Skip to main content
Log in

Delineating thermophilic xylanase from Bacillus licheniformis DM5 towards its potential application in xylooligosaccharides production

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this present study novel endoxylanase producing Bacillus licheniformis DM5 isolated, identified based on 16S rDNA from Garampani hotspring, Assam, India and enzyme was purified. RNA secondary structure predicted the similarity of B. licheniformis DM5 with B. licheniformis ATCC14580. Highest production of xylanase from B. licheniformis DM5 was achieved in the TY medium with cell densities 12 g/l and extracellular protein concentration containing xylanase 400 mg/l. Partially purified extracellular xylanase displayed optimum pH 6.5 and temperature 50 °C. Thermostability of the xylanase at the elevated temperature showed stability between 50 and 60 °C retaining its 99% activity. Kinetic parameters of thermophilic xylanase revealed Km 1.5 ± 0.2 mg/ml, Vmax 2.7 ± 0.2 U/ml and and Kcat 1.8 ± 0.2 s−1 against beechwood xylan but ruled out any exo-acting activity against synthetic pNP-xylopyranoside substrate. Time dependent enzymatic hydrolysis of beechwood xylan and preprocessed agrowaste corncob exhibited the release of xylotriose and xylobiose oligosaccharide (XOS) significantly high. Xylobiose and xylotriose exhibited higher binding affinities with BIAXP transporter protein of probiotic bacteria explaining their easy uptake by the cells. Mixed oligosaccharides also exhibited better prebiotic activity by promoting growth of Bifidobacterium infantis and Lactobacillus delbrueckii. Mixed XOS when tested for their cytotoxicity on Hela cell lines in in vitro MTT assay displayed significant lowering of cell viability after 48 h and 24 h at 100 µg/ml to 60% and 50%, respectively. In contrast, cytotoxicity wasn’t observed against normal cervical cell line (VK2/E6E7-ATCC-CRL-2616). Therefore, thermophilic endoxylanase from B. licheniformis DM5 could be attributed for the production of prebiotic and anti-inflammatory XOS from agrowaste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akpinar O, Ak O, Kava A, Bakir U, Levent Y (2007) Enzymatic production of xylooligosaccharides from cotton stalks. J Agric Food Chem 55(14):5544–5551

    Article  CAS  PubMed  Google Scholar 

  • Ando H, Ohba H, Sakaki T, Takamine K, Kamino Y, Moriwaki S, Bakalova R, Uemura Y, Hatate Y (2004) Hot compressed-water decomposed products from bamboo manifest a selective cytotoxicity against acute lymphoblastic leukemia cells. Toxicol In Vitro 18:765–771

    Article  CAS  PubMed  Google Scholar 

  • Bajpai P (2014) Industrial applications of xylanases. In: Xylanolytic enzymes. Academic Press, Cambridge, pp 69–104

    Chapter  Google Scholar 

  • Banka AL, Guralp SA, Gulari E (2014) Secretory expression and characterization of two hemicellulases, xylanase, and β-xylosidase, isolated from Bacillus subtilis M015. Appl Biochem Biotechnol 174(8):2702–2710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastawde KB (1992) Xylan structure, microbial xylanases, and their mode of action. World J Microbiol Biotechnol 8(4):353–368

    Article  CAS  PubMed  Google Scholar 

  • Biely P, Vrsanska M, Kremnicky L, Tenkanen M, Poutanen K, Hayn M (1993) Catalytic properties of endo-b-1,4-xylanases of Trichoderma reesei. In: Suominen P, Reinikainen T (eds) Trichoderma reesei cellulases and other hydrolases, Fagepaino Oy, Helsinki, pp. 125–135

  • Black JG (1996) Microbiology: principles and applications, 3rd edn. Prentice Hall, Upper Saddle River, pp 140–144

    Google Scholar 

  • Cappuccino JG, Sherman N (1996) Microbiology-A laboratory manual. The Benjamin/Cummings Publishing Co, Inc, Menlo Park, California

    Google Scholar 

  • Cartmell A, McKee LS, Peña MJ, Larsbrink J, Brumer H, Kaneko S, Ichinose H, Lewis RJ, Nielsen AV, Gilbert HJ, Wright JM (2011) The structure and function of an arabinan-specific α-1,2-arabinofuranosidase identified from screening the activities of bacterial GH43 glycoside hydrolases. J Biol Chem 286:15483–15495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapla D, Pandit P, Shah A (2012) Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by prebiotics. Bioresour Technol 115:215–221

    Article  CAS  PubMed  Google Scholar 

  • Coutinho PM, Henrissat B (1999) Carbohydrate-active enzymes server. http://afmb.cnrs-mrs.fr/~cazy/CAZY/index.html

  • Deshpande V, Lachke A, Mishra C, Keskar S, Rao M (1986) Mode of action and properties of xylanase and β-xylosidase from Neurospora crassa. Biotechnol Bioeng 28(12):1832–1837

    Article  CAS  PubMed  Google Scholar 

  • Devulder G, Baty GPF, Flandoris JP (2003) BIBI, a bioinformatics bacterial identification tool. J Clinic Microbiol 41(4):1785–1787

    Article  CAS  Google Scholar 

  • Ejby M, Fredslund F, Vujicic-Zagar A, Svensson B, Slotboom DJ, Hachem MA (2013) Structural basis for arabinoxylo-oligosaccharide capture by the probiotic Bifidobacterium animalis subsp. Lactis Bl-04. Mol Microbiol 90(5):1100–1112

    Article  CAS  PubMed  Google Scholar 

  • Faryar R, Linares-Pastén JA, Immerzeel P, Mamo G, Andersson M, Stålbrand H, Mattiasson B, Nordberg KE (2015) Production of prebiotic xylooligosaccharides from alkaline extracted wheat straw using the K80R-variant of a thermostable alkali-tolerant xylanase. Food Bioprod Process 93:1–10

    Article  CAS  Google Scholar 

  • Ghosh A, Luis AS, Brás JLA, Fontes CMGA, Goyal A (2013) Thermostable recombinant endo-β-(1→4)-mannanase from Clostridium thermocellum: biochemical characterization and manno-oligosaccharides production. J Agric Food Chem 61:12333–12344

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Verma AK, Tingirikari JR, Shukla R, Goyal A (2015) Recovery and purification of oligosaccharides from copra meal by recombinant endo-β-mannanase and deciphering molecular mechanism involved and its role as potent therapeutic agent. Mol Biotechnol 57(2):111–127

    Article  CAS  PubMed  Google Scholar 

  • Gibson GR, Ottaway PB, Rastall RA (2000) Prebiotics: new developments in functional foods. Wood head Publishing Limited, Oxford

    Book  Google Scholar 

  • Gowdhaman D, Ponnusami V (2015) Production and optimization of xylooligosaccharides from Corncob by Bacillus aerophilus KGJ2 xylanase and its antioxidant potential. Int J Biol Macromol 79:595–600

    Article  CAS  PubMed  Google Scholar 

  • Gupta V, Garg S, Capalash N, Gupta N, Sharma P (2015) Production of thermo-alkali-stable laccase and xylanase by co-culturing of Bacillus sp. and B. halodurans for biobleaching of kraft pulp and deinking of waste paper. Bioprocess Biosyst Eng 38(5):947–956

    Article  CAS  PubMed  Google Scholar 

  • Harley JP (2008) Laboratory exercises in microbiology, 7th edn. McGraw-Hill Companies, New York

    Google Scholar 

  • Hauli I, Sarkar B, Mukherjee T, Chattopadhyay A, Mukhopadhyay SK (2013) Alkaline extraction of xylan from agricultural waste, for the cost effective production of xylooligosaccharides, using thermoalkaline xylanase of thermophilic Anoxybacillus sp. Ip-C. Int J Pure App Biosci 6:126–131

    Google Scholar 

  • Hongpattarakere T (2013) Improvement of freeze-dried Lactobacillus plantarum survival using water extracts and crude fibers from food crops. Food Bioprocess Technol 6:1885–1896

    Article  CAS  Google Scholar 

  • Hurlbert JC, Preston JF (2001) Functional characterization of a novel xylanase from a corn strain of Erwinia chrysanthemi. J Bacteriol 183:2093–2100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurst LD, Merchant AR (2001) High guanine-cytosine content is not an adaptation to high temperature: a comparative analysis amongst prokaryotes. Proc Biol Sci 268(1466):493–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagtap S, Deshmukh RA, Menon S, Das S (2017) Xylooligosaccharides production by crude microbial enzymesfrom agricultural waste without prior treatment and their potential application as nutraceuticals. Bioresour Technol 245:283–288

    Article  CAS  PubMed  Google Scholar 

  • Jain I, Kumar V, Satyanarayana T (2015) Xylooligosaccharides: an economical prebiotic from agroresidues and their health benefits. Ind J Exp Biol 53:131–142

    Google Scholar 

  • Javier DB, Faustino S, Mario DB, Guillermo RC, Rajni HK (2018) Purification and characterization of a thermostable xylanase from Bacillus amyloliquefaciens. Enzyme Microb Technol 22(1):42–49

    Google Scholar 

  • Jiang Z, Cong Q, Yan Q, Kumar N, Du X (2010) Characterisation of a thermostable xylanase from Chaetomium sp. and its application in Chinese steamed bread. Food Chem 120:457–462

    Article  CAS  Google Scholar 

  • Johnsen H, Krause K (2014) Cellulase activity screening using pure caroxymethyl cellulose: application to soluble cellulolytic samples and to plant tissue prints. Int J Mol Sci 15:830–838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kabel MA, Kortenoeven L, Schols HA, Voragen AGJ (2002) In vitro fermentability of differently substituted xylooligosaccharides. J Agric Food Chem 50:6205–6210

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Satyanarayana T (2013) Biochemical and thermodynamic characteristics of thermo-alkali-stable xylanase from a novel polyextremophilic Bacillus halodurans TSEV1. Extremophiles 17(5):797–808

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Zhou S, Jing J, Yang T, Duan S, Wang Z, Mei Q, Liu L (2013) Oligosaccharide from apple induces apoptosis and cell cycle arrest in HT29 human colon cancer cells. Int J Biol Macromol 57:245–254

    Article  CAS  PubMed  Google Scholar 

  • Lin SH, Chou LM, Chien YW, Chang JS, Lin CI (2016) Prebiotic effects of xylooligosaccharides on the improvement of microbiota balance in human subjects. Gasteroenterol Res Pract. https://doi.org/10.1155/2016/5789232

    Article  Google Scholar 

  • Liu X, Kokare C (2017) Microbial enzymes of use in industry. In: Biotechnology of microbial enzymes. Production, biocatalysis and industrial applications. Academic Press, Cambridge, pp 267–298

    Google Scholar 

  • McBee RH (1954) The characteristics of Clostridium thermocellum. J Bacteriol 67:505–506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller GL (1959) Use of sugar dinitrosalicylic acid reagent for determination of reducing. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Method 65:55–63

    Article  CAS  Google Scholar 

  • Mussatto SI, Mancilha IM (2007) Non-digestible oligosaccharides: a review. Carbohydr Polym 68:587–597

    Article  CAS  Google Scholar 

  • Nilsson KGI (1988) Enzymatic synthesis of oligosaccharides. Trends Biotechnol 6:256–264

    Article  CAS  Google Scholar 

  • Nurizzo D, Turkenburg JP, Charnock SJ, Roberts SM, Dodson EJ, McKie VA, Taylor EJ, Gilbert HJ, Davies GJ (2002) Cellvibrio japonicus alpha-l-arabinanase 43A has a novel five-blade beta-propeller fold. Nat Struct Biol 9:665–668

    Article  CAS  PubMed  Google Scholar 

  • O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Chem Inf Model 3:1–14

    Google Scholar 

  • Panda MK, Sahu MK, Tayung K (2013) Isolation and characterization of a thermophilic Bacillus sp. with protease activity isolated from hot spring of Tarabalo, Odisha, India. Iran J Microbiol 5(2):159–165

    PubMed  PubMed Central  Google Scholar 

  • Panda AK, Bisht SS, Mandal SD, Kumar NS (2016) Bacterial and archeal community composition in hot springs from Indo-Burma region, North-east India. AMB Express 6(1):111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pereira DIA, Gibson GR (2002) Cholesterol assimilation by lactic acid bacteria and Bifidobacteria isolated from the human gut. Appl Environ Microbiol 68:4689–4693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raj A, Kumar S, Singh SK (2013) A highly thermostable xylanase from Stenotrophomonas maltophilia: purification and partial characterization. Enzyme Res 2013:429305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rakshak K, Ravinder K, Nupur, Srinivas TNR, Kumar AP (2013) Caldimonas meghalayensis sp. nov., a novel thermophilic betaproteobacterium isolated from a hot spring of Meghalaya in northeast India. Antonie Van Leeuwenhoek 104(6):1217–1225

    Article  CAS  PubMed  Google Scholar 

  • Reddy SS, Krishnan C (2016) Production of high-pure xylooligo-saccharides from sugarcane bagasse using crude β-xylosidase-free xylanase of Bacillus subtilis KCX006 and their bifidogenic function. Lebensm Wiss Technol 65:237–245

    Article  CAS  Google Scholar 

  • Saloheimo M, Siika-aho M, Tenkanen M, Penttila ME (2003) Novel xylanase from Trichoderma reesei, method for production thereof, and methods employing this enzyme. United States Patent Application 20030054518

  • Sharma M, Kumar A (2013) Xylanases: an overview. Br Biotechnol J 3(1):1–28

    Article  Google Scholar 

  • Sherpa MT, Das S, Thakur N (2013) Physicochemical analysis of hot water springs of Sikkim—Polok Tatopani, Borong Tatopani and Reshi Tatopani. Recent Res Sci Technol 5(1):63–67

    Google Scholar 

  • Singh R, Banerjee J, Arora A (2015) Prebiotic potential of oligosaccharides: A focus on xylan derived oligosaccharides. Bioact Carbohydr Diet Fibre 5(1):19–30

    Article  CAS  Google Scholar 

  • Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22(1):33–64

    Article  CAS  PubMed  Google Scholar 

  • Swennen K, Courtin CM, Delcour JA (2006) Non-digestible oligosaccharides with prebiotic properties. Crit Rev Food Sci Nutr 46:459–471

    Article  CAS  PubMed  Google Scholar 

  • Tenkanen M, Burgermeister M, Vrsanska M, Biely P, Saloheimo M, Siika-aho M (2003) A novel xylanase XYN IV from Trichoderma reesei and its action on different xylans. In: Courtin CM, Veraverbeke WS, Delcour JA (eds) Recent advances in enzymes in grain processing. The Katholieke Universiteit Leuven, Leuven, pp 41–46

    Google Scholar 

  • Thomas L, Ushasree MV, Pandey A (2014) An alkali-thermostable xylanase from Bacillus pumilus functionally expressed in Kluyveromyces lactis and evaluation of its deinking efficiency. Bioresour Technol 165:309–313

    Article  CAS  PubMed  Google Scholar 

  • Tripathi NK, Shrivastva A, Biswal KC, Rao PVL (2009) Optimization of culture medium for production of recombinant dengue protein in Escherichia coli. Ind Biotechnol 5:179–183

    Article  CAS  Google Scholar 

  • Walia A, Guleria S, Mehta P, Chauhan A, Parkash J (2017) Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech 7(1):1–12

    Article  Google Scholar 

  • Wang J, Sun B, Cao Y, Tian Y, Wang C (2009) Enzymatic preparation of wheat bran xylooligosaccharides and their stability during pasteurization and autoclave sterilization at low pH. Carbohydr Polym 77:816–821

    Article  CAS  Google Scholar 

  • Wei L, Rhee MS, Preston JF (2016) Production of acidic xylooligosaccharides from methylglucuronoarabinoxylans by Bacillus subtilis strain MR44. J Chem Technol Biotechnol 91(7):2056–2062

    Article  CAS  Google Scholar 

  • Zeng H, Xue Y, Peng T, Shao W (2007) Properties of xylanolytic enzyme system in bifidobacteria and their effects on the utilization of xylooligosaccharides. Food Chem 101:1172–1177

    Article  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge IIT Guwahati for Mass Spectroscopy work.

Author information

Authors and Affiliations

Authors

Contributions

The work plan was designed by AG and DB, executed by AG and SS, manuscript written by AG, DB.

Corresponding author

Correspondence to Debabrat Baishya.

Ethics declarations

Conflict of interest

Authors declare no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1810 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Sutradhar, S. & Baishya, D. Delineating thermophilic xylanase from Bacillus licheniformis DM5 towards its potential application in xylooligosaccharides production. World J Microbiol Biotechnol 35, 34 (2019). https://doi.org/10.1007/s11274-019-2605-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-019-2605-1

Keywords

Navigation