Skip to main content
Log in

Insights into the mechanism of enzymatic hydrolysis of xylan

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Hemicelluloses are a vast group of complex, non-cellulosic heteropolysaccharides that are classified according to the principal monosaccharides present in its structure. Xylan is the most abundant hemicellulose found in lignocellulosic biomass. In the current trend of a more effective utilization of lignocellulosic biomass and developments of environmentally friendly industrial processes, increasing research activities have been directed to a practical application of the xylan component of plants and plant residues as biopolymer resources. A variety of enzymes, including main- and side-chain acting enzymes, are responsible for xylan breakdown. Xylanase is a main-chain enzyme that randomly cleaves the β-1,4 linkages between the xylopyranosyl residues in xylan backbone. This enzyme presents varying folds, mechanisms of action, substrate specificities, hydrolytic activities, and physicochemical characteristics. This review pays particular attention to different aspects of the mechanisms of action of xylan-degrading enzymes and their contribution to improve the production of bioproducts from plant biomass. Furthermore, the influence of phenolic compounds on xylanase activity is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An J, Xie Y, Zhang Y, Tian D, Wang S, Yang G, Feng Y (2015) Characterization of a thermostable, specific GH10 xylanase from Caldicellulosiruptor bescii with high catalytic activity. J Mol Cat B: Enzym 117:13–20

    Article  CAS  Google Scholar 

  • Atkins EDT (1992) Three dimensional structure, interactions in the plant cell walls. In: Visser J, Beldman G, Kuster-van Someren MA, Voragen AGJ (eds) Xylan and xylanases. Elsevier, Amsterdam, pp. 39–50

    Google Scholar 

  • Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203

    Article  CAS  Google Scholar 

  • Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    Article  CAS  PubMed  Google Scholar 

  • Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, Kubo S, Saddler J (2006) Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. J Biotechnol 125:198–209

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya A, Brett I, Pletschke BI (2015) Strategic optimization of xylanase–mannanase combi-CLEAs for synergistic and efficient hydrolysis of complex lignocellulosic substrates. J Mol Catal B Enzym 115:140–150

    Article  CAS  Google Scholar 

  • Biely P (2012) Microbial carbohydrate esterases deacetylating plant polysaccharides. Biotechnol Adv 30:1575–1588

    Article  CAS  PubMed  Google Scholar 

  • Boukari I, ODonohue M, Rémond C (2011) Probing a family GH11 endo-β-1,4-xylanase inhibition mechanism by phenolic compounds: role of functional phenolic groups. J Mol Catal B Enzym 72:130–138

    Article  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2008) The carbohydrate-active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng YS, Chen CC, Huang CH, Ko TP, Luo W, Huang JW, Liu JR, Guo RT (2014) Structural analysis of a glycoside hydrolase family 11 xylanase from Neocallimastix patriciarum Insights into the molecular basis of a thermophilic enzyme. J Biol Chem 289:11020–11028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins T, Meuvis MA, Stals I, Claeyssens M, Feller G, Gerday C (2002) A novel family 8 xylanase, functional and physicochemical characterization. J Biol Chem 277:35133–35139

    Article  CAS  PubMed  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  CAS  PubMed  Google Scholar 

  • Coughlan MP (1992) Towards an understanding of the mechanism of action of main chain cleaving xylanases. In: Visser J, Beldman G, Kusters-van Someren MA (eds) Xylans and xylanases. Elsevier, Amsterdam, pp. 111–139

    Google Scholar 

  • Coughlan MP, Tuohy MG, Filho EXF, Puls J, Claeyssens M, Vrsanská M, Hughes M (1993) Enzymological aspects of microbial hemicellulases with emphasis on fungal systems. In: Coughlan MP (ed) Hemicellulose and hemicellulases. Portland, London, pp. 53–84

    Google Scholar 

  • Dies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structures 3:853–859

    Article  Google Scholar 

  • Diogo JA, Hoffmam ZB, Zanphorlin LM, Cota J, Machado CB, Wolf LD, Squina F, Damásio ARL, Murakami MT, Ruller R (2015) Development of a chimeric hemicellulase to enhance the xylose production and thermotolerance. Enzym Microb Technol 69:31–37

    Article  CAS  Google Scholar 

  • Driss D, Haddar A, Ghorbel R, Chaabouni SE (2014) Production of xylooligosaccharides by immobilized his-tagged recombinant xylanase from Penicillium occitanis on nickel-chelate Eupergit C. Appl Biochem Biotechnol 173:1405–1418

    Article  CAS  PubMed  Google Scholar 

  • Duarte GC, Moreira LRS, Jaramillo PMD, Filho EXF (2012) Biomass-derived inhibitors of holocellulases. Bioenerg Res 5:768–777

    Article  CAS  Google Scholar 

  • Ebringerová A, Heinze T (2000) Xylan and xylan derivatives–biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol. Rapid Commun 21:542–556

    Article  Google Scholar 

  • Eisenmenger MJ, Reyes-De-Corcuera JI (2009) High pressure enhancement of enzymes: a review. Enzym Microb Technol 45:331–347

    Article  CAS  Google Scholar 

  • Fonseca-Maldonado R, Ribeiro RF, Furtado GP, Arruda LM, Meleiro LP, Alponti JS, Botelho-Machado C, Vieira DS, Bonneil S, Furriel RPM, Thibault P, Ward RJ (2014) Synergistic action of co-expressed xylanase/laccase mixtures against milled sugar cane bagasse. Process Biochem 49:1152–1161

    Article  CAS  Google Scholar 

  • Goldbeck R, Damásio AR, Gonçalves TA, Machado CB, Paixão DA, Wolf LD, Mandelli F, Rocha GJ, Ruller R, Squina F (2014) Development of hemicellulolytic enzyme mixtures for plant biomass deconstruction on target biotechnological applications. Appl Microbiol Biotechnol 98:8513–8525

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves GAL, Takasugi Y, Jia L, Mori Y, Noda S, Tanaka T, Ichinose H, Kamiya N (2015) Synergistic effect and application of xylanases as accessory enzymes to enhance the hydrolysis of pretreated bagasse. Enzym Microb Technol 72:16–24

    Article  Google Scholar 

  • Guillén D, Sánchez S, Rodriguez-Sanoja S (2010) Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol 85:1241–1249

    Article  PubMed  Google Scholar 

  • Hao Z, Mohen D (2014) A review of xylan and lignin biosynthesis: foundation for studying Arabidopsis irregular xylem mutants with pleiotropic phenotypes. Crit. Rev Biochem Mol Biol 49:212–241

    Article  CAS  Google Scholar 

  • He T, Liang Q, Luo T, Wang Y, Luo G (2010) Study on interactions of phenolic acid-like drug candidates with bovine serum albumin by capillary electrophoresis and fluorescence spectroscopy. J Solut Chem 39:1653–1664

    Article  CAS  Google Scholar 

  • He J, Su L, Sun X, Fu J, Chen J, Wu J (2014) A novel xylanase from Streptomyces sp. FA1: purification, characterization, identification, and heterologous expression. Biotechnol Bioprocess Eng 19:8–17

    Article  CAS  Google Scholar 

  • Hong PY, Lakiviaki M, Dodd D, Zhang M, Mackie RI, Cann I (2014) Two new xylanases with different substrate specificities from the human gut bacterium Bacteroides intestinalis DSM 17393. Appl Environ Microbiol 80:2084–2093

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu J, Arantes V, Saddler JN (2011) The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnol Biofuels 4:1–14

    Article  CAS  Google Scholar 

  • Hu J, Arantes V, Pribowo A, Saddler JN (2013) The synergistic action of accessory enzymes enhances the hydrolytic potential of a “cellulose mixture” but is highly substrate specific. Biotechnol. Biofuels 6:112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Z, Liu X, Zhang S, Liu Z (2014) GH52 xylosidase from Geobacillus stearothermophilus: characterization and introduction of xylanase activity by site-directed mutagenesis of Tyr509. J Ind Microbiol Biotechnol 41:65–74

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Busk PK, Lange L (2015) Cellulose and hemicellulose-degrading enzymes in Fusarium commune transcriptome and functional characterization of three identified xylanases. Enzym Microb Technol 73-74:9–19

    Article  CAS  Google Scholar 

  • Imjongjairak S, Jommuengbout P, Karpilanondh P, Katsuzaki H, Sakka M, Kimura T, Pason P, Tachaapaikoon C, Romsaiyud J, Ratanakhanokchai K, Sakka K (2015) Paenibacillus curdlanolyticus B-6 xylanase Xyn10C capable of producing a doubly arabinose-substituted xylose, α-L-Araf-(1 → 2)-[α-l-Araf-(1 → 3)]-D-Xylp, from rye arabinoxylan. Enzym Microb Technol 72:1–9

    Article  CAS  Google Scholar 

  • Inoue H, Kishishita S, Kumagai A, Kataoka M, Fujii T, Ishikawa K (2015) Contribution of a family 1 carbohydrate-binding module in thermostable glycoside hydrolase 10 xylanase from Talaromyces cellulolyticus toward synergistic enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels 8:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Joseleau JP, Comtat J, Rue IK (1992) Chemical structure of xylans and their interactions in plant cell walls. In: Visser J, Beldman G, Kusters-van Someren MA (eds) Xylans and xylanases. Elsevier, Amsterdam, pp. 1–15

    Google Scholar 

  • Juturu V, Wu JC (2012) Microbial xylanases: engineering, production and industrial applications. Biotechnol Adv 30:1219–1227

    Article  CAS  PubMed  Google Scholar 

  • Kaya F, Heitmann JA, Joyce TW (2000) Influence of lignin and its degradation products on enzymatic hydrolysis of xylan. J Biotechnol 80:241–247

    Article  CAS  PubMed  Google Scholar 

  • Kishishita S, Yoshimi M, Fujii T, Taylor LE, Decker SR, Ishikawa K, Inoue H (2014) Cellulose-inducible xylanase Xyl10A from Acremonium cellulolyticus: purification, cloning and homologous expression. Protein Expres Purif 94:40–45

    Article  CAS  Google Scholar 

  • Laothanachareon T, Bunterngsook B, Suwannarangsee S, Eurwilaichitr L, Champreda V (2015) Synergistic action of recombinant accessory hemicellulolytic and pectinolytic enzymes to Trichoderma reesei cellulase on rice straw degradation. Biores Technol 198:682–690

    Article  CAS  Google Scholar 

  • Li H, Murtomäki L, Leisola M, Turunen O (2012) The effect of thermostabilizing mutations on pressure stability of Trichoderma reesei GH11 xylanase. Protein Eng Des Sel 25:821–826

    Article  CAS  PubMed  Google Scholar 

  • Li H, Voutilainen S, Ojamo H, Turunen O (2015) Stability and activity of Dictyoglomus thermophilum GH11 xylanase and its disulphide mutant at high pressure and temperature. Enzym Microb Technol 70:66–71

    Article  CAS  Google Scholar 

  • Liao H, Sun S, Wang P, Bi W, Tan S, Wei Z, Mei X, Liu D, Raza W, Shen Q, Xu Y (2014) A new acidophilic endo-β-1,4-xylanase from Penicillium oxalicum: cloning, purification, and insights into the influence of metal ions on xylanase activity. J Ind Microbiol Biotechnol 41:1071–1083

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Huang Z, Zhang X, Shao Z, Liu Z (2014) Cloning, expression and characterization of a novel cold-active and halophilic xylanase from Zunongwangia profunda. Extremophiles 18:441–450

    Article  CAS  PubMed  Google Scholar 

  • Mander P, Choi YH, Pradeep GC, Choi YS, Hong JH, Cho SS, Yoo JC (2014) Biochemical characterization of xylanase produced from Streptomyces sp. CS624 using an agro residue substrate. Process Biochem 49:451–456

    Article  CAS  Google Scholar 

  • Marcolongo L, La Cara F, Morana A, Di Salle A, Del Monaco G, Paixão SM, Alves L, Ionata E (2015) Properties of an alkali-thermo stable xylanase from Geobacillus thermodenitrificans A333 and applicability in xylooligosaccharides generation. World J Microbiol Biotechnol 31:633–648

    Article  CAS  PubMed  Google Scholar 

  • McCarter JD, Whiters SG (1994) Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol 4:885–892

    Article  CAS  PubMed  Google Scholar 

  • Michelin M, Ximenes E, Polizeli MLTM, Ladish MR (2015) Effect of phenolic compounds from pretreated sugarcane bagasse on cellulolytic and hemicellulolytic activities. Biores Technol 199:275–278

    Article  Google Scholar 

  • Moreira LRS, Campos MC, Siqueira PHVM, Silva LP, Ricart CAO, Martins PA, Queiroz RML, Filho EXF (2013) Two β-xylanases from Aspergillus terreus: characterization and influence of phenolic compounds on xylanase activity. Fungal Genet Biol 60:46–52

    Article  Google Scholar 

  • Moreira LRS, Alvares ACM, Jr FGS, Freitas SM, Filho EXF (2015) Xylan-degrading enzymes from Aspergillus terreus: physicochemical features and functional studies on hydrolysis of cellulose pulp. Carbohydr Polym 134:00–708

    Article  CAS  Google Scholar 

  • Neumüller KG, Streekstra H, Gruppen H, Schols HA (2014) Trichoderma longibrachiatum acetyl xylan esterase 1 enhances hemicellulolytic preparations to degrade corn silage polysaccharides. Bioresour Technol 163:64–73

    Article  PubMed  Google Scholar 

  • Oliveira SC, Figueiredo AB, Evtuguin DV, Saraiva JA (2012) High pressure treatment as a tool for engineering of enzymatic reactions in cellulosic fibres. BioresourTechnol 107:530–534

    Article  CAS  Google Scholar 

  • Padilha IQM, Valenzuela SV, Grisi TC, Díaz P, de Araújo DA, Pastor FI (2014) A glucuronoxylan-specific xylanase from a new Paenibacillus favisporus strain isolated from tropical soil of Brazil. Int Microbiol 17:175–184

    CAS  PubMed  Google Scholar 

  • Pedersen MB, Dalsgaard S, Arent S, Lorentsen R, Knudsen KEB, Yu S, Lærke HN (2015) Xylanase and protease increase solubilization of non-starch polysaccharides and nutrient release of corn- and wheat distillers dried grains with solubles. Biochem Eng J 98:99–106

    Article  CAS  Google Scholar 

  • Poosarla VG, Chandra TS (2014) Purification and characterization of novel halo-acid-alkali-thermo-stable xylanase from Gracilibacillus sp. TSCPVG. Appl Biochem Biotechnol 173:1375–1390

    Article  CAS  PubMed  Google Scholar 

  • Rahman MA, Choi YH, Pradeep GC, Choi YS, Choi EJ, Cho SS, Yoo JC (2014) A novel low molecular weight endo-xylanase from Streptomyces sp. CS628 cultivated in wheat bran. Appl Biochem Biotechnol 173:1469–1480

    Article  CAS  PubMed  Google Scholar 

  • Reed CJ, Lewis H, Trejo E, Winston V, Evilia C (2013) Protein adaptations in archaeal extremophiles. Archaea 2013, Article ID 373275, 14 pages

  • Ribeiro LFC, De Lucas RC, Vitcosque GL, Ribeiro LF, Ward RJ, Rubio MV, Damasio ARL, Squina FM, Gregory RC, Walton PH, Jorge JA, Prade RA, Buckeridge MS, Polizeli MLTM (2014) A novel thermostable xylanase GH10 from Malbranchea pulchella expressed in Aspergillus nidulans with potential applications in biotechnology. Biotechnol Biofuels 7:115

    Article  PubMed  PubMed Central  Google Scholar 

  • Rye CS, Withers SG (2000) Glycosidase mechanisms. Curr Opin Chem Biol 4:573–580

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  CAS  PubMed  Google Scholar 

  • Selvendran RR (1985) Developments in the chemistry and biochemistry of pectic and hemicellulosic polymers. J Cell Sci 2:51–88

    Article  CAS  Google Scholar 

  • Siguier B, Haon M, Nahoum V, Marcellin M, Burlet-Schiltz O, Coutinho PM, Henrissat B, Mourey L, O’Donohue MJ, Berrin JG, Tranier S, Dumon C (2014) First structural insights into α-L-arabinofuranosidases from the two GH62 glycoside hydrolase subfamilies. J Biol Chem 289:5261–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva COG, Aquino EN, Ricart CAO, Midorikawa GEO, Miller RNG, Filho EXF (2015) GH11 xylanase from Emericella nidulans with low sensitivity to inhibition by ethanol and lignocellulose-derived phenolic compounds. FEMS Microbiol. Lett., 362, doi:10.1093/femsle/fnv094

  • Siqueira FG, Filho EXF (2010) Plant cell wall as a substrate for the production of enzymes with industrial applications. Mini-Rev Org Chem 7:54–60

    Google Scholar 

  • Song HY, Lim HK, Kim DR, Lee KI, Hwang IT (2014) A new bi-modular endo-β-1,4-xylanase KRICT PX-3 from whole genome sequence of Paenibacillus terrae HPL-003. Enzym Microb Technol 54:1–7

    Article  CAS  Google Scholar 

  • Sriprang R, Asano K, Gobsuk J, Tanapongpipat S, Champreda V, Eurwilaichitr L (2006) Improvement of thermostability of fungal xylanase by using site-directed mutagenesis. J Biotechnol 126:454–462

    Article  CAS  PubMed  Google Scholar 

  • Tavares EQP, Buckeridge MS (2015) Do plant cell walls have a code? Plant Sci 241:286–294

    Article  CAS  PubMed  Google Scholar 

  • Tejirian A, Xu F (2011) Inhibition of enzymatic cellulolysis by phenolic compounds. Enzym Microb Technol 48:239–247

    Article  CAS  Google Scholar 

  • Valenzuela SV, Diaz P, Pastor FI (2012) Modular glucuronoxylan-specific xylanase with a family CBM35 carbohydrate-binding module. Appl Environ Microbiol 78:3923–3931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valenzuela SV, Diaz P, Pastor FI (2014) Xyn11E from Paenibacillus barcinonensis BP-23: a LppX-chaperone-dependent xylanase with potential for upgrading paper pulps. Appl Microbiol Biotechnol 98:5949–5957

    Article  CAS  PubMed  Google Scholar 

  • Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–1480

    Article  PubMed  Google Scholar 

  • Vardakou M, Katapodis P, Topakas KED, Macris BJ, Christakopoulos P (2004) Synergy between enzymes involved in the degradation of insoluble wheat flour arabinoxylan. Innovative Food Sci Emerg Technol 5:107–112

    Article  CAS  Google Scholar 

  • Wong KKY, Tan LUL, Saddler JN (1986) Functional interactions among three xylanases from Trichoderma harzianum. Enzym Microb Technol 8:617–622

    Article  CAS  Google Scholar 

  • Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Bioref 6:465–482

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges the receipt of financial support from the Brazilian National Council for Scientific and Technological Development (CNPq), Coordination for the Improvement of Higher Education Personnel (CAPES) Foundation for Research Support of the Federal District (FAPDF), and the National Institute for Science and Technology of Bioethanol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. S. Moreira.

Ethics declarations

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

Dra. Leonora Moreira and Dr. Edivaldo Ferreira Filho declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, L.R.S., Filho, E.X.F. Insights into the mechanism of enzymatic hydrolysis of xylan. Appl Microbiol Biotechnol 100, 5205–5214 (2016). https://doi.org/10.1007/s00253-016-7555-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7555-z

Keywords

Navigation