Skip to main content
Log in

Purification and Characterization of Two Extracellular Xylanases from Penicillium sclerotiorum: A Novel Acidophilic Xylanase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Two xylanases from the crude culture filtrate of Penicillium sclerotiorum were purified to homogeneity by a rapid and efficient procedure, using ion-exchange and molecular exclusion chromatography. Molecular masses estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 23.9 and 33.1 kDa for xylanase I and II, respectively. The native enzymes’ molecular masses of 23.8 and 30.8 kDa were estimated for xylanase I and II, respectively, by molecular exclusion chromatography. Both enzymes are glycoproteins with optimum temperature and pH of 50 °C and pH 2.5 for xylanase I and 55 °C and pH 4.5 for xylanase II. The reducing agents β-mercaptoethanol and dithio-treitol enhanced xylanase activities, while the ions Hg2+ and Cu2+ as well the detergent SDS were strong inhibitors of both enzymes, but xylanase II was stimulated when incubated with Mn2+. The K m value of xylanase I for birchwood xylan and for oat spelt xylan were 6.5 and 2.6 mg mL−1, respectively, whereas the K m values of xylanase II for these substrates were 26.61 and 23.45 mg mL−1. The hydrolysis of oat spelt xylan by xylanase I released xylobiose and larger xylooligosaccharides while xylooligosaccharides with a decreasing polymerization degree up to xylotriose were observed by the action of xylanase II. The present study is among the first works to examine and describe an extracellular, highly acidophilic xylanase, with an unusual optimum pH at 2.5. Previously, only one work described a xylanase with optimum pH 2.0. This novel xylanase showed interesting characteristics for biotechnological process such as feed and food industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Biely, P. (1985). Trends in Biotechnology, 3, 286–290.

    Article  CAS  Google Scholar 

  2. Kulkarni, N., Shendye, A., & Rao, M. (1999). FEMS Microbiology Reviews, 23, 411–456.

    Article  CAS  Google Scholar 

  3. Collins, T., Gerday, C., & Feller, G. (2005). FEMS Microbiology Reviews, 29, 3–23.

    Article  CAS  Google Scholar 

  4. Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Applied Microbiology Biotechnology, 56, 326–338.

    Article  CAS  Google Scholar 

  5. Wong, K. K. Y., Tan, L. U. L., & Saddler, J. N. (1988). Microbiological Reviews, 52, 305–317.

    CAS  Google Scholar 

  6. Sunna, A., & Antranikian, G. (1997). Critical Reviews in Biotechnology, 17, 39–67.

    Article  CAS  Google Scholar 

  7. Chandrakant, P., & Bisaria, B. S. (1998). Critical Reviews in Biotechnology, 18, 295–331.

    Article  CAS  Google Scholar 

  8. Matt, J., Roza, M., Verbakel, J., Stam, H., da Silra, M. J. S., Egmond, M. R., et al. (1992). In J. Visser, G. Beldman, M. A. Kursters-van Someren & A. G. J. Voragen (Eds.), Xylan and xylanases (pp. 349–360). Amsterdam: Elsevier.

    Google Scholar 

  9. Polizeli, M. L. T. M., Rizzati, A. C. S., Monti, R., Terenzi, H. F., Jorge, J. A., & Amorin, D. S. (2005). Applied Microbiology Biotechnology, 67, 577–91.

    Article  CAS  Google Scholar 

  10. Krisana, A., Rutchadaporn, S., Jarupan, G., Lily, E., Sutipa, T., & Kanyawim, K. (2005). Journal of Biochemistry and Molecular Biology, 38, 17–23.

    CAS  Google Scholar 

  11. Moss, M. O. (1987). In J. F. Peberdy (Ed.), Penicillium and Acremonium (pp. 37–71). New York: Plenum.

    Google Scholar 

  12. Chávez, R., Bull, P., & Eyzaguirre, J. (2006). Journal of Biotechnology, 123, 413–433.

    Article  Google Scholar 

  13. Knob, A., & Carmona, E. C. (2008). World Applied Sciences Journal, 4(227), 283.

    Google Scholar 

  14. Vogel, H. J. (1956). Microbial Genetics Bulletin, 13, 42–43.

    Google Scholar 

  15. Miller, G. L. (1959). Analytical Chemistry, 31, 426–429.

    Article  CAS  Google Scholar 

  16. Lowry, O. H., Rosebrough, N. F., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  17. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  18. Dubois, M., Gilles, K. A., Hamilton, J. K., Ribers, P. A., & Smith, F. (1956). Analytical Chemistry, 58, 350–356.

    Article  Google Scholar 

  19. Fontana, J. D., Geabrara, M., Blumel, M., Schneider, H., Mackenzie, C. R., & Johnson, H. K. (1988). Methods in Enzymology, 160, 560–571.

    Article  CAS  Google Scholar 

  20. Törrönem, A., & Rouvine, J. (1997). Journal of Biotechnology, 57, 137–149.

    Article  Google Scholar 

  21. Segura, B. G., & Fevre, M. (1993). Applied and Environmental Microbiology, 59, 3654–3660.

    Google Scholar 

  22. Nair, S. G., Sindhu, R., & Shashidhar, S. (2008). Applied Biochemistry Biotechnology, 149, 229–243.

    Article  CAS  Google Scholar 

  23. Fialho, M. B., & Carmona, E. C. (2004). Folia Microbiologica, 49, 13–18.

    Article  CAS  Google Scholar 

  24. Carmona, E. C., Brochetto-Braga, M. R., Pizzirani-Kleiner, A. A., & Jorge, J. A. (1998). FEMS Microbiology Letters, 166, 311–315.

    Article  CAS  Google Scholar 

  25. Carmona, E. C., Fialho, M. B., Buchgnani, E. B., Coelho, G. D. C., Brochetto-Braga, M. R., & Jorge, J. A. (2005). Process Biochemistry, 40, 359–364.

    Article  CAS  Google Scholar 

  26. Flannigan, B., & Sellars, P. N. (1977). Transaction of the British Mycological Society, 69, 316–317.

    Article  Google Scholar 

  27. Li, L., Hongmei, T., Cheng, Y., Jiang, Z., & Yang, S. (2006). Enzyme and Microbial Technology, 38, 780–787.

    Article  CAS  Google Scholar 

  28. Krishnamurthy, S., & Vithayathil, P. J. (1989). Journal of Fermentation and Bioengineering, 67, 77–82.

    Article  CAS  Google Scholar 

  29. Amoresano, A., Andolfo, A., Corsaro, M. M., Zocchi, I., Petrescu, I., Gerday, C., et al. (2000). Glycobiology, 10, 451–458.

    Article  CAS  Google Scholar 

  30. Romanowska, I., Polak, J., & Bielecki, S. (2006). Applied Microbiology Biotechnology, 69, 665–671.

    Article  CAS  Google Scholar 

  31. Sadrim, V. C., Rizzatti, A. C. S., Terenzi, H. F., Jorge, J. A., Milagres, A. M. F., & Polizeli, M. L. T. M. (2005). Process Biochemistry, 40, 1823–1828.

    Article  Google Scholar 

  32. Saha, B. C. (2001). Applied Microbiology Biotechnology, 56, 762–766.

    Article  CAS  Google Scholar 

  33. Dutta, T., Sengupta, R., Sahoo, R., Ray, S. S., Bhattacharjee, A., & Ghosh, S. (2007). Letters in Applied Microbiology, 44, 206–211.

    Article  CAS  Google Scholar 

  34. Kimura, T., Ito, J., Kawano, A., Makino, T., Kondo, H., Karita, S., et al. (2000). Bioscience Biotechnology and Biochemistry, 64, 1230–1237.

    Article  CAS  Google Scholar 

  35. Lee, J.-W., Park, J.-Y., Kwon, M., & Choi, I.-G. (2009). Journal of Bioscience and Bioengineering, 107, 33–37.

    Article  CAS  Google Scholar 

  36. Madlala, A. M., Bissoon, S., Singh, S., & Christov, L. (2001). Biotechnology Letters, 23, 345–351.

    Article  CAS  Google Scholar 

  37. Hakulinen, N., Turunen, O., Jamis, J., Leisola, M., & Rouvinen, J. (2003). European Journal of Biochemistry, 270, 1399–1412.

    Article  CAS  Google Scholar 

  38. Fengxia, L., Mei, L., Zhaoxin, L., Xiaomei, B., Zhao, H., & Wang, Y. (2008). Bioresource Technology, 99, 5983–5941.

    Google Scholar 

  39. Bastawde, K. B. (1992). World Journal of Microbiology and Biotechnology, 8, 353–368.

    Article  CAS  Google Scholar 

  40. Kang, M. K., Maeng, P. J., & Rhee, Y. H. (1996). Applied and Environmental Microbiology, 62, 3480–3482.

    CAS  Google Scholar 

  41. Haas, H., Herfurth, E., Stoffler, G., & Rendl, B. (1992). Acta Biochimica et Biophysica Sinica, 117, 279–286.

    Google Scholar 

  42. Li, K., Azadi, P., Collins, R., Tolan, J., Kim, J. S., & Eriksoon, K. E. L. (2000). Enzyme and Microbial Technology, 27, 89–94.

    Article  Google Scholar 

  43. Jorge, I., Rosa, O., Navas-Cortés, J. A., Jiménez-Días, R. M., & Tena, M. (2005). Antonie van Leeuwenhoek, 88, 49–59.

    Article  CAS  Google Scholar 

  44. Cardoso, O. A. V., & Filho, E. X. F. (2003). FEMS Microbiology Letters, 223, 309–314.

    Article  CAS  Google Scholar 

  45. Bedford, M. R., & Classen, H. L. (1992). In J. Visser, G. Beldman, M. A. Kursters-van Someren & A. G. J. Voragen (Eds.), Xylan and xylanases (pp. 361–370). Amsterdam: Elsevier.

    Google Scholar 

  46. Graminha, E. B. N., Gonçalves, A. Z. L., Pirota, R. D. P. B., Balsalobre, M. A. A., Da Silva, R., & Gomes, E. (2008). Animal Feed Science and Technology, 144, 1–22.

    Article  CAS  Google Scholar 

  47. Beauchemim, K. A., Colombatto, D., Morgavi, D. P., & Yang, W. Z. (2003). Journal of Animal Science, 81, E37–E47.

    Google Scholar 

  48. Eijsink, V. G. H., Gaseidnes, S., Borchert, T. V., & van den Burg, B. (2005). Biomolecular Engineering, 22, 21–30.

    Article  CAS  Google Scholar 

  49. Biely, P. (1985). Trends in Biotechnology, 3, 286–290.

    Article  CAS  Google Scholar 

  50. Colagrande, O., Silva, A., & Fumi, M. D. (1994). Biotechnology Progress, 10, 2–18.

    Article  CAS  Google Scholar 

  51. Moure, A., Gullon, P., Dominguez, H., & Parajó, J. C. (2006). Process Biochemistry, 41, 1913–1923.

    Article  CAS  Google Scholar 

  52. Chen, C. S., Chen, J. L., & Lin, T. Y. (1997). Enzyme and Microbial Technology, 21, 91–96.

    Article  CAS  Google Scholar 

  53. Eneyskaya, E. V., Brumer, L. V., Backinowsky, D. R., Ivanen, A. A., Kulminskaya, K. A., Shabalin, K. A., et al. (2003). Carbohydrate Research, 338, 213–325.

    Article  Google Scholar 

  54. Jiang, Z., Zhu, Y., Li, L., Yu, X., Kusakabe, I., Kitaoka, M., et al. (2004). Journal of Biotechnology, 114, 125–134.

    Article  CAS  Google Scholar 

  55. Kurakate, M., Fujii, T., Yata, M., Okazaki, T., & Komaki, T. (2005). Biochimica et Biophysica Acta, 1726, 272–279.

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank CNPq (National Council of Technological and Scientific Development) for the financial support and the scholarship awarded to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleonora Cano Carmona.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knob, A., Carmona, E.C. Purification and Characterization of Two Extracellular Xylanases from Penicillium sclerotiorum: A Novel Acidophilic Xylanase. Appl Biochem Biotechnol 162, 429–443 (2010). https://doi.org/10.1007/s12010-009-8731-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8731-8

Keywords

Navigation