Skip to main content
Log in

Enhanced endoxylanase production by Myceliophthora thermophila with applicability in saccharification of agricultural substrates

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The production of enzymes by solid-state fermentation is an interesting process and currently used worldwide as it can be carried out in solid matrix in absence of free water. In present study, Myceliophthora thermophila BJTLRMDU3 produced high titres of endoxylanase (890.55 U/g DR, dry residue) using 5 g rice straw at pH 7.0 and at 45 °C with 1:7 (w/v) solid-to-moisture ratio with inoculum rate of 12 × 106 spores/ml after 4 days in solid-state fermentation. High enzyme titre was produced after moistening the rice straw with solution containing ammonium sulphate (0.4%), K2HPO4 (1.0%), MgSO4·7H2O (0.3%), FeSO4·7H2O (0.03%) and CaCl2 (0.03%). Addition of sucrose (2% w/v) and ammonium nitrate (2% w/v) further enhanced the endoxylanase production. A high endoxylanase production was achieved at water activity (aW) of 0.95 (1639.80 U/g DR) that declined drastically below this value. Among different surfactants, Tween 20 (3% v/v) enhanced the secretion of endoxylanase (2047.91 U/g DR). Furthermore, on optimization of K2HPO4 concentration, it was found that 0.5% K2HPO4 improved (2191.28 U/g DR) endoxylanase production and overall 4.35-folds increase in production of endoxylanase was achieved after optimization of culture conditions. The enzyme has potential to liberate monomeric (xylose) as well as oligomeric (xylotiose, xylotetrose, and xylopantose) sugars from xylan. On saccharification of rice straw and corncob with endoxylanase, maximum yield of reducing sugars was 135.61 and 132.61 mg/g of substrate recorded after 48, and 36 h, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aachary AA, Prapulla SG (2009) Value addition to corncob: production and characterization of xylooligosaccharides from alkali pretreated lignin–saccharide complex using Aspergillus oryzae MTCC 5154. Bioresour Technol 100:991–995

    Article  CAS  PubMed  Google Scholar 

  • Abd-Aziz S, Ong LGA, Hassan MA, Karim MIA (2008) Process parameters optimization of mannanase production from Aspergillus niger FTCC 5003 using palm kernel cake as carbon source. Asian J Biotechnol 3(5):297–307

    Article  CAS  Google Scholar 

  • Abo-State MAM, Swelim M, Hammad AI, Gannam RB (2010) Some critical factors affecting cellulases production by Aspergillus terreus Mam-F23 and Aspergillus flavus Mam-F35 under solid state fermentation of wheat straw. World Appl Sci J9(10):1171–1179

    Google Scholar 

  • Addela IR, Gujjula R, Surender M, Nyapati S, Rudravaram R, Bhagam R (2015) Production and optimization of xylanase from Penicillium species in solid-state fermentation. Int J Recent Biotechnol 3(2):15–21

    Google Scholar 

  • Agnihotri S, Dutt D, Tyagi CH, Kumar A, Upadhyaya JS (2010) Production and biochemical characterization of a novel cellulase-poor alkali-thermo-tolerant xylanase from Coprinellus disseminatus SW-1 NTCC 1165. World J Microbiol Biotechnol 26:1349–1359

    Article  CAS  Google Scholar 

  • Akpinar O, Erdogan K, Bakir U, Yilmaz L (2010) Comparison of acid and enzymatic hydrolysis of tobacco stalk xylan for preparation of xylooligosaccharides. LWT Food Sci Technol 43:119–125

    Article  CAS  Google Scholar 

  • Bala A, Singh B (2016) Cost-effective production of biotechnologically important hydrolytic enzymes by Sporotrichum thermophile. Bioprocess Biosyst Eng 39:181–191

    Article  CAS  PubMed  Google Scholar 

  • Bala A, Singh B (2017) Concomitant production of cellulase and xylanase by thermophilic mould Sporotrichum thermophile in solid state fermentation and their applicability in bread making. World J Microbiol Biotechnol 33:109

    Article  PubMed  Google Scholar 

  • Bharti AK, Kumar A, Kumar A, Dutt D (2017) Exploitation of Parthenium hysterophorus biomass as low-cost substrate for cellulase and xylanase production under solid-state fermentation using Talaromyces stipitatus MTCC 12687. J Radiat Res Appl Sci 11:1–10

    Google Scholar 

  • Bibi Z, Ansari A, Zohra RA, Rahmat A, Qader SAU (2014) Production of xylan degrading endo-1,4-b-xylanase from thermophilic Geobacillus stearothermophilus KIBGE-IB29. J Radiat Res Appl Sci 7:478–485

    Article  Google Scholar 

  • Bobot ED, Rico A, Rencoret J, Kalum L, Lund H, Romero J, del Rio JC, Martínez AT, Gutiérrez A (2011) Towards industrially feasible delignification and pitch removal by treating paper pulp with Myceliphthora thermophile laccase and a phenolic mediator. Bioresour Technol 102:6717–6722

    Article  Google Scholar 

  • Boonchuay P, Takenaka S, Kuntiya A, Techapun C, Leksawasdi N, Seesuriyachan P, Chaiyaso T (2016) Purification, characterization, and molecular cloning of the xylanase from Streptomyces thermovulgaris TISTR1948 and its application to xylooligosaccharide production. J Mol Catal B Enzyme 129:61–68

    Article  CAS  Google Scholar 

  • Chaiyaso T, Kuntiya A, Techapun C, Leksawasdi N, Seesuriyachan P, Hanmoungjai P (2011) Optimization of cellulase-free xylanase production by thermophilic Streptomyces thermovulgaris TISTR1948 through Plackett–Burman and response surface methodological approaches. Biosci Biotechnol Biochem 75(3):531–537

    Article  CAS  PubMed  Google Scholar 

  • Chang KL, Thitikorn-Amorn J, Hsieh JF, Ou BM, Chen SH, Ratanakhanokchai K, Huang PJ, Chen ST (2011) Enhanced enzymatic conversion with freeze pretreatment of rice straw. Biomass Bioenergy 35:90–95

    Article  CAS  Google Scholar 

  • Chapla D, Pandit P, Shah A (2012) Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresour Technol 115:215–221

    Article  CAS  PubMed  Google Scholar 

  • Chugh P, Soni R, Soni SK (2016) Deoiled rice bran: a substrate for coproduction of a consortium of hydrolytic enzymes by Aspergillus niger P-19. Waste Biomass Valoriz 7(3):513–525

    Article  CAS  Google Scholar 

  • El-Bakry M, Abraham J, Cerda A, Barrena R, Ponsá S, Gea T, Sánchez A (2015) From wastes to high value added products: novel aspects of SSF in the production of enzymes. Crit Rev Environ Sci Technol 45:1999–2042

    Article  CAS  Google Scholar 

  • El-Gendy MMA, El-Bondkly AMA (2014) Optimization of solid state fermentation and leaching process parameters for improvement xylanase production by endophytic Streptomyces sp. ESRAA-301097. J Microbiol Biochem Technol 6:154–166

    Article  CAS  Google Scholar 

  • Elleuche S, Schröder C, Sahm K, Antranikian G (2014) Extremozymes—biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol 29:116–123

    Article  CAS  PubMed  Google Scholar 

  • Emerson R (1941) An experimental study of the life cycles and taxonomy of Allomyces. Lloydia 4:77–144

    Google Scholar 

  • Gao W, Kim YJ, Chung CH, Li J, Lee JW (2010) Optimization of mineral salts in medium for enhanced production of pullulan by Aureobasidium pullulans HP-2001 using an orthogonal array method. Biotechnol Bioprocess Eng 15:837–845

    Article  CAS  Google Scholar 

  • Gautam A, Kumar A, Bharti AK, Dutt D (2018) Rice straw fermentation by Schizophyllum commune ARC-11 to produce high level of xylanase for its application in pre-bleaching. J Genet Eng Biotechnol 16:693

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghoshal G, Banerjee UC, Chisti Y, Shivhare US (2012) Optimization of xylanase production from Penicillium citrinum in solid-state fermentation. Chem Biochem Eng Q 26:61–69

    CAS  Google Scholar 

  • Ghoshal G, Banerjee UC, Shivhare US (2015) Utilization of agrowaste and xylanase production in solid state fermentation. J Biochem Technol 6(3):1013–1024

    Google Scholar 

  • Goldman N (2009) Methods for optimizing enzymatic hydrolysis of xylan to improve xylooligosaccharide yield. Basic Biotechnol 5:31–36

    Google Scholar 

  • Goyal M, Kalra KL, Sareen VK (2008) Xylanase production with xylan rich lignocellulosic wastes by a local soil isolate of T. viride. Braz J Microbiol 39:535–541

    Article  PubMed  PubMed Central  Google Scholar 

  • Grajek W, Gervais P (1987) Influence of water activity on the enzyme biosynthesis and enzyme activities produced by Trichoderma viride TS in solid state fermentation. Enzyme Microb Technol 9:658–662

    Article  CAS  Google Scholar 

  • Hiloidhari M, Das D, Baruah DC (2014) Bioenergy potential from crop residue biomass in India. Renew Sustain Energy Rev 32:504–512

    Article  Google Scholar 

  • Ho HL, Hood JS (2014) Optimisation of medium formulation and growth conditions for xylanase production by Aspergillus brasiliensis in submerged fermentation (SmF). J Biodivers Biopros Dev 1:102

    Google Scholar 

  • Irfan M, Nadeem M, Syed Q (2011) One-factor-at-a-time (OFAT) optimization of xylanase production from Trichoderma viride-IR05 in solid-state fermentation. J Radiat Res Appl Sci 7:317–326

    Article  Google Scholar 

  • Jain KK, Bhanjna DT, Kumar S, Kuhad RC (2015) Production of thermostable hydrolases (cellulases and xylanase) from Thermoascus aurantiacus RCKK: a potential fungus. Bioprocess Biosyst Eng 38:787–796

    Article  CAS  PubMed  Google Scholar 

  • Jeya M, Thiagarajan S, Gunasekara P (2005) Improvement of xylanase production in solid-state fermentation by alkali tolerant Aspergillus versicolor MKU3. Lett Appl Microbiol 41(2):175–178

    Article  CAS  PubMed  Google Scholar 

  • Kar S, Sona S, Arpan G, Arijit D (2013) Process optimization of xylanase production using cheap solid substrate by Trichoderma reesei SAF3 and study on the alteration of behavioral properties of enzyme obtained from SSF and SmF. Bioprocess Biosyst Eng 36:57–68

    Article  CAS  PubMed  Google Scholar 

  • Katapodis P, Vrsanska M, Kekos D, Nerinckx W, Biely P, Claeyssens M (2003) Biochemical and catalytic properties of an endoxylanase purified from the culture filtrate of Sporotrichum thermophile. Carbohydr Res 338(18):1881–1890

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Satyanarayana T (2004) Production of extracellular pectinolytic, cellulolytic and xylanolytic enzymes by a thermophilic mould Sporotrichum thermophile Apinis in solid state fermentation. Indian J Biotechnol 3:552–557

    CAS  Google Scholar 

  • Kumar S, Satyanarayana T (2004) Statistical optimization of a thermostable and neutral glucoamylase production by a thermophilic mold Thermomucor indicae-seudaticae in solid-state fermentation. World J Microbiol Biotechnol 20:895–902

    Article  CAS  Google Scholar 

  • Kumar A, Dutt D, Gautam A (2016) Production of crude enzyme from Aspergillus nidulans AKB-25 using black gram residue as the substrate and its industrial applications. J Genet Eng Biotechnol 14:107–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Liu Y, Jiang Z, Liu H, Yang S, Yan Q (2018) Biochemical characterization of a novel xylanase from Paenibacillus barengoltzii and its application in xylooligosaccharides production from corncobs. Food Chem. https://doi.org/10.1016/j.foodchem.2018.05.023

    Article  PubMed  Google Scholar 

  • Lloret L, Eibes G, Feijoo G, Moreira MT, Lem JM (2012) Degradation of estrogens by laccase from Myceliophthora thermophila in fed-batch and enzymatic membrane reactors. J Hazard Mater 213:175–183

    Article  PubMed  Google Scholar 

  • Maan P, Bharti AK, Gautam S, Dutt D (2016) Screening of important factors for xylanase and cellulase production from the fungus C. cinerea RM-1 NFCCI-3086 through Plackett–Burman experimental design. Bioresource 11(4):8269–8276

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Moretti MMS, Bocchini-Martins DA, da Silva R, Rodrigues A, Sette LD, Gomes E (2012) Selection of thermophilic and thermotolerant fungi for the production of cellulases and xylanases under solid state fermentation. Braz J Microbiol 43:1062–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  PubMed  Google Scholar 

  • Ramanjaneyulu HNPG, Reddy BR (2016) Optimization of cellulase production by Penicillium sp. 3 Biotech 6:162

    PubMed  PubMed Central  Google Scholar 

  • Ribeiro LFC, Ribeiro LF, Jorge JA, Polizeli ML (2014) Screening of filamentous fungi for xylanases and cellulases not inhibited by xylose and glucose. Br Biotechnol J 4:30–39

    Article  CAS  Google Scholar 

  • Sadaf A, Khare SK (2014) Production of Sporotrichum thermophile xylanase by solid state fermentation utilizing deoiled Jatropha curcas seed cake and its application in xylooligosaccharide synthesis. Bioresour Technol 153:126–130

    Article  CAS  PubMed  Google Scholar 

  • Salihu A, Bala SM, Olagunju A (2015) A statistical design approach for xylanase production by Aspergillus niger using soybean hulls: optimization and determining the synergistic effects of medium components on the enzyme production. Jordan J Biol Sci 147:3388

    Google Scholar 

  • Sanghvi GV, Koyani RD, Rajput KS (2010) Thermostable xylanase production and partial purification by solid-state fermentation using agricultural waste wheat straw. Mycology 1:106–112

    Article  CAS  Google Scholar 

  • Sapna, Singh B (2014) Phytase production by Aspergillus oryzae in solid-state fermentation and its applicability in dephytinization of wheat bran. Appl Biochem Biotechnol 173:1885–1895

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Bajaj BK (2017) Xylanase production from a new strain of Aspergillus terreus S9 and its application for saccharification of rice straw using combinatorial approach. Environ Prog Sustain Energy 37(3):1210–1219

    Article  Google Scholar 

  • Singh B (2016) Myceliophthora thermophila syn. Sporotrichum thermophile: a thermophilic mould of biotechnological potential. Crit Rev Biotechnol 36(1):59–69

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Sataynarayana T (2006) A marked enhancement in phytase production by a thermophilic mould Sporotrichum thermophile using statistical designs in a cost-effective cane molasses medium. J Appl Microbiol 101:344–352

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Pillay S, Dilsook V, Prior BA (2000) Production and properties of hemicellulases produced by a Thermomyces lanuginosus strain. J Appl Microbiol 88:975–982

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Poças-Fonseca MJ, Satyanarayana T (2016a) Thermophilic molds: biology and applications. Crit Rev Microbiol 42(6):985

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Srivastava M, Shukla A (2016b) Environmental sustainability of bioethanol production from rice straw in India: a review. Renew Sustain Energy Rev 54:202–216

    Article  CAS  Google Scholar 

  • Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A (2013) Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technol 127:500–507. https://doi.org/10.1016/j.biortech.2012.09.012

    Article  CAS  PubMed  Google Scholar 

  • Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulase-production, applications and challenges. J Sci Indust Res 64:832–844

    CAS  Google Scholar 

  • Thomas L, Larroche C, Pandey A (2013) Current developments in solid-state fermentation. Biochem Eng J 81:146–161

    Article  CAS  Google Scholar 

  • Toledo-Nunez C, Lopez-Cruz JI, Hernandez-Arana A (2012) Thermal denaturation of a blue-copper laccase: formation of a compact denatured state with residual structure linked to pH changes in the region of histidine protonation. Biophys Chem 167:36–42

    Article  PubMed  Google Scholar 

  • Topakas E, Stamatis H, Biely P, Christakopoulos P (2004) Purification and characterization of a type B feruloyl esterase (StFAE-A) from the thermophilic fungus Sporotricum thermophile. Appl Microbiol Biotechnol 63(6):686–690

    Article  CAS  PubMed  Google Scholar 

  • Trivedi A, Verma AR, Kaur S, Jha B, Vijay V, Chandra R, Vijay VK, Subbarao VS, Tiwari R, Hariprasad P, Prasad R (2017) Sustainable bio-energy production models for eradicating open field burning of paddy straw in Punjab, India. Energy 127:310–317

    Article  Google Scholar 

  • Zhang H, Sang Q (2015) Production and extraction optimization of xylanase and beta-mannanase by Penicillium chrysogenum QML-2 and primary application in saccharification of corn cob. Biochem Eng J 97:101–110

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author (SD) acknowledges Maharshi Dayanand University, for providing University Research Scholarship (URS) during the course of investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijender Singh.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 495 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahiya, S., Singh, B. Enhanced endoxylanase production by Myceliophthora thermophila with applicability in saccharification of agricultural substrates. 3 Biotech 9, 214 (2019). https://doi.org/10.1007/s13205-019-1750-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1750-4

Keywords

Navigation