J, Esteras C, Pico B, Nuez F, Arus P, Garcia-Mas J, Monforte AJ (2008) Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor Appl Genet 118:139–150

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Trujillo JP, Picó P, Garcia-Mas J, Álvarez JM, Monforte AJ (2011) Breeding for fruit quality in melon. In: Jenks MA, Bebeli PJ (eds) Breeding for fruit quality. Wiley-Blackwell, West Sussex, pp 261–275

    Chapter  Google Scholar 

  • Fukino N, Ohara T, Monforte AJ, Sugiyama M, Sakata Y, Kunihisa M, Matsumoto S (2008) Identification of QTLs for resistance to powdery mildew and SSR markers diagnostic for powdery mildew resistance genes in melon (Cucumis melo L.). Theor Appl Genet 118:165–175

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, Gonzalez VM, Henaff E, Camara F, Cozzuto L, Lowy E, Alioto T, Capella-Gutierrez S, Blanca J, Canizares J, Ziarsolo P, Gonzalez-Ibeas D, Rodriguez-Moreno L, Droege M, Du L, Alvarez-Tejado M, Lorente-Galdos B, Mele M, Yang LM, Weng YQ, Navarro A, Marques-Bonet T, Aranda MA, Nuez F, Pico B, Gabaldon T, Roma G, Guigo R, Casacuberta JM, Arus P, Puigdomenech P (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci USA 109:11872–11877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goff SA, Schnable JC, Feldmann KA (2014) The evolution of plant gene and genome sequencing. In: Paterson AH (ed) Genomes of herbaceous land plants. Academic Press, London, pp 47–90

  • Gonzalo MJ, Oliver M, Garcia-Mas J, Monfort A, Dolcet-Sanjuan R, Katzir N, Arus P, Monforte AJ (2005) Simple-sequence repeat (SSR) markers used in merging linkage maps of melon (Cucumis melo L.). Theor Appl Genet 110:802–811

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z, Min J, Guo X, Murat F, Ham BK, Zhang Z, Gao S, Huang M, Xu Y, Zhong S, Bombarely A, Mueller LA, Zhao H, He H, Zhang Y, Zhang Z, Huang S, Tan T, Pang E, Lin K, Hu Q, Kuang H, Ni P, Wang B, Liu J, Kou Q, Hou W, Zou X, Jiang J, Gong G, Klee K, Schoof H, Huang Y, Hu X, Dong S, Liang D, Wang J, Wu K, Xia Y, Zhao X, Zheng Z, Xing M, Liang X, Huang B, Lv T, Wang J, Yin Y, Yi H, Li R, Wu M, Levi A, Zhang X, Giovannoni JJ, Wang J, Li Y, Fei Z, Xu Y (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45:51–58

    Article  CAS  PubMed  Google Scholar 

  • Harel-Beja R, Tzuri G, Portnoy V, Lotan-Pompan M, Lev S, Cohen S, Dai N, Yeselson L, Meir A, Libhaber SE, Avisar E, Melame T, van Koert P, Verbakel H, Hofstede R, Volpin H, Oliver M, Fougedoire A, Stalh C, Fauve J, Copes B, Fei Z, Giovannoni J, Ori N, Lewinsohn E, Sherman A, Burger J, Tadmor Y, Schaffer AA, Katzir N (2010) A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theor Appl Genet 121:511–533

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, van der Vossen EAG, Wu Y, Guo J, He J, Jia Z, Ren Y, Tian G, Lu Y, Ruan J, Qian W, Wang M, Huang Q, Li B, Xuan Z, Cao J, Asan WuZ, Zhang J, Cai Q, Bai Y, Zhao B, Han Y, Li Y, Li X, Wang S, Shi Q, Liu S, Cho WK, Kim JY, Xu Y, Heller-Uszynska K, Miao H, Cheng Z, Zhang S, Wu J, Yang Y, Kang H, Li M, Liang H, Ren X, Shi Z, Wen M, Jian M, Yang H, Zhang G, Yang Z, Chen R, Liu S, Li J, Ma L, Liu H, Zhou Y, Zhao J, Fang X, Li G, Fang L, Li Y, Liu D, Zheng H, Zhang Y, Qin N, Li Z, Yang G, Yang S, Bolund L, Kristiansen K, Zheng H, Li S, Zhang X, Yang H, Wang J, Sun R, Zhang B, Jiang S, Wang J, Du Y, Li S (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Leida C, Moser C, Esteras C, Sulpice R, Lunn JE, de Langen F, Monforte AJ, Picó B (2015) Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genetics 16:28

    Article  PubMed Central  PubMed  Google Scholar 

  • Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arus P (2004) Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108:750–758

    Article  CAS  PubMed  Google Scholar 

  • Monforte AJ, Diaz A, Cano-Delgado A, van der Knaap E (2014) The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. J Exp Bot 65:4625–4637

    Article  PubMed  Google Scholar 

  • Perin C, Hagen LS, Giovinazzo N, Besombes D, Dogimont C, Pitrat M (2002) Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Mol Genet Genomics 266:933–941

    Article  CAS  PubMed  Google Scholar 

  • Pitrat M (2008) Melon. In: Prohens J, Nuez F (eds) Handbook of plant breeding. Vegetable I. Springer, New York, pp 283–315

    Google Scholar 

  • Ren Y, Zhao H, Kou Q, Jiang J, Guo S, Zhang H, Hou W, Zou X, Sun H, Gong G, Levi A, Xu Y (2012) A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome. PLoS One 7:e29453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ritschel PS, Lins TC, Tristan RL, Buso GS, Buso JA, Ferreira ME (2004) Development of microsatellite markers from an enriched genomic library for genetic analysis of melon (Cucumis melo L.). BMC Plant Biol 4:9

    Article  PubMed Central  PubMed  Google Scholar 

  • Vegas J, Garcia-Mas J, Monforte AJ (2013) Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. Theor Appl Genet 126:1531–1544

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the project AGL2012-40130-C02-02 from Spanish Ministry of Economy and Competitiveness (MINECO) to AJM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio J. Monforte.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11032_2015_381_MOESM1_ESM.xlsx

Online Resource 1. ESM_1. DNA sequences of the original clones and primers used for anchoring. Each spreadsheet includes markers from a specific paper. (XLSX 231 kb)

11032_2015_381_MOESM2_ESM.xlsx

Online Resource 2. ESM_2. Physical positions of the markers included in the integrated map (name and coordinate in the scaffold and pseudomolecule). The positions in the original genetic maps are also indicated as well as a commentary on the markers that showed discrepancies between genetic and genome positions. (XLSX 166 kb)

11032_2015_381_MOESM3_ESM.pdf

Online Resource 3. ESM_3. Relationship between genetic (cM) and physical (Mb) distance for 1850 markers in the 12 melon pseudomolecules (PM). The vertical segments of the curves correspond to putative pericentromeric regions as they represent portions of the chromosomes with few recombination events. (PDF 171 kb)

11032_2015_381_MOESM4_ESM.xls

Online Resource 4. ESM_4. Anchoring of QTL located in the ICuGI map on the melon genome. QTL names are according to Diaz et al. (2011), followed by the chromosome where they were mapped, the flanking markers in the ICuGI map and their position on the genome (estimated in the case of markers different from SSRs or SNPs). The references of the original QTL mapping studies are listed in the “experiment” spreadsheet. (XLS 78 kb)

11032_2015_381_MOESM5_ESM.pdf

Online Resource 5. ESM_5. Anchoring of markers and QTL on the melon genome. QTLs are located in the center of the confidence interval of their respective position. Marker color codes are according to Fig. 1: SSRs (blue), indels (black) and SNPs (green). (PDF 561 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaz, A., Forment, J., Argyris, J.M. et al. Anchoring the consensus ICuGI genetic map to the melon (Cucumis melo L.) genome. Mol Breeding 35, 188 (2015). https://doi.org/10.1007/s11032-015-0381-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0381-7

Keywords

Navigation