Skip to main content
Log in

Biochemical characteristics of a novel ethanol-tolerant xylanase from Bacillus subtilis subsp. subtilis JJBS250 and its applicability in saccharification of rice straw

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The present study reports the partial purification and characterisation of a novel xylanase from Bacillus subtilis subsp. subtilis JJBS250 followed by its applicability in the saccharification of rice straw. Bacterial xylanase was partially purified by gel filtration chromatography using Sephadax G-50 matrix that displayed optimal activity at 60 °C and pH 7.0 with half-life values of 1420 and 718 min at 60 °C and 80 °C, respectively. Bacterial xylanase showed high tolerance to ethanol with Km and Vmax values of 1.62 mg/ml and 23.92 U/ml, respectively, for beechwood xylan. Maximum amount of reducing sugars was obtained from sodium carbonate pretreated rice straw (151.65 mg/g substrate) as compared to untreated biomass (90.49 mg/g substrate) using 20 U/g enzyme dose at 60 °C and pH 7.0 after 48 h. Furthermore, the saccharification of pretreated rice straw was improved by synergistic action of bacterial and fungal xylanases. Analysis of rice straw using scanning electron microscopy (SEM), x-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy clearly showed the morphological changes and delignification in rice straw after pretreatment. Bacterial xylanase exhibiting novel properties including ethanol tolerance and high thermostability is highly suitable for the production of second generation biofuels in simultaneous saccharification and fermentation process using lignocellulosic substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wierzbicki MP, Maloney V, Mizrachi E, Myburg AA (2019) Xylan in the middle: understanding xylan biosynthesis and its metabolic dependencies toward improving wood fiber for industrial processing. Front Plant Sci 10:176. https://doi.org/10.3389/fpls.2019.00176

    Article  Google Scholar 

  2. AlvarezZúñiga MT, SantiagoHernández A, RodríguezMendoza J, Campos JE, PavónOrozco P, TrejoEstrada S, HidalgoLara ME (2017) Taxonomic identification of the thermotolerant and fast-growing fungus Lichtheimia ramosa H71D and biochemical characterization of the thermophilic xylanase LrXynA. AMB Express 7(1):194. https://doi.org/10.1186/s13568-017-0494-y

    Article  Google Scholar 

  3. Moreira LRS, Filho EXF (2016) Insights into the mechanism of enzymatic hydrolysis of xylan. Appl Microbiol Biotechnol 100(12):5205–5214. https://doi.org/10.1007/s00253-016-7555-z

    Article  Google Scholar 

  4. Alokika, Singh D, Singh B (2018) Utility of acidic xylanase of Bacillus subtilis subsp. subtilis JJBS250 in improving the nutritional value of poultry feed. 3 Biotech 8(12):503. https://doi.org/10.1007/s13205-018-1526-2

    Article  Google Scholar 

  5. Alokika SB (2019) Production, characteristics, and biotechnological applications of microbial xylanases. Appl Microbiol Biotechnol 103:8763–8784. https://doi.org/10.1007/s00253-019-10108-6

    Article  Google Scholar 

  6. Abraham A, Mathew AK, Sindhu R, Pandey A, Binod P (2016) Potential of rice straw for bio-refining: an overview. Bioresour Technol 215:29–36. https://doi.org/10.1016/j.biortech.2016.04.011

    Article  Google Scholar 

  7. El-Shishtawy RM, Mohamed SA, Asiri AM, Abu-bakr MG, Ibrahim IH, Al-Talhi HA (2014) Solid fermentation of wheat bran for hydrolytic enzymes production and saccharification content by a local isolate Bacillus megatherium. BMC Biotechnol 14(1):29. https://doi.org/10.1186/1472-6750-14-29

    Article  Google Scholar 

  8. Shen Z, Zhang K, Si M, Liu M, Zhuo S, Liu M, Ren L, Yan X, Shi Y (2018) Synergy of lignocelluloses pretreatment by sodium carbonate and bacterium to enhance enzymatic hydrolysis of rice straw. Bioresour Technol 249:154–160. https://doi.org/10.1016/j.biortech.2017.10.008

    Article  Google Scholar 

  9. Yadav P, Maharjan J, Korpole S, Prashad GS, Sahni G, Bhattarai T, Sreerama L (2018) Production, purification, and characterization of thermostable alkaline xyalanse from Anoxybacillus kamchatkensis NASTPD13. Front Bioeng Biotechnol 6:65. https://doi.org/10.3389/fbioe.2018.00065

    Article  Google Scholar 

  10. Walia A, Mehta P, Chauhan A, Kulshrestha S, Shirkot CK (2014) Purification and characterization of cellulase-free low molecular weight endo b-1,4 xylanase from an alkalophilic Cellulosimicrobium cellulans CKMX1 isolated from mushroom compost. World J Microbiol Biotechnol 30:2597–2608. https://doi.org/10.1007/s11274-014-1683-3

    Article  Google Scholar 

  11. Mittal A, Nagar S, Gupta VK (2013) Production and purification of high levels of cellulase-free bacterial xylanase by Bacillus sp. SV-34S using agro-residue. Ann Microbiol 63(1):1157–1167. https://doi.org/10.1007/s13213-012-0574-9

  12. Alokika SB (2020) Enhanced production of bacterial xylanase and its utility in saccharification of sugarcane bagasse. Bioprocess Biosyst Eng 43:1081–1091. https://doi.org/10.1007/s00449-020-02306-8

    Article  Google Scholar 

  13. Dahiya S, Singh B (2019) Enhanced endoxylanase production by Myceliophthora thermophila with applicability in saccharification of agricultural substrates. 3 Biotech 9:214. https://doi.org/10.1007/s13205-019-1750-4

    Article  Google Scholar 

  14. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–429. https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  15. Lowery OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    Article  Google Scholar 

  16. Anu SB, Kumar A (2020) Process development for sodium carbonate pretreatment and enzymatic saccharification of rice straw for bioethanol production. Biomass Bioenergy 138:105574. https://doi.org/10.1016/j.biombioe.2020.105574

    Article  Google Scholar 

  17. Kim S, Holtzapple MT (2006) Effect of structural features on enzyme digestibility of corn stover. Bioresour Technol 97(4):583–591. https://doi.org/10.1016/j.biortech.2005.03.040

    Article  Google Scholar 

  18. Kumar S, Haq I, Prakash J, Singh SK, Mishra S, Raj A (2017) Purification, characterization and thermostability improvement of xylanase from Bacillus amyloliquefaciens and its application in pre-bleaching of kraft pulp. 3 Biotech 7(1):20. https://doi.org/10.1007/s13205-017-0615-y

    Article  Google Scholar 

  19. Panthi S, Choi YS, Choi YH, Kim M, Yoo JC (2016) Biochemical and thermodynamic characterization of a novel, low molecular weight xylanase from Bacillus Methylotrophicus CSB40 isolated from traditional korean food. Appl Biochem Biotechnol 179(1):126–142. https://doi.org/10.1007/s12010-016-1983-1

    Article  Google Scholar 

  20. Kumar V, Satyanarayana T (2013) Biochemical and thermodynamic characteristics of thermo-alkalistable xylanase from a novel polyextremophilic Bacillus halodurans TSEV1. Extremophiles 17(5):797–808. https://doi.org/10.1007/s00792-013-0565-1

    Article  Google Scholar 

  21. Archana A, Satyanarayana T (2003) Purification and characterization of a cellulase-free xylanase of a moderate thermophile Bacillus licheniformis A99. World J Microbiol Biotechnol 19:53–57. https://doi.org/10.1023/A:1022527702400

    Article  Google Scholar 

  22. Kocabas DS, Ozben N (2014) Co-production of xylanase and xylooligosaccharides from lignocellulosic agricultural wastes. RSC Adv 4(50):26129–26139. https://doi.org/10.1039/C4RA02508C

    Article  Google Scholar 

  23. Qiu H, Li Z, Wang H, Zhang H, Li S, Luo X, Song Y, Wang N, He H, Zhou H, Ma W, Zhang T (2017) Molecular and biochemical characterization of a novel cold-active and metal ion-tolerant GH10 xylanase from frozen soil. Biotechnol Biotechnol Equip 31(5):955–963. https://doi.org/10.1080/13102818.2017.1359667

    Article  Google Scholar 

  24. Adhyaru DN, Bhatt NS, Modi HA (2014) Enhanced production of cellulase-free, thermo-alkali-solvent-stable xylanase from Bacillus altitudinis DHN8, its characterization and application in sorghum straw saccharification. Biocatal Agric Biotechnol 3(2):182–190. https://doi.org/10.1016/j.bcab.2013.10.003

    Article  Google Scholar 

  25. Bibi Z, Nawaz MA, Irum-Us-Salama WM, Aman A, Qader SAU (2019) Significance of metal ions, solvents and surfactants to improve the xylan degrading behavior of β-1,4-D-xylanohydrolase from Geobacillus stearothermophilus KIBGE-IB29. Biocatal Agric Biotechnol 17:242–246. https://doi.org/10.1016/j.bcab.2018.11.028

    Article  Google Scholar 

  26. Sinha R, Khare SK (2014) Effect of organic solvents on the structure and activity of moderately halophilic Bacillus sp. EMB9 protease. Extremophiles 18(6):1057–1066. https://doi.org/10.1007/s00792-014-0683-4

    Article  Google Scholar 

  27. Shahrestani H, Kafrani AT, Soozanipour A, Tavakoli O (2016) Enzymatic clarification of fruit juices using xylanase immobilized on 1,3,5-triazine-functionalized silica-encapsulated magnetic nanoparticles. Biochem Eng J 109:51–58. https://doi.org/10.1016/j.bej.2015.12.013

    Article  Google Scholar 

  28. Palavesam A (2015) Investigation on lignocellulosic saccharification and characterization of haloalkaline solvent tolerant endo-1,4 β-D-xylanase from Halomonas meridiana APCMST-KS4. Biocatal Agric Biotechnol 4(4):761–766. https://doi.org/10.1016/j.bcab.2015.09.007

    Article  Google Scholar 

  29. Kallel F, Driss D, Bouaziz F, Neifer M, Ghorbel R, Chaabouni SE (2015) Production of xylooligosaccharides from garlic straw xylan by purified xylanase from Bacillus mojavensis UEB-FK and their in vitro evaluation as prebiotics. Food Bioprod Process 94:536–546. https://doi.org/10.1016/j.fbp.2014.07.012

    Article  Google Scholar 

  30. Sapna, Singh B (2017) Purification and characterization of a protease-resistant phytase of Aspergilus oryzae SBS50 whose properties make it exceptionally useful as a feed supplement. Int J Biol Macromol 103:458–466. https://doi.org/10.1016/j.ijbiomac.2017.05.077

    Article  Google Scholar 

  31. Chang S, Guo Y, Wu B, He B (2017) Extracellular expression of alkali tolerant xylanase from Bacillus subtilis Lucky9 in E.coli and application for xylooligosaccharides production from agro-industrial waste. Int J Biol Macromol 96:249–256. https://doi.org/10.1016/j.ijbiomac.2016.11.032

    Article  Google Scholar 

  32. Luo L, Cai J, Wang C, Lin J, Du X, Zhou A, Xiang M (2015) Purification and characterization of an alkaliphilic endo-xylanase from Streptomyces althioticus LMZM and utilization in the pulp paper industry. J Chem Technol Biotechnol 91(4):1093–1098. https://doi.org/10.1002/jctb.4690

    Article  Google Scholar 

  33. Anand A, Kumar V, Satyanarayana T (2013) Characteristics of thermostable endoxylanase and b-xylosidase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1 and its applicability in generating xylooligosaccharides and xylose from agro-residues. Extremophiles 17:357–366. https://doi.org/10.1007/s00792-013-0524-x

    Article  Google Scholar 

  34. Sharma KK, Kapoor M, Kuhad RC (2005) In vivo enzymatic digestion, in vitro xylanase digestion, metabolic analogues, surfactants and polyethylene glycol ameliorate laccase production from Ganoderma sp. kk-02. Lett Appl Microbiol 41(1):24–31. https://doi.org/10.1111/j.1472-765X.2005.01721.x

    Article  Google Scholar 

  35. Knob A, Carmona EC (2009) Purification and characterization of two extracellular xylanases from Penicillium sclerotiorum: a novel acidophilic xylanase. Appl Biochem Biotechnol 162:429–443. https://doi.org/10.1007/s12010-009-8731-8

    Article  Google Scholar 

  36. Chapla D, Dholakiya S, Madamwar D, Shah A (2013) Characterization of purified fungal endoxylanase and its application for production of value added food ingredient from agroresidues. Food Bioprod Process 91(4):682–692. https://doi.org/10.1016/j.fbp.2013.08.005

    Article  Google Scholar 

  37. Hongchen Z, Liu Y, Liu X, Wang J, Han Y, Lu F (2012) Isolation, purification, and characterization of a thermostable xylanase from a novel strain, Paenibacillus campinasensis G1–1. J Microbiol Biotechnol 22(7):930–938. https://doi.org/10.4014/jmb.1110.10060

    Article  Google Scholar 

  38. Sanghi A, Garg N, Gupta VK, Mittal A, Kuhad RC (2010) One-step purification and characterization of cellulase-free xylanase produced by alkalophilic Bacillus Subtilis ASH. Braz J Microbiol 41:467–476. https://doi.org/10.1590/S1517-83822010000200029

    Article  Google Scholar 

  39. Bora SS, Das S, Lahan JP, Barooah M (2017) Isolation and partial characterization of cellulase free alkalo-thermophilic xylanase produced by Bacillus flexus. Indian J Biotechnol:396–403 http://nopr.niscair.res.in/bitstream/123456789/43330/1/IJBT%2016%283%29%20396-403.pdf

  40. Uday USP, Majumdar R, Tiwari ON, Mishra U, Mondal A, Bandyopadhyay TK, Bhunia B (2017) Isolation, screening and characterization of a novel extracellular xylanase from Aspergillus niger (KP874102.1) and its application in orange peel hydrolysis. Int J Biol Macromol 105:401–409. https://doi.org/10.1016/j.ijbiomac.2017.07.066

    Article  Google Scholar 

  41. Ghosh A, Sutradhar S, Baishya D (2019) Delineating thermophilic xylanase from Bacillus licheniformis DM5 towards its potential application in xylooligosaccharides production. World J Microbiol Biotechnol 35(2):34. https://doi.org/10.1007/s11274-019-2605-1

    Article  Google Scholar 

  42. Kumar L, Kumar D, Nagar S, Gupta R, Garg N, Kuhad RC, Gupta VK (2014a) Modulation of xylanase production from alkaliphilic Bacillus pumilus VLK-1 through process optimization and temperature shift operation. 3 Biotech 4(4):345–356. https://doi.org/10.1007/s13205-013-0160-2

    Article  Google Scholar 

  43. Goswami GK, Rawat S (2015) Microbial xylanase and their applications - a review. Int J Curr Res Acad Rev 3(6):436–450

    Google Scholar 

  44. Menon G, Mody K, Keshri J, Jha B (2010) Isolation, purification, and characterization of haloalkaline xylanase from a marine Bacillus pumilus strain, GESF-1. Biotechnol Bioprocess Eng 15(6):998–1005

    Article  Google Scholar 

  45. Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, Kubo S, Saddler J (2006) Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. J Biotechnol 125:198–209. https://doi.org/10.1016/j.jbiotec.2006.02.021

    Article  Google Scholar 

  46. Teeravivattanakit T, Baramee S, Phitsuwan P, Sornyotha S, Waeonukul R, Pason P, Tachaapaikoon C, Poomputsa K, Kosugi A, Sakka K, Ratanakhanokchai K (2017) Chemical pretreatment-independent saccharifications of xylan and cellulose of rice straw by bacterial weak lignin-binding xylanolytic and cellulolytic enzymes. Appl Environ Microbiol 83(22). https://doi.org/10.1128/AEM.01522-17

  47. Baramee S, Siriatcharanon A-k, Ketbot P, Teeravivattanakit T, Waeonukul R, Pason P, Tachaapaikoon C, Ratanakhanokchai K, Phitsuwan P (2020) Biological pretreatment of rice straw with cellulase-free xylanolytic enzyme-producing Bacillus firmus K-1: structural modification and biomass digestibility. Renew Energy 160:555–563. https://doi.org/10.1016/j.renene.2020.06.061

    Article  Google Scholar 

  48. Kumar V, Chhabra D, Shukla P (2017) Xylanase production from Thermomyces lanuginosus VAPS-24 using low cost agro-industrial residues via hybrid optimization tools and its potential use for saccharification. Bioresour Technol 243:1009–1019. https://doi.org/10.1016/j.biortech.2017.07.094

    Article  Google Scholar 

  49. Chapla DK, Divecha J, Madamwar D, Shah A (2010) Utilization of agro-industrial waste for xylanase production by Aspergillus foetidus MTCC 4898 under solid state fermentation and its application in saccharification. Biochem Eng J 49:361–369. https://doi.org/10.1016/j.bej.2010.01.012

    Article  Google Scholar 

  50. Fujii T, Fang X, Inoue H, Murakami K, Sawayama S (2009) Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials. Biotechnol Biofuels 2:24. https://doi.org/10.1186/1754-6834-2-24

    Article  Google Scholar 

  51. Salehi SMA, Karimi K, Behzad T, Poornejad N (2012) Efficient conversion of rice straw to bioethanol using sodium carbonate pretreatment. Energy Fuel 26(12):7354–7361. https://doi.org/10.1021/ef301476b

    Article  Google Scholar 

  52. Khaleghian H, Karimi K, Behzad T (2015) Ethanol production from rice straw by sodium carbonate pretreatment and Mucor hiemalis fermentation. Ind Crop Prod 76:1079–1085. https://doi.org/10.1016/j.indcrop.2015.08.008

    Article  Google Scholar 

  53. Molaverdi M, Karimi K, Mirmohamadsadeghi S (2019) Improvement of dry simultaneous saccharification and fermentation of rice straw to high concentration ethanol by sodium carbonate pretreatment. Energy 167:654–660. https://doi.org/10.1016/j.energy.2018.11.017

    Article  Google Scholar 

  54. Saratale GD, Saratale RG, Kim SH, Kumar G (2018) Screening and optimization of pretreatments in the preparation of sugarcane bagasse feedstock for biohydrogen production and process optimization. Int J Hydrog Energy 43(25):11470–11483. https://doi.org/10.1016/j.ijhydene.2018.01.187

    Article  Google Scholar 

  55. Priya S, Tiwari R, Rana S, Saritha M, Singh S, Arora A, Nain L (2016) Saccharification of biopretreated paddy straw with indigenous holocellulase and fermentation with Saccharomyces cerevisiae LN1 under optimized conditions. Energ Ecol Environ 1(6):419–429. https://doi.org/10.1007/s40974-016-0021-z

    Article  Google Scholar 

  56. Bala A, Singh B (2019) Development of an environmental-benign process for efficient pretreatment and saccharification of Saccharum biomasses for bioethanol production. Renew Energy 130:12–24. https://doi.org/10.1016/j.renene.2018.06.033

    Article  Google Scholar 

Download references

Acknowledgements

Mrs. Alokika acknowledges the financial assistance as Junior/Senior Research fellowship (No.09/382(0179)/2016-EMR1) from the Council of Scientific and Industrial Research (CSIR), New Delhi, during the tenure of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijender Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alokika, Kumar, V. & Singh, B. Biochemical characteristics of a novel ethanol-tolerant xylanase from Bacillus subtilis subsp. subtilis JJBS250 and its applicability in saccharification of rice straw. Biomass Conv. Bioref. 13, 1937–1949 (2023). https://doi.org/10.1007/s13399-020-01257-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01257-0

Keywords

Navigation