Skip to main content
Log in

Isolation, purification, and characterization of haloalkaline xylanase from a marine Bacillus pumilus strain, GESF-1

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A haloalkalitolerant xylanase-producing Bacillus pumilus strain, GESF1 was isolated from an experimental salt farm of CSMCRI. Birch wood xylan and xylose induced maximum xylanase production with considerable activity seen in wheat straw and no activity at all with caboxymethyl cellulose (CMC). A three step purification yielded 21.21-fold purification with a specific activity of 112.42 U/mg protein (unit expressed as μmole of xylose released per min). Xylanase produced showed an optimum activity at pH 8.0, with approximately 50 and 30% relative activity at a pH 6.0 and 10.0, respectively. The temperature optimum was 40°C and kinetic properties such as Km and Vmax were 5.3 mg/mL and 0.42 μmol/min/mL (6593.4 μmol/min/mg protein). Xylanase activity (160∼ 120%) was considerably enhanced in 2.5 to 7.5% NaCl with 87 and 73% retention of activity in 10 and 15% of NaCl. Enzyme activity was enhanced by Ca2+, Mn2+, Mg2+, and Na+ but strongly inhibited by heavy metals such as Hg2+, Fe3+, Cu2+, Cd2+, and Zn2+. Organic reagents such as β-Mercaptoethanol enhanced xylanase activity whereas EDTA strongly inhibited its activity. Xylanase, purified from the Bacillus pumilus strain, GESF1 could have potential biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Collins, T., C. Gerday, and G. Feller (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3–23.

    Article  CAS  Google Scholar 

  2. Shallom, D. and Y. Shoham (2003) Microbial hemicellulases. Curr. Opin. Microbiol. 6: 219–228.

    Article  CAS  Google Scholar 

  3. Singh, S., A. M. Madlala, and B. A. Prior (2003) Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiol. Rev. 27: 3–16.

    Article  CAS  Google Scholar 

  4. Lee, S. F., C. W. Forsberg, and L. N. Gibbins (1985) Xylanolytic activity of Clostridium acetobutylicum. Appl. Environ. Microbiol. 50: 1068–1076.

    CAS  Google Scholar 

  5. Marques, S., L. Alves, S. Ribeiro, F. M. Gírio, and M. T. Amaral- Collaco (1998) Characterization of a thermotolerant and alkalotolerant xylanase from a Bacillus sp. Appl. Biochem. Biotechnol. 73: 159–172.

    Article  CAS  Google Scholar 

  6. Shao, W. and J. Wiegel (1992) Purification and characterization of a thermostable β-xylosidase from Thermoanaerobacter ethanolicus. J. Bacteriol. 174: 5848–5853.

    CAS  Google Scholar 

  7. Bhat, M. K. (2000) Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18: 355–383.

    Article  CAS  Google Scholar 

  8. Kulkarni, N., A. Shendye, and M. Rao (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23: 411–456.

    Article  CAS  Google Scholar 

  9. Mohandass, C. and C. Raghukumar (2005) Biological deinking of inkjet-printed paper using Vibrio alginolyticus and its enzymes. J. Ind. Microbiol. Biotechnol. 32: 424–429.

    Article  CAS  Google Scholar 

  10. Mørkbak, A. L. and W. Zimmermann (1998) Deinking of mixed office paper, old newspaper and vegetable oil-based ink printed paper using cellulases, xylanases and lipases. Prog. Pap. Recycl. 7: 14–21.

    Google Scholar 

  11. Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondal (2001) Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 56: 326–338.

    Article  CAS  Google Scholar 

  12. Kiddinamoorthy, J., A. J. Anceno, G. D. Haki, and S. K. Rakshit (2008) Production, purification and characterization of Bacillus sp. GRE7 xylanase and its application in eucalyptus kraft pulp biobleaching. World J. Microbiol. Biotechnol. 24: 605–612.

    Article  CAS  Google Scholar 

  13. Subramaniyan, S. and P. Prema (2002) Biotechnology of microbial xylanases: Enzymology, molecular biology and application. Crit. Rev. Biotechnol. 22: 33–46.

    Article  CAS  Google Scholar 

  14. Haki, G. D. and S. K. Rakshit (2003) Developments in industrially important thermostable enzymes: A review. Bioresour. Technol. 89: 17–34.

    Article  CAS  Google Scholar 

  15. Holt, J. D. (1994) Bergey’s Manual of Determinative Bacteriology. 9th ed., pp. 559–564. Williams and Wilkins, Baltimore.

    Google Scholar 

  16. Sambrook, J. and D. W. Russel (2001) Molecular Cloning: A Laboratory Manual. 3rd ed., p. 1.72–1.73. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  17. Sambrook, J. and D. W. Russel (2001) Molecular Cloning: A Laboratory Manual. 3rd ed., p. 5.77 Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  18. Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane (1991) 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697–703.

    CAS  Google Scholar 

  19. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman (1990) Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    CAS  Google Scholar 

  20. Tamura, K., J. Dudley, M. Nei, and S. Kumar (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596–1599.

    Article  CAS  Google Scholar 

  21. Saitou, N. and M. Nei (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    CAS  Google Scholar 

  22. Roy, N. (2004) Characterization and identification of xylanase producing bacterial strains isolated from soil and water. Pak. J. Biol. Sci. 7: 711–716.

    Article  Google Scholar 

  23. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  24. Lowry, O. H., N. J. Rosebrough, A. C. Farr, and R. J. Randall (1951) Protein measurement with folin phenol reagent. J. Bio. Chem. 193: 265–275.

    CAS  Google Scholar 

  25. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  26. Wejse, P. L., K. Ingvorsen, and K. K. Mortensen (2003) Purification and characterisation of two extremely halotolerant xylanases from a novel halophilic bacterium. Extremophiles 7: 423–431.

    Article  CAS  Google Scholar 

  27. Dimitrov, P. L., M. S. Kambourova, R. D. Mandeva, and E. I. Emanuilova (1997) Isolation and characterization of xylandegrading alkali-tolerant thermophiles. FEMS Microbiol. Lett. 157: 27–30.

    Article  CAS  Google Scholar 

  28. Gessesse, A. and G. Mamo (1998) Purification and characterization of an alkaline xylanase from alkaliphilic Micrococcus sp. AR-135. J. Ind. Microbiol. 20: 210–214.

    Article  CAS  Google Scholar 

  29. Honda, H., T. Kudo, and K. Horikoshi (1985) Purification and partial characterization of alkaline xylanase from Escherichia coli carrying pCX311. Agric. Biol. Chem. 49: 3165–3169.

    CAS  Google Scholar 

  30. Khandeparkar, R. and N. B. Bhosle (2006) Purification and characterization of thermoalkalophilic xylanase isolated from the Enterobacter sp. MTCC 5112. Res. Microbiol. 157: 315–325.

    Article  CAS  Google Scholar 

  31. Kuhad, R. C., P. Chopra, B. Battan, M. Kapoor, and S. Kuhar (2006) Production, partial purification and characterization of a thermo-alkali stable xylanase from Bacillus sp. RPP-1. Ind. J. Microbiol. 46: 13–23.

    CAS  Google Scholar 

  32. Mamo. G., R. H. Kaul, and B. Mattiasson (2006) A thermostable alkaline active endo-β-1-4-xylanase from Bacillus halodurans S7: Purification and characterization. Enz. Microb. Technol. 39: 1492–1498.

    Article  CAS  Google Scholar 

  33. Tseng, M. J., M. N. Yap, K. Ratanakhanokchai, K. L. Kyu, and S. T. Chen (2002) Purification and characterization of two cellulase free xylanases from an alkaliphilic Bacillus firmus. Enz. Microb. Technol. 30: 590–595.

    Article  CAS  Google Scholar 

  34. Uchino, F. and T. Nakane (1981) A thermostable xylanase from a thermophilic acidophilic Bacillus sp. Agric. Biol. Chem. 45: 1121–1127.

    CAS  Google Scholar 

  35. Kiyohara, M., K. Sakaguchi, K. Yamaguchi, T. Araki, T. Nakamura, and M. Ito (2005) Molecular cloning and characterization of a novel β-1,3-xylanase possessing two putative carbohydratebinding modules from a marine bacterium Vibrio sp. Strain AX-44. Biochem. J. 388: 949–957.

    Article  CAS  Google Scholar 

  36. Wainø, M. and K. Ingvorsen (2003) Production of b-xylanase and b-xylosidase by the extremely halophilic archaeon Halorhabdus utahensis. Extremophiles 7: 87–93.

    Google Scholar 

  37. Bocchini, D. A., E. Gomes, and R. Da Silva (2008) Xylanase production by Bacillus circulans D1 using maltose as carbon source. Appl. Biochem. Biotecnol. 146: 29–37.

    Article  CAS  Google Scholar 

  38. Lindner, C., J. Stulke, and M. Hecker (1994) Regulation of xylanolytic enzymes in Bacillus subtilis. Microbiol. 140:753–757.

    Article  CAS  Google Scholar 

  39. Gessesse, A. and B. A. Gashe (1997) Production of alkaline xylanase by an alkaliphilic Bacillus sp. isolated from an alkaline soda lake. J. Appl. Microbiol. 83: 402–406.

    Article  CAS  Google Scholar 

  40. Gupta, S., B. Bushan, and G. S. Hoondal (2000) Isolation, purification and characterization of xylanase from Staphylococcus sp. SG-13 and its application in biobleaching of kraft pulp. J. Appl. Microbiol. 88: 325–334.

    Article  CAS  Google Scholar 

  41. Battan, B., J. Sharma, S. S. Dhiman, and R. C. Kuhad (2007) Enhanced production of cellulase-free thermostable xylanase by Bacillus pumilus ASH and its potential application in paper industry. Enz. Microb. Technol. 41: 733–739.

    Article  CAS  Google Scholar 

  42. Ratanakhanokchai, K., K. L. Kyu, and M. Tanticharoen (1999) Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp. strain K-1. Appl. Environ. Microbiol. 65: 694–697.

    CAS  Google Scholar 

  43. Cordeiro, C. A. M., M. L. L. Martins, A. B. Luciano, and R. F. Da silva (2002) Production and properties of xylanase from thermophilic Bacillus sp. Braz. Arch. Biol. Technol. 45: 413–418.

    Article  CAS  Google Scholar 

  44. Anuradha, P., K. Vijayalakshmi, N. D. Prasanna, and K. Sridevi (2007) Production and properties of alkaline xylanases from Bacillus sp. Isolated from sugarcane fields. Curr. Sci. 92: 1283–1286.

    CAS  Google Scholar 

  45. Amani, M. D., E. Ahwany, and S. Y. Amany (2007) Xylanase production by Bacillus pumilus: optimization by statistical and immobilization methods. Res. J. Agric. Biol. Sci. 3: 727–732.

    Google Scholar 

  46. Duarte, M. C. T., E. C. Silva, I. M. B. Gomes, A. N. Ponezi, E. P. Portugal, J. R. Vicente, and E. Davanzo (2003) Xylan-hydrolyzing enzyme system from Bacillus pumilus CBMAI 0008 and its effects on Eucalyptus grandis kraft pulp for pulp bleaching improvement. Bioresour. Technol. 88: 9–15.

    Article  Google Scholar 

  47. Nuyens, F., W. H. Zyl, D. I. H. Verachtert, and C. Michiels (2001) Heterologous expression of the Bacillus pumilus endo-β-xylanase( xynA) gene in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 56: 431–434.

    Article  CAS  Google Scholar 

  48. Courtin, C. M., A. Roelants, and J. A. Delcour (1999) Fractionation-reconstitution experiments provide insight into the role of endoxylanases in bread-making. J. Agric. Food. Chem. 47: 1870–1877.

    Article  CAS  Google Scholar 

  49. Popper, L. (1997) Simple approaches for identification of baking active xylanases. pp. 110–120. In: Angelino SAGF et al. (eds.). The first European symposium on enzymes and grain processing. TNO Nutrition and Food Research Institute, Zeist.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalpana Mody.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menon, G., Mody, K., Keshri, J. et al. Isolation, purification, and characterization of haloalkaline xylanase from a marine Bacillus pumilus strain, GESF-1. Biotechnol Bioproc E 15, 998–1005 (2010). https://doi.org/10.1007/s12257-010-0116-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0116-x

Keywords

Navigation