Skip to main content
Log in

Detection of QTL for yield-related traits using recombinant inbred lines derived from exotic and elite US Western Shipping melon germplasm

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The inheritance of yield-related traits in melon (Cucumis melo L.; 2n = 2x = 24) is poorly understood, and the mapping of quantitative trait loci (QTL) for such traits has not been reported. Therefore, a set of 81 recombinant inbred lines (RIL) was developed from a cross between the monoecious, highly branched line USDA 846-1 and a standard vining, andromonoecious cultivar, ‘Top Mark’. The RIL, parental lines, and three control cultivars (‘Esteem’, ‘Sol Dorado’, and ‘Hales Best Jumbo’) were grown at Hancock, WI and El Centro, CA in 2002, and evaluated for primary branch number (PB), fruit number per plant (FN), fruit weight per plant (FW), average weight per fruit (AWF), and percentage of mature fruit per plot (PMF). A 190-point genetic map was constructed using 114 RAPD, 43 SSR, 32 AFLP markers, and one phenotypic trait. Fifteen linkage groups spanned 1,116 cM with a mean marker interval of 5.9 cM. A total of 37 QTL were detected in both locations (PB = 6, FN = 9, FW = 12, AWF = 5, and PMF = 5). QTL analyses revealed four location-independent factors for PB (pb1.1, pb1.2, pb2.3, and pb10.5), five for FN (fn1.1, fn1.2, fn1.3, fn2.4, and fn8.8), four for FW (fw5.8, fw6.10, fw8.11, and fw8.12), two for AWF (awf1.3 and awf8.5), and one for PMF (pmf10.4). The significant (P ≤ 0.05) positive phenotypic correlations observed among PB, FN, and FW, and negative

phenotypic correlations between PB and AWF and between FN and AWF were consistent with the genomic locations and effects (negative vs. positive) of the QTL detected. Results indicate that genes resident in highly branched melon types have potential for increasing yield in US Western Shipping type germplasm via marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdalla MMA, Aboul-Nasr MH (2002) Estimation of heterosis for yield and other economical characters of melon (Cucumis melo L.) in upper Egypt. In: Maynard DN (ed) Proc Cucurbitaceae 2002, Naples, FL, December 8–12, 2002. ASHS, Alexandria, VA, pp 11–16

  • Baudracco-Arnas S, Pitrat M (1996) A genetic map of melon (Cucumis melo L.) with RFLP, RAPD, isozyme, disease resistance and morphological markers. Theor Appl Genet 93:57–64

    Article  CAS  Google Scholar 

  • Beavis WD (1998) QTL analysis: power, precision, and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, Boca Raton, pp 145–162

    Google Scholar 

  • Bernardo R. (1998) Predicting the performance of untested single crosses: trait and marker data. In: Lamkey KR, Staub JE (eds) Proceedings of the plant breeding symposium: Concepts and breeding of heterosis in crop plants, November 3, 1998. Crop Science Society of America, Madison

  • Bezant J, Lauriel D, Pratchett N, Chojecki J, Kearsey M (1997) Mapping QTL controlling yield and yield components in a spring barley (Hordeum vulgare L.) cross using marker regression. Mol Breed 3:29–38

    Article  CAS  Google Scholar 

  • Borevitz JO, Maloof JN, Lutes J, Dabi T, Redfern JL, Trainer GT, Werner JD, Asami T, Berry CC, Weigel D, Chory J (2002) Quantitative trait loci controlling light and hormone response in two accessions of Arabidopsis thaliana. Genetics 160:683–696

    PubMed  CAS  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  PubMed  CAS  Google Scholar 

  • Comstock RE (1978) Quantitative genetics in maize breeding. In: Maize breeding and genetics, New York, pp 191–206

  • Comstock RE, Robinson HF (1948) The components of genetic variance in populations of biparental progenies and their use in estimating the average degree of dominance. Biometrics 4:254–266

    Article  CAS  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Danin-Poleg Y, Reis N, Baudracco-Arnas S, Pitrat M, Staub JE, Oliver M, Arus P, deVincente CM, Katzir N (2000) Simple sequence repeats in Cucumis mapping and map merging. Genome 43:963–974

    Article  PubMed  CAS  Google Scholar 

  • Danin-Poleg Y, Reis N, Tzuri G, Katzir N (2001) Development and characterization of microsatellite in Cucumis. Theor Appl Genet 102:61–72

    Article  CAS  Google Scholar 

  • Danin-Poleg Y, Tadmor Y, Tzuri G, Reis N, Hirschberg J, Katzir N (2002) Construction of a genetic map of melon with molecular markers and horticultural traits, and localization of genes associated with ZYMV resistance. Euphytica 125:373–384

    Article  CAS  Google Scholar 

  • de Leon N, JG Coors SM Kaeppler GJM Rosa (2005) Genetic control of prolificacy and related traits in the golden glow maize population: I. Phenotypic evaluation. Crop Sci 45:1361–1369

    Article  Google Scholar 

  • Denna DW (1962) A study of the genetic, morphological and physiological basis of the bush and vine habit of several cucurbits. Ph.D. Dissertation, Cornell University, Ithaca, NY

  • Dijkhuizen A, Staub JE (2003) Effects of environment and genetic background on QTL affecting yield and fruit quality traits in a wide cross in cucumber [Cucumis sativus L. × Cucumis hardwickii (R.) Alef.]. J New Seeds 4:1–30

    Article  Google Scholar 

  • Dogimont C, Leconte L, Périn C, Thabuis A, Lecoq H, Pitrat M (2000) Identification of QTLs contributing to resistance to different strains of cucumber mosaic cucumovirus in melon. Acta Hortic 510:391–398

    CAS  Google Scholar 

  • Dudley JW, Moll RH (1969) Interpretation and use of heritability and genetic estimates in plant breeding. Crop Sci 9:257–262

    Article  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman Group, London

    Google Scholar 

  • Fan Z, Robbins MD, Staub JE (2006) Population development by phenotypic selection with subsequent marker-assisted selection for line extraction in cucumber (Cucumis sativus L.). Theor Appl Genet 112:843–855

    Article  PubMed  CAS  Google Scholar 

  • Fazio G, Staub JE, Chung SM (2002) Development and characterization of PCR markers in cucumber (Cucumis sativus L.). J Amer Soc Hort Sci 127:545–557

    CAS  Google Scholar 

  • Fazio G, Staub JE, Stevens MR (2003a) Genetic mapping and QTL analysis of horticulture traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor Appl Genet 107:864–874

    Article  CAS  Google Scholar 

  • Fazio G, Chung SM, Staub JE (2003b) Comparative analysis of response to phenotypic and marker-assisted selection for multiple lateral branching in cucumber (Cucumis sativus L.). Theor Appl Genet 107:875–883

    Article  CAS  Google Scholar 

  • Francia E, Tacconi G, Crosatti C, Barabaschi D, Bulgarelli D, Dall’Aglio E, Vale G (2005) Marker-assisted selection in crop plants. Plant Cell Tissue Organ Cult 82:317–342

    Article  CAS  Google Scholar 

  • Gonzalo MJ, Oliver M, Garcia-Mas J, Monfort A, Dolcet-Sanjuan R, Katzir N, Arús P, Monforte AJ (2005) Development of a consensus map of melon (Cucumis melo L.) based on high-quality markers (RFLPs and SSRs) using F2 and double-haploid line populations. Theor Appl Genet 110:802–811

    Article  PubMed  CAS  Google Scholar 

  • Griffing B (1956) A Generalized treatment of the use of diallel crosses in quantitative inheritance. Heredity 10:30–50

    Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. J Heredity 69:315–324

    CAS  Google Scholar 

  • Horejsi T, Box J, Staub JE (1999) Efficiency of RAPD to SCAR marker conversion and their comparative PCR sensitivity in cucumber. J Amer Soc Hort Sci 124:128–135

    CAS  Google Scholar 

  • Hughes DL, Bosland J, Yamaguchi M (1983) Movement of photosynthates in muskmelon plants. J Amer Soc Hort Sci 108:189–192

    Google Scholar 

  • Jones ES, Breese A, Liu CJ, Singh SD, Shaw DS, Witcombe JR (2002) Mapping quantitative trait loci for resistance to downy mildew in pearl millet: field and glasshouse screens detect the same QTL. Crop Sci 42:1316–1323

    Article  CAS  Google Scholar 

  • Katzir N, Danin-Poleg T, Tzuri G, Karchi Z, Lavi U, Cregan PB (1996) Length polymorphism and homologies of microsatellites in several Cucurbitaceae species. Theor Appl Genet 93:1282–1290

    Article  CAS  Google Scholar 

  • Kearsey MJ, Pooni HS (1996) The genetical analysis of quantitative traits, 1st edn. Chapman and Hall, London

    Google Scholar 

  • Kubicki B (1962) Inheritance of some characters in muskmelon (Cucumis melo L.). Genet Pol 3:265–274

    Google Scholar 

  • Kultur F, Harrison HC, Staub JE, Palta JP (2001) Spacing and genotype effects on fruit sugar concentration and yield of muskmelon. HortScience 36:274–278

    Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    PubMed  CAS  Google Scholar 

  • Lander E, Green P, Abrahamson J, Barlow A, Daly M, Lincoln S, Newburg L (1987) MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lippert LF, Hall MO (1982) Heritabilities and correlations in muskmelon from parent offspring regression analyses. J Amer Soc Hort Sci 107:217–221

    Google Scholar 

  • Lippert LF, Legg PD (1972) Diallel analysis for yield and maturity characteristics in muskmelon cultivars. J Amer Soc Hort Sci 97:87–90

    Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1996) SAS system for mixed models. SAS Institute Inc., Cary, NC

    Google Scholar 

  • Liou PC, Chang YM, Hsu WS, Cheng YH, Chang HR, Hsiao CH (1998) Construction of a linkage map in Cucumis melo (L.) using random amplified polymorphic DNA markers. In: RA Drew (eds) Proceedings of the international symposium in biotechnololy: tropical and subtropical species, pp 123–131

  • Liu BH (1998a) Statistical genomics: linkage, mapping, and QTL analysis. CRC Press, Boca Raton

    Google Scholar 

  • Liu BH (1998b) Computational tools for study of complex traits. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, Boca Raton, pp 43–80

    Google Scholar 

  • López-Sesé A, Staub JE (2001) Frequency differences of RAPD markers in melon market classes (Cucumis melo L.). Cucurb Genet Coop Rpt 24:33–37

    Google Scholar 

  • López-Sesé A, Staub JE, Katzir N, Gomez-Guillamon ML (2002) Estimation of between and within accession variation in selected Spanish melon germplasm using RAPD and SSR markers to assess strategies for large collection evaluation. Euphytica 127:42–51

    Article  Google Scholar 

  • López-Sesé A, Staub JE, Gomez-Guillamon ML (2003) Genetic analysis of Spanish melon (Cucumis melo L.) germplasm using a standardized molecular marker array and reference accessions. Theor Appl Genet 108:41–52

    Article  PubMed  CAS  Google Scholar 

  • Mackay TFC (2001) The genetic architecture of quantitative traits. Ann Rev Genet 35:303–339

    Article  PubMed  CAS  Google Scholar 

  • Marques CM, Araujo JA, Ferreira JG, Whetten R, O’Malley DM, BH Liu R Sederoff (1998) AFLP genetic maps of Eucalyptus globules and E. tereticornis. Theor Appl Genet 96:727–737

    Article  CAS  Google Scholar 

  • Mather K (1949) Biometrical genetics, 1st edn. Methuen, London

    Google Scholar 

  • McGlasson WB, Pratt HK (1963) Fruit-set patterns and fruit growth in cantaloupe (Cucumis melo L. var. reticulatis Naud.). Proc Amer Soc Hort Sci 83:495–505

    Google Scholar 

  • Melchinger AE, Utz HF, Schon CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–403

    PubMed  CAS  Google Scholar 

  • Mohr HC, Knavel DE (1966) Progress in the development of short-internode (bush) cantaloupes. HortScience 1:16

    Google Scholar 

  • Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arus P (2004) Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108:750–758

    Article  PubMed  CAS  Google Scholar 

  • Nerson H, Paris HS, Karchi Z (1983) Characteristics of birdnest-type muskmelons. Scientia Hortic 21:341–352

    Article  Google Scholar 

  • Oliver M, Garcia-Mas J, Cardus M, Pueyo N, Lopez-Sese A, Arroyo M, Gomez-Paniagua H, Arus P, de Vincente MC (2001) Construction of a reference linkage map for melon. Genome 44:836–845

    Article  PubMed  CAS  Google Scholar 

  • Paris HS, Karchi Z, Nerson H, Govers A, Freudenberg D (1981) A new plant type in Cucumis melo L. Cucurbit Genet Coop Rpt 4:24–26

    Google Scholar 

  • Paris HS, Karchi Z, Nerson H, Burger Y (1982) On the compact appearance of birdnest type muskmelons. HortScience 17:476

    Google Scholar 

  • Paris HS, Nerson H, Karchi Z (1984) Genetics of internode length in melons. J Hered 75:403–406

    Google Scholar 

  • Paris HS, McCollum TGM, Nerson H, Cantliffe DJ, Karchi Z (1985) Breeding for concentrated-yield muskmelons. J Hort Sci 60:335–339

    Google Scholar 

  • Perchepied L, Dogimont C, Pitrat M (2005a) Strain-specific and recessive QTLs involved in the control of partial resistance to Fusarium oxysporum f. sp melon race 1.2 in a recombinant inbred line population of melon. Theor Appl Genet 111:65–74

    Article  CAS  Google Scholar 

  • Perchepied L, Dogimont C, Pitrat M (2005b) Relationship between loci conferring downy and powderly mildew resistance in melon assessed by quantitative trait loci mapping. Phytopathology 95:556–565

    CAS  Google Scholar 

  • Périn C, Hagen LS, Dogimont C, de Conto V, Lecomte L, Pitrat M (2000) Construction of a reference genetic map of melon. Acta Hortic 510:367–374

    Google Scholar 

  • Perin C, Hagen LS, Giovinazzo N, Besombes D, Dogimont C, Pitrat M (2002a) Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Mol Genet Genom 266:933–941

    Article  CAS  Google Scholar 

  • Perin C, Gomez-Jimenez M, Hagen L, Dogimont C Pech JC, Latche A, Pitrat M, Lelievre JM (2002b) Molecular and genetic characterization of a non-climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit. Plant Physiol 129:300–309

    Article  CAS  Google Scholar 

  • Perin C, Hagen LS, de Conto V, Katzir N, Danin-Poleg Y, Portnoy V, Baudracco-Arnas S, Chadoeuf J, Dogimont C, Pitrat M (2002c) A reference map of Cucumis melo based on two recombinant inbred line populations. Theor Appl Genet 104:1017–1034

    Article  CAS  Google Scholar 

  • Prusinkiewicz P, Haran J (1989) Lindenmayer systems, fractals, and plants (lecture notes in biomathematics). Springer, New York

    Google Scholar 

  • Rosa JT (1924) Fruiting habit and pollination of cantaloupe. Proc Amer Soc Hort Sci 21:51–57

    Google Scholar 

  • SAS Institute (1999) SAS version 8.02 for windows. SAS Institute Inc., Cary, NY

  • Serquen FC, Bacher J, Staub JE (1997) Genetic analysis of yield components in cucumber (Cucumis sativus L.) at low plant density. J Amer Soc Hort Sci 122:522–528

    Google Scholar 

  • Silberstein L, Kovalski I, Brotman Y, Perin C, Dogimont C, Pitrat M, Klingler J, Thompson G, Portnoy V, Katzir N, Perl-Treves R (2003) Linkage map of Cucumis melo including phenotypic traits and sequence-characterized genes. Genome 46:761–773

    Article  PubMed  CAS  Google Scholar 

  • Staub JE, Bacher J, Poetter K (1996a) Factors affecting the application of random amplified polymorphic DNAs in cucumber (Cucumis sativus L.). HortScience 31:262–266

    CAS  Google Scholar 

  • Staub JE, Serquen F, Gupta M (1996b) Genetic markers, map construction and their application in plant breeding. HortScience 31:729–741

    CAS  Google Scholar 

  • Staub JE (2001) Inheritance of RAPD markers in melon (Cucumis melo L.). Cucurbit Genet Coop Rpt 24:29–32

    Google Scholar 

  • Staub JE, Zalapa JE, Paris MK, McCreight J (2004) Selection for lateral branch number in melon (Cucumis melo L.). In: Lebeda A, Paris HS (eds) Proc Cucurbitaceae 2004: The 8th Eucarpia meeting on cucurbit genetic and breeding. Olomuc, Czech Republic, July 12–17, 2004. Palacky University in Olomuc, Czech Republic, pp 381–388

  • Staub JE, Sun Z, Chung SM, Lower RL (2007) Evidence for colinearity among genetic linkage maps in cucumber. HortScience (in press)

  • Sun Z (2005) Inheritance and molecular mapping of parthernocarphy in cucumber (Cucumis sativus L.). Ph.D. Dissertation, University of Wisconsin at Madison

  • Sun Z, Lower RL, Chung SM, Staub JE (2006) Identification and comparative analysis of quantitative trait loci (QTL) associated with parthenocarpy in processing cucumber. Plt Breed 125:281–287

    Article  CAS  Google Scholar 

  • Taha M, Omara K, El Jack A (2003) Correlation among growth, yield, and quality characters in Cucumis melo L. Cucurbit Genet Coop Rpt 26:9–11

    Google Scholar 

  • Utz HF, Melchinger AE, Schon CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154:1839–1849

    PubMed  Google Scholar 

  • UWEX (2001) Commercial vegetable production in Wisconsin. University of Wisconsin-Extension. Cooperative Extension Publishing, Madison, WI

  • Van Ooijen JW, Voorrips RE (2001) JoinMap® Version3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Vuylsteke M, Mank R, Antonise R, Bastiaans E, Senior ML, Stuber CW, Melchinger AE, Lubberstedt T, Xia XC, Stam P, Zabeau M, Kuiper M (1999) Two high-density AFLP linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor Appl Genet 99:921–935

    Article  CAS  Google Scholar 

  • Wang YH, Thomas CE, Dean RA (1997) A genetic map of melon (Cucumis melo L.) based on amplified fragment length polymorphism (AFLP) markers. Theor Appl Genet 95:791–798

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2004) Windows QTL Cartographer 2.0. Department of Statistics, North Carolina State University, Raleigh, NC. http://www.statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Yan W, Rajcan I (2003) Prediction of cultivar performance based on single- versus multiple-year tests in soybean. Crop Sci 43:549–555

    Article  Google Scholar 

  • Zalapa JE, Staub JE, McCreight J (2004) Genetic analysis of branching in melon (Cucumis melo L.). In: Lebeda A, Paris HS (eds) Proc Cucurbitaceae 2004: The 8th Eucarpia meeting on cucurbit genetic and breeding. Olomuc, Czech Republic, July 12–17, 2004. Palacky University in Olomuc, Czech Republic, pp 373–380

  • Zalapa JE (2005) Inheritance and mapping of plant architecture and fruit yield in melon (Cucumis melo L.). Ph.D. Dissertation, University of Wisconsin, Madison (http://www.ars.esda.gov/mwa/madison/vcru)

  • Zalapa JE, Staub JE, McCreight J (2006) Generation means analysis of plant architectural traits and fruit yield in melon. Plt Breed 125:482–487

    Article  Google Scholar 

  • Zeng ZB (1993) Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976

    Article  PubMed  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zhuang JY, Lin HX, Lu J, Qian R, Hittalmani S, Huang N, Zheng KL (1997) Analysis of QTL × environment interaction for yield components and plant height in rice. Theor Appl Genet 95:799–808

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Advance Opportunity Fellowship (AOF) at the University of Wisconsin-Madison, the National Consortium for Graduate Degrees for Minorities in Engineering and Science (GEM) fellowship, and the National Science Foundation K-Through-Infinity (KTI) fellowship for their support provided for graduate student training.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Zalapa.

Additional information

Communicated by I. Paran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zalapa, J.E., Staub, J.E., McCreight, J.D. et al. Detection of QTL for yield-related traits using recombinant inbred lines derived from exotic and elite US Western Shipping melon germplasm. Theor Appl Genet 114, 1185–1201 (2007). https://doi.org/10.1007/s00122-007-0510-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0510-8

Keywords

Navigation