Skip to main content

Physiological Interventions of Antioxidants in Crop Plants Under Multiple Abiotic Stresses

  • Chapter
  • First Online:
Sustainable Agriculture in the Era of the OMICs Revolution

Abstract

Climatic changes, industrialization, and global warming pose serious threats to the environment and agriculture. Plants are continuously exposed to multiple stresses among which salinity is a big issue that needs to be addressed seriously. Surely, salinity led to the dwindled crop production and creates serious consequences including less availability of food for humans and animals. Under stress conditions, reactive oxygen species (ROS) are produced, which damage the molecular system of the cell. Therefore, plants adapted different strategies to cope with such stress-induced toxicity. In this respect, the finding of mechanisms for salinity stress tolerance in plants is of great interest. The plant cells produce antioxidants to manage the stresses. Antioxidants produced endogenously scavenge ROS to ameliorate stresses. Transferring the concept from nature, scientists have reported that exogenous application of antioxidants could be a cost-effective solution to counteract different types of plant stresses. The present chapter is focused on the role of antioxidants, that is, ellagic acid, ascorbic acid, salicylic acid, tocopherols, anthocyanins, carotenoids, and brassinosteroids (nonenzymatic) and catalases (CAT), peroxidases (POXs), and superoxide dismutases (SODs) (enzymatic), for increased crop production under stress conditions and discusses the different mechanistic approaches to capture ROS in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas, S., Latif, H. H., & Elsherbiny, E. A. (2013). Effect of 24-epibrassinolide on the physiological and genetic changes on two varieties of pepper under salt stress conditions. Pakistan Journal of Botany, 45(4), 1273–1284.

    Google Scholar 

  • Abd Allaha, E. F., Alqarawia, A. A., Hashem, A., Wirthe, S., & Egamberdievae, D. (2018). Regulatory roles of 24-epibrassinolide in tolerance of Acacia gerrardii Benth to salt stress. Bioengineered, 9, 61–71.

    Article  Google Scholar 

  • Abedini, M., & Hassani, B. D. (2015). Salicylic acid affects wheat cultivars antioxidant system under saline and non-saline condition. Russian Journal of Plant Physiology, 62, 604–610.

    Article  CAS  Google Scholar 

  • Agada, O. O. (2016). Abiotic stress, antioxidants and crop productivity: The mitigating role of exogenous substances. Greener Journal of Agricultural Science, 6(2), 79–86.

    Article  Google Scholar 

  • Agati, G., Brunetti, C., Di Ferdinando, M., Ferrini, F., Pollastri, S., & Tattini, M. (2013). Functional roles of flavonoids in photoprotection: New evidence, lessons from the past. Plant Physiology and Biochemistry, 72, 35–45.

    Article  CAS  Google Scholar 

  • Aguilera-Carbo, A. F., Augur, C., Prado-Barragan, L. A., Aguilar, C. N., & Favela-Torres, E. (2008). Extraction and analysis of ellagic acid from novel complex sources. Chemical Papers, 62(4), 440–444.

    Article  CAS  Google Scholar 

  • Ahmad, I., Basra, S. M. A., & Wahid, A. (2014). Exogenous application of ascorbic acid, salicylic acid and hydrogen peroxide improves the productivity of hybrid maize at low temperature stress. International Journal of Agriculture and Biology, 16(4), 825–830.

    CAS  Google Scholar 

  • Ahsan, H., Ahad, A., & Siddiqui, W. A. (2015). A review of characterization of tocotrienols from plant oils and foods. Journal of Chemical Biology, 8(2), 45–59.

    Article  Google Scholar 

  • Akhtar, J., Ahmad, R., Ashraf, M. Y., Tanveer, A., Waraich, E. A., & Oraby, H. (2013). Influence of exogenous application of salicylic acid on salt-stressed mungbean (Vignaradiata): growth and nitrogen metabolism. Pakistan Journal of Botany, 45(1), 119–125.

    Google Scholar 

  • Akram, N. A., Shafiq, F., & Ashraf, M. (2017). Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2017.00613

  • Al Kharusi, L., Al Yahyai, R., & Mahmoud Yaish, W. (2019). Antioxidant response to salinity in salt-tolerant and salt-susceptible cultivars of date palm. Agriculture, 9, 8. https://doi.org/10.3390/agriculture9010008

    Article  CAS  Google Scholar 

  • Albaladejo, I., Meco, V., Plasencia, F., Flores, F. B., Bolarin, M. C. A. N. D., & Egea, I. (2017). Unravelling the strategies used by the wild tomato species Solanum pennellii to confront salt stress: from leaf anatomical adaptations to molecular responses. Environmental and Experimental Botany, 135, 1–12.

    Article  CAS  Google Scholar 

  • Ali, Q., Athar, H. R., & Ashraf, M. (2006). Influence of exogenously applied brassinosteroids on the mineral nutrient status of two wheat cultivars grown under saline conditions. Pakistan Journal of Botany, 38, 1621–1632.

    Google Scholar 

  • Ali, B., Hayat, S., & Ahmad, A. (2007). 28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum L.). Environmental and Experimental Botany, 59(2), 217–223.

    Article  CAS  Google Scholar 

  • Ali, E., Kaleem Ullah, K., Jawad, M. S., Mumtaz, A. S., Nazim, H., Xue, D., et al. (2015). Bioinformatics study of tocopherol biosynthesis pathway genes in Brassicarapa. International Journal of Current Microbiology and Applied Sciences, 4(3), 721–732.

    CAS  Google Scholar 

  • Alla, M. N., Badrani, E., & Mohammed, F. (2019). Exogenous trehalose alleviates the adverse effects of salinity stress in wheat. Turkish Journal of Botany, 43, 48–57. https://doi.org/10.3906/bot-1803-36

    Article  CAS  Google Scholar 

  • Almeselmani, M., Deshmukh, P. S., Sairam, R. K., Kushwaha, S. R., & Singh, T. P. (2006). Protective role of antioxidant enzymes under high temperature stress. Plant Science, 171, 382–388.

    Article  CAS  Google Scholar 

  • Alscher, R. G., Erturk, N., & Heath, L. S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53(372), 1331–1341.

    Article  CAS  Google Scholar 

  • Alvarez-Suarez, J. M., Giampieri, F., Tulipani, S., Casoli, T., Di Stefano, G., Gonzalez-Paramas, A. M., et al. (2014). One month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans. The Journal of Nutritional Biochemistry, 25, 289–294.

    Article  CAS  Google Scholar 

  • Alyemeni, M. N., Hayat, S., Wijaya, L., & Anaji, A. (2013). Foliar application of 28-homobrassinolide mitigates salinity stress by increasing the efficiency of photosynthesis in Brassicajuncea. Acta Botânica Brasílica, 27(3), 502–505.

    Article  Google Scholar 

  • Amal, F. M., Eldina, Z., & Ibrahim, A. H. (2015). Some biochemical changes and activities of antioxidant enzymes in developing date palm somatic and zygotic embryos in vitro. Annals of Agricultural Science, 60, 121–130.

    Article  Google Scholar 

  • Ames, B. N., Shigenaga, M. K., & Hagen, T. M. (1993). Oxidants, antioxidants, and the degenerative diseases of aging. Proceedings of the National Academy of Sciences, 90(17), 7915–7922.

    Article  CAS  Google Scholar 

  • Anjum, S. A., Wang, L. C., Farooq, M., Hussain, M., Xue, L. L., & Zou, C. M. (2011). Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. Journal of Agronomy and Crop Science, 197(3), 177–185.

    Article  CAS  Google Scholar 

  • Anuradha, S., & Rao, S. S. R. (2003). Application of brassinosteroids to rice seeds (Oryzasativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity. Plant Growth Regulation, 40(1), 29–32.

    Article  CAS  Google Scholar 

  • Anuradha, S., & Rao, S. S. R. (2009). Effect of 24-epibrassinolide on the photosynthetic activity of radish plants under cadmium stress. Photosynthetica, 47(2), 317–320.

    Article  CAS  Google Scholar 

  • Anwar, A., Bai, L., Miao, L., Liu, Y., Li, S., Yu, X., & Li, Y. (2018). 24-Epibrassinolide ameliorates endogenous hormone levels to enhance low-temperature stress tolerance in cucumber seedlings. International Journal of Molecular Sciences, 19. https://doi.org/10.3390/ijms19092497

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.

    Article  CAS  Google Scholar 

  • Arfan, M., Athar, H. R., & Ashraf, M. (2007). Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? Journal of Plant Physiology, 6(4), 685–694.

    Article  Google Scholar 

  • Arora, N., Bhardwaj, R., Sharma, P., & Arora, H. K. (2008). Effects of 28-homobrassinolide on growth, lipid peroxidation and antioxidative enzyme activities in seedlings of Zea mays L. under salinity stress. Acta Physiologiae Plantarum, 30(6), 833–839.

    Article  CAS  Google Scholar 

  • Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27, 84–93.

    Article  CAS  Google Scholar 

  • Ashraf, M., & Arfan, M. (2005). Gas exchange characteristics and water relations in two cultivars of Hibiscus esculentus under waterlogging. Biologia Plantarum, 49, 459–462.

    Article  Google Scholar 

  • Ashraf, M., & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166, 3–16.

    Article  CAS  Google Scholar 

  • Ashraf, M., & Harris, P. J. C. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica, 51, 163–190.

    Article  CAS  Google Scholar 

  • Ashraf, U., & Tang, X. (2017). Yield and quality responses, plant metabolism and metal distribution pattern in aromatic rice under lead (Pb) toxicity. Chemosphere, 176, 141–155.

    Article  CAS  Google Scholar 

  • Ashraf, M. A., Ashraf, M., & Ali, Q. (2010). Response of two genetically diverse wheat cultivars to salt stress at different growth stages: Leaf lipid peroxidation and phenolic contents. Pakistan Journal of Botany, 42, 559–565.

    CAS  Google Scholar 

  • Ashraf, M. A., Ahmad, M. S. A., Ashraf, M., Al-Qurainy, F., & Ashraf, M. Y. (2011). Alleviation of waterlogging stress in upland cotton (Gossypium hirsutum L.) by exogenous application of potassium in soil and as a foliar spray. Crop & Pasture Science, 62(1), 25–38.

    Article  CAS  Google Scholar 

  • Ashraf, U., Kanu, A. S., Mo, Z., Hussain, S., Anjum, S. A., Khan, I., Abbas, R. N., & Tang, X. (2015). Lead toxicity in rice: effects, mechanisms, and mitigation strategies—a mini review. Environmental Science and Pollution Research, 22(23), 18318–18332.

    Article  CAS  Google Scholar 

  • Ashraf, U., Kanu, A. S., Deng, Q., Mo, Z., Pan, S., Tian, H., & Tang, X. (2017a). Lead (Pb) toxicity; physio-biochemical mechanisms, grain yield, quality, and Pb distribution proportions in scented rice. Frontiers in Plant Science, 8, 259.

    Article  Google Scholar 

  • Ashraf, U., Hussain, S., Anjum, S. A., Abbas, F., Tanveer, M., Noor, M. A., & Tang, X. (2017b). Alterations in growth, oxidative damage, and metal uptake of five aromatic rice cultivars under lead toxicity. Plant Physiology and Biochemistry, 115, 461–471.

    Article  CAS  Google Scholar 

  • Ashraf, U., Hussain, S., Akbar, N., Anjum, S. A., Hassan, W., & Tang, X. (2018). Water management regimes alter Pb uptake and translocation in fragrant rice. Ecotoxicology and Environmental Safety, 149, 128–134.

    Article  CAS  Google Scholar 

  • Ashraf, U., Mahmood, M. H. U. R., Hussain, S., Abbas, F., Anjum, S. A., & Tang, X. (2020). Lead (Pb) distribution and accumulation in different plant parts and its associations with grain Pb contents in fragrant rice. Chemosphere, 248, 126003.

    Article  CAS  Google Scholar 

  • Athar, H. R., Khan, A., & Ashraf, M. (2008). Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environmental and Experimental Botany, 63(1–3), 224–231.

    Article  CAS  Google Scholar 

  • Athar, H. R., Khan, A., & Ashraf, M. (2009). Inducing salt tolerance in wheat by exogenously applied ascorbic acid through different modes. Journal of Plant Nutrition, 32(11), 1799–1817.

    Article  CAS  Google Scholar 

  • Avalbaev, A. M., Yuldashev, R. A., Fatkhutdinova, R. A., Urusov, F. A., Safutdinova, Y. V., & Shakirova, F. M. (2010). The influence of 24-epibrassinolide on the hormonal status of wheat plants under sodium chloride. Applied Biochemistry and Microbiology, 46, 99–102.

    Article  CAS  Google Scholar 

  • Azzedine, F., Gherroucha, H., & Baka, M. (2011). Improvement of salt tolerance in durum wheat by ascorbic acid application. Stress: the International Journal on Biology of Stress, 7, 27–37.

    Google Scholar 

  • Babar, S., Siddiqi, E. H., Hussain, I., Bhatti, K. H., & Rasheed, R. (2014). Mittigating the effects of salinity by foliar application of salicylic acid in fenugreek. Physiology Journal, 2014, 1–6.

    Article  Google Scholar 

  • Bagherifard, A., Bagheri, A., Sabourifard, H., Bagherifard, G., & Najar, M. (2015). The effect of salicylic acid on some morphological and biochemistry parameters under salt stress in herb artichoke (CynaraScolymus L.). Research Journal of Fisheries and Hydrobiology, 10, 745–750.

    Google Scholar 

  • Bajguz, A., & Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry, 47(1), 1–8. https://doi.org/10.1016/j.plaphy.2008.10.002

    Article  CAS  Google Scholar 

  • Barch, D. H., Rundhaugen, L. M., Stoner, G. D., Pillay, N. S., & Rosche, W. A. (1996). Structure-function relationships of the dietary anticarcinogen ellagic acid. Carcinogenesis, 17(2), 265–269. https://doi.org/10.1093/carcin/17.2.265

    Article  CAS  Google Scholar 

  • Batool, E. J., Ahmad, Z., & Faheem, A. F. T. (2012). Effect of exogenous application of ascorbic acid on antioxidant enzyme activities, proline contents and growth parameters of Saccharum spp. Hybrid cv. HSF-240 under salt stress. Turkish Journal of Biology, 36, 630–640.

    Google Scholar 

  • Batool, N., Noor, T., Ilyas, N., & Shahzad, A. (2015). Molecular basis of salt stress tolerance in crop plants. Pure and Applied Biology, 4(1), 80–88.

    Article  Google Scholar 

  • Bauwe, H., Hagemann, M., Kern, R., & Timm, S. (2012). Photorespiration has a dual origin and manifold links to central metabolism. Current Opinion in Plant Biology, 15, 269–275.

    Article  CAS  Google Scholar 

  • Bechtold, U., & Field, B. (2018). Molecular mechanisms controlling plant growth during abiotic stress. Journal of Experimental Botany, 69, 2753–2758.

    Article  CAS  Google Scholar 

  • Behnamnia, M. (2015). Protective roles of brassinolide on tomato seedlings under drought stress. International Journal of Agricultural Sciences, 8, 552–559.

    Google Scholar 

  • Bendary, E. R. R., Francis, H. M. G., Ali, M. I., Sarwat, S., & El-Hady. (2013). Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds. Annals of Agricultural Science, 58, 173–181.

    Article  Google Scholar 

  • Bhandari, P. R., & Kamdod, M. A. (2012). Emblica officinalis (Amla): A review of potential therapeutic applications. International Journal of Green Pharmacy, 6, 257–269.

    Article  Google Scholar 

  • Bishop, G. J., & Yakota, T. (2001). Plants steroid hormones, brassinosteroids: Current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Plant & Cell Physiology, 42(2), 114–120.

    Article  CAS  Google Scholar 

  • Bowler, C., Montagu, M. V., & Inze, D. (1992). Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology, 43(1), 83–116. https://doi.org/10.1146/annurev.pp.43.060192.000503

    Article  CAS  Google Scholar 

  • Bramley, P. M., Elmadfa, I., Kafatos, A., Kelly, F. J., Manios, Y., Roxborough, H. E., et al. (2000). Review: Vitamin E. Journal of the Science of Food and Agriculture, 80, 913–938.

    Article  CAS  Google Scholar 

  • Camp, W. V., Willekens, H., Bowler, C., Montagu, M. V., Inzé, D., Reupold-Popp, P., et al. (1994). Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. BioTechnol, 12(2), 165–168.

    Google Scholar 

  • Carletti, G., Lucini, L., Busconi, M., Marocco, A., & Bernardi, J. (2013). Insight into the role of anthocyanin biosynthesis-related genes in Medicagotruncatula mutants impaired in pigmentation in leaves. Plant Physiology and Biochemistry, 70, 123–132. https://doi.org/10.1016/j.plaphy.2013.05.030

    Article  CAS  Google Scholar 

  • Castañeda-Ovando, A., Pacheco-Hernández, M. L., Páez-Hernández, M. E., Rodríguez, J. A., & Galán-Vidal, C. (2009). Chemical studies of anthocyanins: a review. Food Chemistry, 113, 859–871.

    Article  Google Scholar 

  • Caverzan, A., Passaia, G., Rosa, S. B., Ribeiro, C. W., Lazzarotto, F., & Margis-Pinheiro, M. (2012). Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology, 35, 1011–1019.

    Article  CAS  Google Scholar 

  • Cavusoglu, K., & Bilir, G. (2015). Effects of ascorbic acid on the seed germination, seedling growth and leaf anatomy of barley under salt stress. APRN Journal of Agricultural and Biological Science, 10(4), 124–129.

    CAS  Google Scholar 

  • Cenacchi, N. (2014). Drought risk reduction in agriculture: A review of adaptive strategies in East Africa and the Indo-Gangtic Plain of South Asia IFPRI discussion paper series. Washington: International Food Policy Research Ins, 46.

    Google Scholar 

  • Chalker-Scott, L. (1999). Environmental significance of anthocyanins in plant Stress responses. Photochemistry and Photobiology, 70(1), 1.

    Article  CAS  Google Scholar 

  • Chalker-Scott, L. (2002). Do anthocyanins function as osmoregulators in leaf tissues? Advances in Botanical Research, 37, 103–127.

    Article  CAS  Google Scholar 

  • Cheng, Y., Zhu, W., Chen, Y., Ito, S., Asami, T., & Wang, X. (2014). Brassinosteroids control root epidermal cell fate via direct regulation of a MYB-bHLH-WD40 complex by GSK3-like kinases. eLife, 3. https://doi.org/10.7554/elife.02525

  • Cheng, W., Huang, Y., Meng, C., Zhang, N., Zeng, H., Ren, J., Li, Y., & Sun, Y. (2015). Effect of exogenous 24-epibrassinolide on salt resistance of watermelon (Citrulluslanatus L.) under salinity stress (p. 68). 5th International Conference on Advanced Design and Manufacturing Engineering.

    Google Scholar 

  • Chory, J., Peto, C., Feinbaum, R., Pratt, L., & Ausubel, F. (1989). Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell, 58(5), 991–999.

    Article  CAS  Google Scholar 

  • Chukwu, O. O. C. (2012). Carrot (Daucuscarrota), garlic (Alliumsativum) and ginger (Zingiberfficinale) extracts as bacteria selective agents in culture media. African Journal of Microbiology Research, 6(2), 219–224.

    Google Scholar 

  • Close, D. C., & Beadle, C. L. (2003). The ecophysiology of foliar anthocyanin. The Botanical Review, 69(2), 149–161.

    Article  Google Scholar 

  • Clouse, S. D., & Sasse, J. M. (1998). Brassinosteroids: Essential regulators of plant growth and development. Annual Review of Plant Physiology and Plant Molecular Biology, 49(1), 427–451. https://doi.org/10.1146/annurev.arplant.49.1.427

    Article  CAS  Google Scholar 

  • Conklin, P. L., & Barth, C. (2004). Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant, Cell & Environment, 27(8), 959–970.

    Article  CAS  Google Scholar 

  • Cotsaftis, O., Plett, D., Johnson, A. A., Walia, H., Wilson, C., Ismail, A. M., Close, T. J., Tester, M., & Baumann, U. (2011). Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress. Molecular Plant, 4, 25–41.

    Article  CAS  Google Scholar 

  • Dalio, R. J. D., Pinheiro, H. P., Sodek, L., & Haddad, C. R. B. (2011). The effect of 24-epibrassinolide and clotrimazole on the adaptation of Cajanuscajan (L.) Millsp. to salinity. Act. Physiologia Plantarum, 33(5), 1887–1896.

    Article  CAS  Google Scholar 

  • Dalio, R. J., Pinheiro, H., Sodek, L., & Haddad, C. R. (2013). 24-epibrassinolide restores nitrogen metabolism of pigeon pea under saline stress. Botanical Studies, 54(1), 9.

    Article  Google Scholar 

  • Davey, M. W., Montagu, M. V., Inzé, D., Sanmartin, M., Kanellis, A., Smirnoff, N., et al. (2000). Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. Journal of the Science of Food and Agriculture, 80(7), 825–860.

    Article  CAS  Google Scholar 

  • De Pinto, M. C., Locato, V., Sgobba, A., Romero-Puertas, M. D. C., Gadaleta, C., Delledonne, M., & de Gara, L. (2013). S-nitrosylation of ascorbate peroxidase is part of programmed cell death signaling in tobacco Bright Yellow-cells. Plant Physiology, 163, 1766–1775.

    Article  Google Scholar 

  • Dehghan, G., Rezazadeh, L., & Habibi, G. (2011). Exogenous ascorbate improves antioxidant defense system and induces salinity tolerance in soybean seedlings. Acta Biologica Szegediensis, 55(2), 261–264.

    Google Scholar 

  • Deng, X. P., Cheng, Y. J., Wu, X. B., Kwak, S. S., Chen, W., & Egrinya, A. (2012). Exogenous hydrogen peroxide positively influences root growth and metabolism in leaves of sweet potato seedlings. Australian Journal of Crop Science, 6, 1572–1578.

    CAS  Google Scholar 

  • Desoky, E.-S. M., & Merwad, A.-R. M. (2015). Improving the salinity tolerance in wheat plants using salicylic and ascorbic acids. The Journal of Agricultural Science, 7(10), 203–217.

    Google Scholar 

  • Devendra, C. (2012). Climate Change Threats and effects: challenges for agriculture and food security. ASM series on climate change. Academy of Sciences Malaysia, 56, ISBN 978-983-9445-82-4.

    Google Scholar 

  • Dey, S., Sidor, A. O., & Rourke, B. (2016). Compartment-specific control of reactive oxygen species scavenging by antioxidant pathway enzymes. The Journal of Biological Chemistry, 291(21), 11185–11197.

    Article  CAS  Google Scholar 

  • Dhamgaye, S., & Gadre, R. (2015). Salinity stress effects on growth and nitrate assimilation in bean seedlings likely to be mediated via nitric oxide. Stress: The International Journal on Biology of Stress, 11, 137–146.

    Google Scholar 

  • Dhaubhadel, S., Browning, K. S., Gallie, D. R., & Krishna, P. (2002). Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. The Plant Journal, 29(6), 681–691.

    Article  CAS  Google Scholar 

  • Ding, H. D., Zhu, X. H., Zhu, Z. W., Yang, S. J., Zha, D. S., & Wu, X. X. (2012). Amelioration of salt-induced oxidative stress in eggplant by application of 24-epibrassinolide. Biologia Plantarum, 56, 767–770.

    Article  CAS  Google Scholar 

  • Dkhil, B. B., & Denden, M. (2012). Effect of salt stress on growth, anthocyanins, membrane permeability and chlorophyll fluorescence of Okra (Abelmoschusesculentus L.) seedlings. Journal of Plant Physiology, 7(4), 174–183.

    Article  Google Scholar 

  • Dolatabadian, A., Sanavy, S. A. M. M., & Chashmi, N. A. (2008). The effects of foliar application of ascorbic acid (Vitamin C) on antioxidant enzymes activities, lipid peroxidation and proline accumulation of canola (Brassica napus L.) under conditions of salt stress. Journal of Agronomy and Crop Science, 194(3), 206–213.

    Article  CAS  Google Scholar 

  • Dong, Y. J., Wang, Z. L., Zhang, J. W., Liu, S., He, Z. L., & He, M. R. (2015). Interaction effects of nitric oxide and salicylic acid in alleviating salt stress of Gossypium hirsutum L. Journal of Soil Science and Plant Nutrition, 15(3), 561–573.

    Google Scholar 

  • Droillard, M. J., & Paulin, A. (1990). Isozymes of superoxide dismutase in mitochondria and peroxisomes isolated from petals of carnation (Dianthuscaryophyllus) during senescence. Plant Physiology, 94(3), 1187–1192.

    Article  CAS  Google Scholar 

  • Du, H., Liang, Y., Pei, K., & Ma, K. (2011). UV radiation-responsive proteins in rice leaves: a proteomic analysis. Plant & Cell Physiology, 52(2), 306–316.

    Article  CAS  Google Scholar 

  • Durigan, D. R. J., Pinheiro, H. P., Sodek, L., & Haddad, C. R. B. (2011). The effect of 24-epibrassinolide and clotrimazole on the adaptation of Cajanus cajan (L.) Mill sp to salinity. Acta Physiologiae Plantarum, 33, 1887–1896.

    Article  Google Scholar 

  • Eitenmiller, R. R., Landen, W. O., & Ye, L. (2007). Vitamin analysis for the health and food sciences (p. 664). CRC Press. ISBN 9780849397714 - CAT# 9771.

    Google Scholar 

  • Ekinci, M., Yildirim, E., Dursun, A., & Turan, M. (2012). Mitigation of salt stress in lettuce (Lactuca sativa L. var. Crispa) by seed and foliar 24-epibrassinolide treatments. Horticultural Science, 47, 631–663.

    CAS  Google Scholar 

  • El Hariri, D. M., Sadak, M. S., & El-Bassiouny, H. M. S. (2010). Response of flax cultivars to ascorbic acid and? – Tocopherol under salinity stress conditions. International Journal of Academic Research, 2(6), 101–109.

    Google Scholar 

  • Eleiwa, M. E., Bafeel, S. O., & Ibrahim, S. A. (2011). Influence of brassinosteroids on wheat plant (Triticum aestivum L.) production under salinity stress conditions. I. Growth parameters and photosynthetic pigments. Australian Journal of Basic and Applied Sciences, 5, 58–65.

    CAS  Google Scholar 

  • El-Feky, S. (2014). Effect of exogenous application of brassinolide on growth and metabolic activity of wheat seedlings under normal and salt stress conditions. Annual Research and Review in Biology, 4(24), 3687–3698.

    Article  Google Scholar 

  • El-Soud, W. A., Hegab, M. M., AbdElgawad, H., Zinta, G., & Asard, H. (2013). Ability of ellagic acid to alleviate osmotic stress on chickpea seedlings. Plant Physiology and Biochemistry, 71, 173–183.

    Article  CAS  Google Scholar 

  • Elwan, M. W. M., Shaban, W. I., Mohammed, A. I., & Hossein, H. E. A. (2007). Effect of foliar application of Ascorbic acid on plant growth, powdery meldow disease, chemical composition, fruit yield. The Journal of Agricultural Science, 32, 10359–10378.

    Google Scholar 

  • Epstein, E. (1972). Mineral nutrition of plants: Principles and perspectives. Wiley.

    Google Scholar 

  • Eryılmaz, F. (2006). The relationships between salt stress and anthocyanin content in higher plants. Biotechnology and Biotechnological Equipment, 20(1), 47–52.

    Article  Google Scholar 

  • Espinosa-Diez, C., Miguel, V., Mennerich, D., Kietzmann, T., Sánchez-Pérez, P., Cadenas, S., & Lamas, S. (2015). Antioxidant responses and cellular adjustments to oxidative stress. Redox Biology, 6, 183–197.

    Article  CAS  Google Scholar 

  • Fahad, S., & Bano, A. (2012). Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pakistan Journal of Botany, 44(4), 1433–1438.

    Google Scholar 

  • Falk, J., & Munné-Bosch, S. (2010). Tocochromanol functions in plants: antioxidation and beyond. Journal of Experimental Botany, 61(6), 1549–1566.

    Article  CAS  Google Scholar 

  • Fanciullino, A. L., Dhuique-Mayer, C., Luro, F., Casanova, J., Morillon, R., & Ollitrault, P. (2006). Carotenoid diversity in cultivated citrus is highly influenced by genetic factors. Journal of Agricultural and Food Chemistry, 54, 4397–4406. https://doi.org/10.1021/jf0526644

    Article  CAS  Google Scholar 

  • Farahat, M. M., Mazhar, A. A. M., Mahgoub, M. H., & Zaghloul, S. M. (2013). Salt tolerance in Grevillea robusta seedlings via foliar application of ascorbic acid. Middle-East Journal of Scientific Research, 14, 9–15.

    CAS  Google Scholar 

  • Farheen, J., Mansoor, S., & Abideen, Z. (2018). Exogenously applied salicylic acid improved growth, photosynthetic pigments and oxidative stability in Mungbean seedling (Vigna radiata) at salt stress. Pakistan Journal of Botany, 50(3), 901–912.

    CAS  Google Scholar 

  • Fariduddin, Q., Mir, B. A., Yusuf, M., & Ahmad, A. (2013). Comparative roles of brassinosteroids and polyamines in salt stress tolerance. Acta Physiologiae Plantarum, 35(7), 2037–2053.

    Article  CAS  Google Scholar 

  • Fathima, S. A. M., Johnson, M., & Lingakumar, K. (2011). Effect of crude brassinosteroid extract on growth and biochemical changes of GosssypiumhirsutumL. and Vigna mungo L. Stress: the International Journal on Biology of Stress, 7, 324–334.

    Google Scholar 

  • Fedina, E. O. (2013). Effect of 24-epibrassinolide on pea protein tyrosine phosphorylation after salinity action. Russian Journal of Plant Physiology, 60, 351–358.

    Article  CAS  Google Scholar 

  • Fernie, A. R., & Szilvia, Z. T. (2015). Identification of the elusive chloroplast ascorbate transporter extends the substrate specificity of the PHT family. Molecular Plant, 8, 674–676.

    Article  CAS  Google Scholar 

  • Fink, R. C., & Scandalios, J. G. (2002). Molecular evolution and structure–function relationships of the superoxide dismutase gene families in angiosperms and their relationship to other eukaryotic and prokaryotic superoxide dismutases. Archives of Biochemistry and Biophysics, 399(1), 19–36.

    Article  CAS  Google Scholar 

  • Flora, S. J., Mittal, M., & Mehta, A. (2008). Heavy metal induced oxidative stress and its possible reversal by chelation therapy. The Indian Journal of Medical Research, 4, 501–523.

    Google Scholar 

  • Folzer, H., Dat, J., Capelli, N., Rieffel, D., & Badot, P. M. (2006). Response to flooding of sessile oak: An integrative study. Tree Physiology, 26, 759766.

    Article  Google Scholar 

  • Ford, K. L., Cassin, A., & Bacic, A. (2011). Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance. Frontiers in Plant Science, 2. https://doi.org/10.3389/fpls.2011.00044

  • Foyer, C. H., & Shigeoka, S. (2011). Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology, 155, 93–100.

    Article  CAS  Google Scholar 

  • Fridovich, I. (1995). Superoxide radical and superoxide dismutases. Annual Review of Biochemistry, 64(1), 97–112.

    Article  CAS  Google Scholar 

  • Fritsche, S., Xingxing, W., Lars, N. I., Ida, S., Silke, H., Jessica, E., et al. (2014). Genetic and functional analysis of tocopherol biosynthesis pathway genes from rapeseed (Brassica napus L.). Plant Breeding, 133(4), 470–479.

    Article  CAS  Google Scholar 

  • Galano, A., Marquez, M. F., & Lez, A. G. (2014). Ellagic Acid: An Unusually Versatile Protector against Oxidative Stress. Chemical Research in Toxicology, 27, 904–918.

    Article  CAS  Google Scholar 

  • Gao, H. J., Yang, H. Y., Bai, J. P., Liang, X. Y., Lou, Y., Zhang, J. L., et al. (2014). Ultrastructural and physiological responses of potato (Solanumtuberosum) plantlets to gradient saline stress. Frontiers in Plant Science, 5, 1–14.

    CAS  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.

    Article  CAS  Google Scholar 

  • Gomez, J. M. (2003). Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts. Journal of Experimental Botany, 55(394), 119–130.

    Article  Google Scholar 

  • Gónmez-Bellot, M. J., Álvarez, S., Bañón, S., Ortuño, M. F., & Sánchez-Blanco, M. J. (2013). Physiological mechanisms involved in the recovery of euonymus and laurustinus subjected to saline waters. Agricultural Water Management, 128, 131–139. https://doi.org/10.1016/j.agwat.2013.06.017

    Article  Google Scholar 

  • Gul, H., Rafiq, A., & Muhammad, H. (2015). Impact of exogenously applied ascorbic acid on growth, some biochemical constituents and ionic composition of guar (Cymopsistetragonoloba) Subjected to salinity stress. Journal of Life Science, 03(01), 22–40.

    Google Scholar 

  • Gupta, B. I., & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Plant Genomics, 2014. https://doi.org/10.1155/2014/701596

  • Hameed, A., Hussain, T., Gulzar, S., Aziz, I., Gul, B., & Khan, M. A. (2012). Salt tolerance of a cash crop halophyte Suaedafruticosa: Biochemical responses to salt and exogenous chemical treatments. Acta Physiologiae Plantarum, 34, 2331–2340.

    Article  CAS  Google Scholar 

  • Hameed, A., Gulzar, S., Aziz, I., Hussain, T., Gul, B., & Khan, M. A. (2015). Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte. AoB Plants, 7. https://doi.org/10.1093/aobpla/plv004

  • Hamideldin, N., Eliwa, N. E., & Hussein, O. S. (2017). Role of jasmonic acid and gamma radiation in alleviating salt stress in Moringa. International Journal of Agriculture and Biology, 19(1). https://doi.org/10.17957/IJAB/15.0245

  • Han, D. H., Lee, M. J., & Kim, J. H. (2006). Antioxidant and apoptosis-inducing activities of ellagic acid. Anticancer Research, 26, 3601–3606.

    CAS  Google Scholar 

  • Harborne, J. B. (1998). Phytochemical methods (pp. 60–66). Chapman Hall.

    Google Scholar 

  • Hasanuzzaman, M., Hossain, M. A., Teixeira, da Silva, J. A., & Fujita, M. (2012). Plant response and tolerance to abiotic oxidative stress: Antioxidant defense is a key factor. Crop Stress Manag. Persp. Strat, 261–315.

    Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14, 9643–9684.

    Article  Google Scholar 

  • Hatier, J.-H. B., & Gould, K. S. (2008). Foliar anthocyanins as modulators of stress signals. Journal of Theoretical Biology, 253(3), 625–627.

    Article  CAS  Google Scholar 

  • Hayat, S., Hasan, S. A., Yusuf, M., Hayat, Q., & Ahmad, A. (2010). Effect of 28 homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environmental and Experimental Botany, 69, 105–112.

    Article  CAS  Google Scholar 

  • Hayat, S., Alyemeni, M. N., & Hasan, S. A. (2012). Foliar spray of brassinosteroid enhances yield and quality of Solanumlycopersicum under cadmium stress. Saudi Journal of Biological Sciences, 19(3), 325–335.

    Article  CAS  Google Scholar 

  • Heider, S. A. E., Peters-Wendisch, P., Wendisch, V. F., Beekwilder, J., & Brautaset, T. (2014). Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids. Applied Microbiology and Biotechnology, 98(10), 4355–4368.

    Article  CAS  Google Scholar 

  • Herschbach, C., Scheerer, U., & Rennenberg, H. (2010). Redox states of glutathione and ascorbate in root tips of poplar (Populustremula3 P. alba) depend on phloem transport from the shoot to the roots. Journal of Experimental Botany, 61, 1065–1074.

    Article  CAS  Google Scholar 

  • Holton, T. A., & Cornish, E. C. (1995). Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell, 7(7), 1071. https://doi.org/10.2307/3870058

    Article  CAS  Google Scholar 

  • Housam, H., Wari, K., & Zaid, A. A. (2014). Estimating the antioxidant activity for natural antioxidants (tocochromanol) and synthetic one by DPPH. International Journal of Pharmacy and Pharmaceutical Sciences, 6, 441–444.

    Google Scholar 

  • Hughes, N. M., & Smith, W. K. (2007). Attenuation of incident light in Galaxurceolata (Diapensiaceae): concerted influence of adaxial and abaxial anthocyanic layers on photoprotection. American Journal of Botany, 94(5), 784–790.

    Article  CAS  Google Scholar 

  • Husen, A., Iqbal, M., Sohrab, S. S., & Ansari, M. K. A. (2018). Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br.). Agricultural and Food Science. https://doi.org/10.1186/s40066-018-0194-0

  • Indira, K. P. A., Sujata, M., Khopde, S., Santosh, K., & Hari, M. (2002). Free radical studies of ellagic acid, a natural phenolic antioxidant. Journal of Agricultural and Food Chemistry, 50, 2200–2206.

    Article  Google Scholar 

  • Ismail, A., Takeda, S., & Nick, P. (2014). Life and death under salt stress: same players, different timing. Journal of Experimental Botany, 65(12), 2963–2979.

    Article  CAS  Google Scholar 

  • Jan, S., Hamayun, M., Wali, S., Bibi, A., Gul, H., & Rahim, F. (2016). Foliar application of ascorbic acid mitigates sodium chloride induced stress in eggplant (Solanummelongena L.). Pakistan Journal of Botany, 48(3), 869–876.

    CAS  Google Scholar 

  • Janda, T., Szalai, G., Tari, I., & Páldi, E. (1999). Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zeamays L.) plants. Planta, 208(2), 175–180.

    Article  CAS  Google Scholar 

  • Javid, M., Ali, G. S., Foad, M., Seyed, A. M. M. S., & Iraj, A. (2011). The role of phytohormones in alleviating salt stress in crop plants. Australian Journal of Crop Science, 5(6), 726–734.

    CAS  Google Scholar 

  • Jayakannan, M. J., Bose, O., Babourina, Z., & Shabala, S. (2015). Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regulation, 76, 25–40.

    Article  CAS  Google Scholar 

  • Jin, S. H., Li, X. Q., Wang, G. G., & Zhu, X. T. (2015). Brassinosteroids alleviate high-temperature injury in Ficusconcinna seedlings via maintaining higher antioxidant defence and glyoxalase systems. AoB ANTS, 7. https://doi.org/10.1093/aobpla/plv009

  • Jin, X., Liu, T., Xu, J., Gao, Z., & Hu, X. (2019). Exogenous GABA enhances muskmelon tolerance to salinity-alkalinity stress by regulating redox balance and chlorophyll biosynthesis. BMC Plant Biology, 19, 48. https://doi.org/10.1186/s12870-019-1660

    Article  Google Scholar 

  • Kagale, S., Divi, U. K., Krochko, J. E., Keller, W. A., & Krishna, P. (2007). Brassinosteroid confers tolerance in Arabidopsisthaliana and Brassicanapus to a range of abiotic stresses. Planta, 225(2), 353–364.

    Article  CAS  Google Scholar 

  • Kamal-Eldin, A., & Appelqvist, L. A. (1996). The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids, 31(7), 671–701.

    Article  CAS  Google Scholar 

  • Kandil, A. A., Sharief, A. E., & Alkhamsa, A. K. D. (2017). Influence of antioxidants and salinity stress on seed viability characters of some wheat cultivars. Res. Plant Biol, 7, 13–20.

    Google Scholar 

  • Karlidag, H., Yildirim, E., & Turan, M. (2011). Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragariaananassa). Scientia Horticulturae, 130(1), 133–140.

    Article  CAS  Google Scholar 

  • Kartal, G., Temel, A., Arican, E., & Gozukirmizi, N. (2009). Effects of brassinosteroids on barley root growth, antioxidant system and cell division. Plant Growth Regulation, 58(3), 261–267.

    Article  CAS  Google Scholar 

  • Kasim, W. A. E. A., Saad-Allah, K. M., & Hamouda, M. (2016). Seed priming with extracts of two seaweeds alleviates the physiological and molecular impacts of salinity stress on Radish (Raphanussativus). International Journal of Agriculture and Biology, 18(3), 653–660.

    Article  Google Scholar 

  • Kasote, D. M., Katyare, S. S., Hegde, M. V., & Bae, H. (2015). Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences, 11(8), 982–991.

    Article  CAS  Google Scholar 

  • Kaur, G., Nelson, K. A., & Motavalli, P. P. (2018a). Early-season soil waterlogging and N fertilizer sources impacts on corn N uptake and apparent N recovery efficiency. Agranomy, 102. https://doi.org/10.3390/agronomy8070102

  • Kaur, H., Sirhindi, G., Bhardwaj, R., Alyemeni, M. N., Kadambot, H. M. S., & Ahmad, P. (2018b). 28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt- and temperature-induced oxidative stress in Brassica juncea. Scientific Reports, 8, 8735.

    Article  Google Scholar 

  • Kawasaki, S., Borchert, C., Deyholos, M., Wang, H., Brazille, S., Kawai, K., Galbraith, D., & Bohnert, H. J. (2001). Gene expression profiles during the initial phase of salt stress in rice. The Plant Cell, 13, 889–905.

    Article  CAS  Google Scholar 

  • Khan, A., Ahmed, M. S. A., Athar, H. R., & Ashraf, M. (2006). Interactive effect of foliarly applied ascorbic acid and salt stress on wheat (Triticum aestivum L.) at the seedling stage. Pakistan Journal of Botany, 38, 1407–1414.

    Google Scholar 

  • Khan, A., Lang, I., Amjid, M., Shah, A., Ahmad, I., & Nawaz, H. (2013a). Inducing salt tolerance on growth and yield of sunflower by applying different levels of ascorbic acid. Journal of Plant Nutrition, 36(8), 1180–1190.

    Article  CAS  Google Scholar 

  • Khan, M. I. R., Iqbal, N., Masood, A., Per, T. S., & Khan, N. A. (2013b). Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signaling & Behavior, 263–274.

    Google Scholar 

  • Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A., & Khan, N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00462

  • Khan, A., Nazar, S., Lang, I., Nawaz, H., & Hussain, M. A. H. (2017). Effect of ellagic acid on growth and physiologyofcanola (Brassica napus L.) under saline conditions. Journal of Plant Interactions. https://doi.org/10.1080/17429145.2017.1400122

  • Khoshbakht, D., & Asgharei, M. R. (2015). Influence of foliar-applied salicylic acid on growth, gas-exchange characteristics, and chlorophyll fluorescence in citrus under saline conditions. Photosynthetica, 53(3), 410–418.

    Article  CAS  Google Scholar 

  • Klause, A. W., Gerd, B., & Michael, T. (2016). The concentration of ascorbic acid and glutathione in13 provenances of Acaciamelanoxylon. Tree Physiology, 36(4), 524–532.

    Article  Google Scholar 

  • Kong, L., Ashraf, U., Cheng, S., Rao, G., Mo, Z., Tian, H., Pan, S., & Tang, X. (2017). Short-term water management at early filling stage improves early-season rice performance under high temperature stress in South China. European Journal of Agronomy, 90, 117–126.

    Article  Google Scholar 

  • Kovalchuk, I. (2010). Multiple roles of radicals in plants. In S. D. Gupta (Ed.), Reactive oxygen species and antioxidants in higher plants (1st ed., pp. 31–44). CRC Press.

    Chapter  Google Scholar 

  • Krishna, P. (2003). Brassinosteroid-mediated stress responses. Journal of Plant Growth Regulation, 22(4), 289–297.

    Article  CAS  Google Scholar 

  • Ksas, B., Becuwe, N., Chevalier, A., & Havaux, M. (2015). Plant tolerance to excess light energy and photooxidative damage relies on plastoquinone biosynthesis. Scientific Reports, 5. https://doi.org/10.1038/srep10919

  • Kumar, K., Kumar, M., Kim, S. R., Ryu, H., & Cho, Y. G. (2013). Insights into genomics of salt stress response in rice. Rice, 6, 27. https://doi.org/10.1186/1939-8433-6-27

    Article  Google Scholar 

  • Kumar, A., Rahal, A., Zoheb, S. M., Prakash, A., & Mandil, R. (2014). Antioxidant role of ascorbic acid on oxidative stress induced by sub-acute exposure of lead and cypermethrin in erythrocytes of Wistar rats. Toxicological and Environmental Chemistry, 96, 1248–1259.

    CAS  Google Scholar 

  • Lamaoui, M., Jemo, M., Datla, R., & Faouzi, B. (2018). Heat and drought stresses in crops and approaches for their mitigation. Frontiers in Chemistry, 6. https://doi.org/10.3389/fchem.2018.00026

  • Leão, G. A., Oliveira, J. O., Felipe, R. A., Farnese, F. S., & Soares, G. G. (2014). Anthocyanins, thiols, and antioxidant scavenging enzymes are involved in Lemnagibba tolerance to arsenic. Journal of Plant Interactions, 9, 143–151.

    Article  Google Scholar 

  • Lev-Yadun, S., & Gould, K. S. (2009). Role of anthocyanins in plant defence. In S. Secondary Lev-Yadun & K. S. Gould (Eds.), Anthocyanins (pp. 22–28). Springer.

    Google Scholar 

  • Li, J., & Chory, J. (1999). Brassinosteroid actions in plants. Journal of Experimental Botany, 50(332), 275–282.

    CAS  Google Scholar 

  • Li, T., Hu, Y., Dux, Tang, H., Shen, C., & Wu, J. (2014a). Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii seedlings by activating photosynthesis and enhancing antioxidant systems. PLoS One, 9(10), e109492.

    Article  Google Scholar 

  • Li, X., Cai, J., Liu, F., Dai, T., Cao, W., & Jiang, D. (2014b). Cold priming drives the sub-cellular antioxidant systems to protect photosynthetic electron transport against subsequent low temperature stress in winter wheat. Plant Physiology and Biochemistry, 82, 34–43.

    Article  CAS  Google Scholar 

  • Li, W., Liu, J., Ashraf, U., Li, G., Li, Y., Lu, W., Gao, L., Han, F., & Hu, J. (2016). Exogenous γ-aminobutyric acid (GABA) application improved early growth, net photosynthesis, and associated physio-biochemical events in maize. Frontiers in Plant Science, 7, 919.

    Google Scholar 

  • Lima, G. P. P., Vianello, F., Corrêa, C. R., Campos, R. A. S., Milena, G., & Borguini, M. G. (2014). Polyphenols in fruits and vegetables and its effect on human health. Food and Nutrition Sciences, 5. https://doi.org/10.4236/fns.2014.511117

  • Liochev, S. I., & Fridovich, I. (2003). Reversal of the superoxide dismutase reaction revisited. Free Radical Biology & Medicine, 34, 908–910.

    Article  CAS  Google Scholar 

  • Liochev, S. I., & Fridovich, I. (2010). Mechanism of the peroxidase activity of Cu, Zn superoxide dismutase.Free Rad. Biologie et Médecine, 48, 1565–1569.

    CAS  Google Scholar 

  • Longo, L., & Vasapollo, G. (2006). Extraction and identification of anthocyanins from Smilaxaspera L. berries. Food Chemistry, 94, 226–231.

    Article  CAS  Google Scholar 

  • Mahesh, K., Balaraju, P., Ramakrishna, B., & Rao, S. S. R. (2013). Effect of brassinosteroids on germination and seedling growth of radish (Raphanussativus L.) under PEG-6000 induced water stress. American Journal of Plant Sciences, 4(12), 2305–2313.

    Article  Google Scholar 

  • Malar, S., Vikram, S. S., Favas, P. J. C., & Perumal, V. (2014). Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Botanical Studies, 55, 54.

    Article  Google Scholar 

  • Malik, S., & Ashraf, M. (2012). Exogenous application of ascorbic acid stimulates growth and photosynthesis of wheat (Triticum aestivum L.) under drought. Soil and Environment, 31(1), 72–77.

    CAS  Google Scholar 

  • Malini, P., Kanchana, G., & Rajadurai, M. (2011). Antidiabetic efficacy of ellagic acid in streptozotocin-induced Diabetes mellitus in Albino Wistar Rats. Asian Journal of Pharmaceutical and Clinical Research, 4, 124–128.

    Google Scholar 

  • Mani, D., & Kumar, C. (2014). Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: An overview with special reference to phytoremediation. International journal of Environmental Science and Technology, 11, 843–872.

    Article  CAS  Google Scholar 

  • Massoud, M. B., Karmous, I., El Ferjani, E., & Chaoui, A. (2018). Alleviation of copper toxicity in germinating pea seeds by IAA, GA3, Ca and citric acid. Journal of Plant Interactions, 13, 21–29.

    Article  Google Scholar 

  • Mathur, J., Molnar, G., Fujioka, S., Takatsuto, S., Sakurai, A., Yokota, T., et al. (1998). Transcription of the Arabidopsis CPD gene, encoding a steroidogenic cytochrome P450, is negatively controlled by brassinosteroids. The Plant Journal, 14(5), 593–602.

    Article  CAS  Google Scholar 

  • Mazza, G. (2007). Anthocyanins and heart health. Annali dell'Istituto Superiore di Sanità, 243(4), 369–374.

    Google Scholar 

  • Mehan, S., Kaur, R., Parveen, S., Khanna, D., & Kalra, S. (2015). Polyphenol ellagic acid-targeting to brain: a hidden treasure. International Journal Neurology Research, 1, 141–152.

    Article  Google Scholar 

  • Mène-Saffrané, L., & DellaPenna, D. (2010). Biosynthesis, regulation and functions of tocochromanols in plants. Plant Physiology and Biochemistry, 48(5), 301–309.

    Article  Google Scholar 

  • Mervat, S. H., & Sadak, M. S. (2019). Physiological role of trehalose on enhancing salinity tolerance of wheat plant. Sadak Bulletin of the National Research Centre, 43, 53. https://doi.org/10.1186/s42269-019-0098-6

    Article  Google Scholar 

  • Metwally, A. (2003). Salicylic acid alleviates the aadmium toxicity in barley seedlings. Plant Physiology, 132(1), 272–281.

    Article  CAS  Google Scholar 

  • Mezzomo, N., & Ferreira, S. R. S. (2016). Carotenoids Functionality, Sources, and Processing by Supercritical Technology. Journal of Chemistry, 16. https://doi.org/10.1155/2016/3164312

  • Miller, A. F., & Sorkin, D. L. (1997). Superoxide dismutases: A molecular perspective. Comments on Molecular and Cellular Biology, 9(1), 1–48.

    CAS  Google Scholar 

  • Mirdehghan, S. H., & Ghotbi, F. (2014). Effects of salicylic acid, jasmonic acid, and calcium chloride on reducing chilling injury of pomegranate (Punica granatum L.) fruit. Journal of Agricultural Science and Technology, 16, 163–173.

    CAS  Google Scholar 

  • Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V. B., Vandepoele, K., et al. (2011). ROS signaling: The new wave? Trends in Plant Science, 16, 300–309.

    Article  CAS  Google Scholar 

  • Miura, K., & Tada, Y. (2014). Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science, 5, 4.

    Article  Google Scholar 

  • Morsi, M. M. M., Abdelmigid, H. M., & Aljoudi, N. G. S. (2018). Exogenous salicylic acid ameliorates the adverse effects of salt stress on antioxidant system in Rosmarinus officinalis L. Egyptian Journal of Botany, 58, 249–263.

    Google Scholar 

  • Mugnai, S., Ferrante, A., Petrognani, L., Serra, G., & Vernieri, P. (2009). Stress-induced variation in leaf gas exchange and chlorophyll a fluorescence in Callistemon plants. Research Journal of Biological Sciences, 4, 913–921.

    Google Scholar 

  • Munné-Bosch, S., Queval, G., & Foyer, C. H. (2013). The impact of global change factors on redox signaling underpinning stress tolerance. Plant Physiology, 161, 5–19.

    Article  Google Scholar 

  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.

    Article  CAS  Google Scholar 

  • Nagarani, G., Abirami, A., & Siddhuraju, P. (2014). A comparative study on antioxidant potentials, inhibitory activities against key enzymes related to metabolic syndrome, and anti-inflammatory activity of leaf extract from different Momordica species. Food Science and Human Wellness, 3(1), 36–46.

    Article  Google Scholar 

  • Nakabayashi, R., Urano, K. Y., Kaoru, Suzuki, M., Yamada, Y., Nishizawa, T., Matsuda, F., et al. (2014). Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. The Plant Journal, 3, 367–379.

    Article  Google Scholar 

  • Nematalla, M., Badrani, E., & Mohammed, F. (2019). Exogenous trehalose alleviates the adverse effects of salinity stress in wheat. Turkish Journal of Botany, 43, 48–57. https://doi.org/10.3906/bot-1803-36

    Article  CAS  Google Scholar 

  • Nguyen, H. C., Lin, K. H., Ho, S. L., Chiang, C. M., & Yang, C. M. (2018). Enhancing the abiotic stress tolerance of plants: from chemical treatment to biotechnological approaches. Physiologia Plantarum, 164(4), 452–466. https://doi.org/10.1111/ppl.12812

    Article  CAS  Google Scholar 

  • Nikkhah, E., Khayami, M., & Heidari, R. (2008). In vitro screening for antioxidant activity and cancer suppressive effect on blackberry (Morus nigra). Iranian Journal of Cancer Prevention, 1, 167–172.

    Google Scholar 

  • Nimse, S. B., & Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 5(35), 27986–28006.

    Article  CAS  Google Scholar 

  • Niu, J.-H., Anjum, S. A., Wang, R., Li, J.-H., Liu, M.-R., Song, J.-X., et al. (2016). Exogenous application of brassinolide can alter morphological and physiological traits of Leymuschinensis (Trin.) Tzvelev under room and high temperatures. Chilean Journal of Agricultural Research, 76(1), 27–33.

    Article  Google Scholar 

  • Noreen, S., & Ashraf, M. (2008). Alleviation of adverse effects of salt stress on sunflower (Helianthus annuus L.) by exogenous application of salicylic acid: Growth and photosynthesis. Pakistan Journal of Botany, 40(4), 1657–1663.

    CAS  Google Scholar 

  • Noreen, S., Ashraf, M., Hussain, M., & Jamil, A. (2009). Exogenous application of salicylic acid enhances antioxidative capacity in salt stressed sunflower (Helianthus annuus L.) plants. Pakistan Journal of Botany, 41, 473–479.

    CAS  Google Scholar 

  • Ogweno, J. O., Song, X. S., Shi, K., Hu, W. H., Mao, W. H., Zhou, Y. H., et al. (2008). Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersiconesculentum. Journal of Plant Growth Regulation, 27(1), 49–57.

    Article  CAS  Google Scholar 

  • Oosten, M. J. V., Sharkhuu, A., Batelli, G., Bressan, R. A., & Maggio, A. (2013). The Arabidopsisthaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress. Plant Molecular Biology, 83, 405–415.

    Article  Google Scholar 

  • Orabi, S. A., & Abdelhamid, M. T. (2016). Protective role of α-tocopherol on two Viciafaba cultivars against seawater-induced lipid peroxidation by enhancing capacity of anti-oxidative system. Journal of the Saudi Society of Agricultural Sciences, 15(2), 145–154.

    Article  Google Scholar 

  • Palma, F., López-Gómez, M., Tejera, N. A., & Lluch, C. (2013). Salicylic acid improves the salinity tolerance of Medicagosativa in symbiosis with Sinorhizobiummeliloti by preventing nitrogen fixation inhibition. Plant Science, 208, 75–82.

    Article  CAS  Google Scholar 

  • Pan, Y., Wu, L. J., & Yu, Z. L. (2006). Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhizauralensis Fisch). Plant Growth Regulation, 49(2–3), 157–165.

    Article  CAS  Google Scholar 

  • Parthasarathi, S., & Park, Y. K. (2015). Determination of total phenolics, flavonoid contents and antioxidant activity of different mBHT fractions: A polyherbal medicine. Pakistan Journal of Pharmaceutical Sciences, 28, 2161–2166.

    CAS  Google Scholar 

  • Parvaiz, A., & Satyawati, S. (2008). Salt stress and phytochemical responses of plants – a review. Plant, Soil and Environment, 54, 89–99.

    Article  CAS  Google Scholar 

  • Pinheiro, C., & Chaves, M. M. (2011). Photosynthesis and drought: Can we make metabolic connections from available data? Journal of Experimental Botany, 62, 869–882.

    Article  CAS  Google Scholar 

  • Ploenlap, P., & Pattanagul, W. (2015). Effects of exogenous abscisic acid on foliar anthocyanin accumulation and drought tolerance in purple rice. Biologia, 70, 915–921.

    Article  CAS  Google Scholar 

  • Poljsak, B., Šuput, D., & Milisav, I. (2013). Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants. Oxidative Medicine and Cellular Longevity, 2013. https://doi.org/10.1155/2013/956792

  • Prior, R. L., & Wu, X. (2006). Anthocyanins: Structural characteristics that result in unique metabolic patterns and biological activities. Free Radical Research, 40, 1014–1028.

    Article  CAS  Google Scholar 

  • Priyadarsini, K. I., Sujata, M., Khopde, S., Santosh, K., & Mohan, H. (2002). Free radical studies of ellagic acid, a natural phenolic antioxidant. Journal of Agricultural and Food Chemistry, 50, 2200–2206.

    Article  CAS  Google Scholar 

  • Qayyum, B., Shahbaz, M., & Akram, N. A. (2007). Interactive effect of foliar applicationof 24-epibrassinolide and root zone salinity on morpho-physiological attributes of wheat (Triticumaestivum L.). International Journal of Agriculture and Biology, 9, 584–589.

    CAS  Google Scholar 

  • Raafat, N., & Radwan, T. E. E. (2011). Improving wheat grain yield and its quality under salinity conditions at a newly reclaimed soil by using different organic sources as soil or by foliar applications. Journal of Applied Sciences Research, 7, 42–55.

    Google Scholar 

  • Rady, M. M. (2011). Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Scientia Horticulturae, 129, 232–237.

    Article  CAS  Google Scholar 

  • Rady, M. M., Sadak, M., El-Lethy, S. R., Abd Elhamid, E. M., & Abdelhamid, M. T. (2015). Exogenous ɑ-tocopherol has a beneficial effect on Glycine max (L.) plants irrigated with diluted sea water. The Journal of Horticultural Science and Biotechnology, 90, 195–202.

    Article  CAS  Google Scholar 

  • Raederstorff, D. W., Adrian, Philip, C. C., Weber, P., & Eggersdorfer, M. (2015). Vitamin E function and requirements in relation to PUFA. British Journal of Nutrition, 114, 1113–1122.

    Article  CAS  Google Scholar 

  • Ramraj, V. M., Vyas, B. N., Godrej, N. B., Mistry, K. B., Swami, B. N., & Singh, N. (1997). Effects of 28-homobrassinolide on yields of wheat, rice, groundnut, mustard, potato and cotton. The Journal of Agricultural Science, 128(4), 405–413.

    Article  CAS  Google Scholar 

  • Rao, A. V., & Rao, L. G. (2007). Carotenoids and human health. Pharmacological Research, 55, 207–216.

    Article  CAS  Google Scholar 

  • Rao, S. S. R., Vardhini, B. V., Sujatha, E., & Anuradha, S. (2002). Brassinosteroids – New class of phytohormones. Current Science, 82, 1239–1245.

    Google Scholar 

  • Raposo, M., de Morais, A., & de Morais, R. (2015). Carotenoids from marine microalgae: A valuable natural source for the prevention of chronic diseases. Marine Drugs, 13(8), 5128–5155.

    Article  CAS  Google Scholar 

  • Rihan, H., Kareem, F., & Fuller, M. (2017). The effect of exogenous applications of salicylic acid and molybdenum on the tolerance of drought in wheat. Journal of Agricultural Science and Technology, 9(4), 555768. https://doi.org/10.19080/ARTOAJ.2017.09.555768

    Article  Google Scholar 

  • Rivas-San, V. M., & Plasencia, J. (2011). Salicylic acid beyond defence: Its role in plant growth and development. Journal of Experimental Botany, 62(10), 3321–3338.

    Article  Google Scholar 

  • Sadak, M. S., & Dawood, M. G. (2014). Role of ascorbic acid and α tocopherol in alleviating salinity stress on flax plant (Linum usitatissimum L.). Stress: The International Journal on Biology of Stress, 10, 93–111.

    Google Scholar 

  • Sadeghi, F., & Shekafandeh, A. (2014). Effect of 24-epibrassinolide on salinity-induced changes in loquat (Eriobotrya japonica Lindl). Journal of Applied Botany and Food Quality, 87, 182–189. DOI: 10.5073/JABFQ.2014.087.026

    Google Scholar 

  • Saeidi-Sar, S., Abbaspour, H., Afshari, H., & Yaghoobi, S. R. (2013). Effects of ascorbic acid and gibberellin A3 on alleviation of salt stress in common bean (Phaseolusvulgaris L.) seedlings. Acta Physiologiae Plantarum, 35, 667–677.

    Article  CAS  Google Scholar 

  • Sahli, A. A., Mohamed, A. K., Alaraidi, I., Al-Ghamdi, A., Al-Watban, A., El-Zaidy, M., & Alzahrani, S. M. (2019). Salicylic acid alleviates salinity stress through the modulation of biochemical attributes and some key antioxidants in wheat seedlings. Pakistan Journal of Botany, 51(5), 1551–1559. https://doi.org/10.30848/PJB2019-5(12)

    Article  Google Scholar 

  • Saisanthosh, K., Sumalatha, G. M., Shuba, A. C., Komala, N. T., Biradar, P. N., & K. (2018). Role of enzymatic antioxidants defense system in seeds. International Journal of Current Microbiology and Applied Sciences, 7, 584–594.

    Google Scholar 

  • Salin, M. L., & Bridges, S. M. (1980). In J. V. Bannister & H. A. O. Hill (Eds.), Chemical and biochemical aspects of superoxide and superoxide dismutase (pp. 176–284). Elsevier.

    Google Scholar 

  • Sanghera, G. S., Wani, S. H., Hussain, W., & Singh, N. B. (2011). Engineering cold stress tolerance in crop plants. Current Genomics, 12(1), 30–43.

    Article  CAS  Google Scholar 

  • Sasse, J. M. (1997). Recent progress in brassinosteroid research. Physiologia Plantarum, 100(3), 696–701.

    Article  CAS  Google Scholar 

  • Saul, N., Pietsch, K., Stürzenbaum, S. R., Menzel, R., & Steinberg, C. E. (2011). Diversity of polyphenol action in Caenorhabditis elegans: Between toxicity and longevity. Journal of Natural Products, 74, 1713–1720.

    Article  CAS  Google Scholar 

  • Saxena, S. C., Joshi, P., Grimm, B., & Arora, S. (2011). Alleviation of ultraviolet-C induced oxidative through overexpression of cytosolic ascorbate peroxidase. Biologia, 66, 1052–1059.

    Article  CAS  Google Scholar 

  • Seki, M., Umezawa, T., Urano, K., & Shinozaki, K. (2007). Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology, 10, 296–302.

    Article  CAS  Google Scholar 

  • Semida, W. M., Taha, R. S., Abdelhamid, M. T., & Rady, M. M. (2014). Foliar-applied α-tocopherol enhances salt-tolerance in Viciafaba L. plants grown under saline conditions. South African Journal of Botany, 95, 24–31.

    Article  CAS  Google Scholar 

  • Sepúlveda, L., Ascacio, A., Rodriguez-Herrera, R., Aguilera-Carbó, A., & Aguilar, C. N. (2011). Ellagic acid: biological properties and biotechnological development for production processes. African Journal of Biotechnology, 10, 4518–4523.

    Google Scholar 

  • Shahbaz, M., & Ashraf, M. (2007). Influence of exogenous application of brassinosteroids on growth and mineral nutrients of wheat (Triticum aestivum L.) under saline conditions. Pakistan Journal of Botany, 39, 513–522.

    Google Scholar 

  • Shahbaz, M., Ashraf, M., & Athar, H. (2008). Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticumaestivum L.)? Plant Growth Regulation, 55(1), 51–64.

    Article  CAS  Google Scholar 

  • Shahid, M. A., Pervez, M. A., Balal, R. M., Mattson, N. S., Rashid, A., Ahmad, R., et al. (2011). Brassinosteroid (24-epibrassinolide) enhances growth and alleviates the deleterious effects induced by salt stress in pea (Pisum sativum L.). Australian Journal of Crop Science, 5, 500–510.

    CAS  Google Scholar 

  • Shalata, A., & Neumann, P. M. (2001). Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. Journal of Experimental Botany, 52(364), 2207–2211.

    Article  CAS  Google Scholar 

  • Shalata, A., Mittova, V., Volokita, M., Guy, M., & Tal, M. (2001). Response of cultivated tomato and its wild salt-tolerant relative Lycopersicon pennelii to salt-dependent oxidative stress. The root antioxidative system. Physiologia Plantarum, 112, 487–494.

    Article  CAS  Google Scholar 

  • Sharma, I., Bhardwaj, R., & Pati, P. K. (2015). Exogenous application of 28-Homobrassinolide modulates the dynamics of salt and pesticides induced stress responses in an elite rice variety pusa basmati-1. Journal of Plant Growth Regulation, 34(3), 509–518.

    Article  CAS  Google Scholar 

  • Sharma, I., Kaur, N., & Pati, P. K. (2018). Brassinosteroids: A promising option in deciphering remedial strategies for abiotic stress tolerance in rice. Frontiers in Plant Science, 8, 2151.

    Article  Google Scholar 

  • Shin, H., Hyeyoon, E. O., & Lim, Y. (2016). Similarities and differences between alpha-tocopherol and gamma-tocopherol in amelioration of inflammation, oxidative stress and pre-fibrosis in hyperglycemia induced acute kidney inflammation. Nutrition Research and Practice, 10, 33–41.

    Article  CAS  Google Scholar 

  • Slafer, G. A., & Rawson, H. M. (1995). Base and optimum temperatures vary with genotype and stage of development in wheat. Plant, Cell & Environment, 18, 671–679.

    Article  Google Scholar 

  • Slathia, S., Sharma, A., & Choudhary, S. P. (2012). Influence of exogenously applied epibrassinolide and putrescine on protein content, antioxidant enzymes and lipid peroxidation in Lycopersiconesculentum under salinity stress. American Journal of Plant Sciences, 3(6), 714–720.

    Article  CAS  Google Scholar 

  • Smirnoff, N. (2005). Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. In N. Smirnoff (Ed.), Antioxidants and reactive oxygen species in plants (pp. 53–86). Blackwell Publishing.

    Chapter  Google Scholar 

  • Sofo, A., Scopa, A., Nuzzaci, M., & Vitti, A. (2015). Ascorbate Peroxidase and Catalase Activities and Their Genetic Regulation in Plants Subjected to Drought and Salinity Stresses. International Journal of Molecular Sciences, 2015(16), 13561–13578.

    Article  Google Scholar 

  • Sommer, A., & Vyas, K. S. (2012). A global clinical view on vitamin A and carotenoids. The American Journal of Clinical Nutrition, 96, 1204S–1206S.

    Article  CAS  Google Scholar 

  • Srinieng, K., Tanatorn, S., & Aphichart, K. (2015). Effect of salinity stress on antioxidative enzyme activities in tomato cultured in vitro. Pakistan Journal of Botany, 47(1), 1–10.

    CAS  Google Scholar 

  • Stapleton, A. E., & Walbot, V. (1994). Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage. Plant Physiology, 105, 881–889.

    Article  CAS  Google Scholar 

  • Steyn, W. J., Wand, S. J. E., Holcroft, D. M., & Jacobs, G. (2002). Anthocyanins in vegetative tissues: A proposed unified function in photoprotection. The New Phytologist, 155(3), 349–361.

    Article  CAS  Google Scholar 

  • Stone, C. L., Chisholm, L., & Coops, N. (2001). Spectral reflectance characteristics of eucalypt foliage damaged by insects. Australian Journal of Botany, 49, 687–698.

    Article  Google Scholar 

  • Taârit, M. B., Msaada, K., Hosni, K., & Marzouk, B. (2012a). Physiological changes, phenolic content and antioxidant activity of Salvia officinalis L. grown under saline conditions. Journal of the Science of Food and Agriculture, 92, 1614–1619.

    Article  Google Scholar 

  • Taârit, M., Msaada, K., Hosni, K., & Marzouk, B. (2012b). Physiological changes, phenolic content and antioxidant activityofSalviaofficinalisL.grownundersalineconditions. Journal of the Science of Food and Agriculture, 92, 1614–1619.

    Article  Google Scholar 

  • Tabatabaei, S. A., & Naghibalghora, S. M. (2013). The effect of ascorbic acid on germination characteristics and proline of sesame seeds under drought stress. International Journal of Agriculture and Crop Sciences, 6, 208–212.

    CAS  Google Scholar 

  • Taffouo, V. D., Nouck, A. H., Dibong, S. D., & Amougou, A. (2010). Effects of salinity stress on seedling growth, numeral nutrients, and total chlorophyll of some tomato (Lycopersicum esculentum L.) cultivars. African Journal of Biotechnology, 9(33), 5366–5372.

    CAS  Google Scholar 

  • Talaat, N. B., & Shawky, B. T. (2013). 24-Epibrassinolide alleviates salt-induced inhibition of productivity by increasing nutrients and compatible solutes accumulation and enhancing antioxidant system in wheat (Triticumaestivum L.). Acta Physiologiae Plantarum, 35(3), 729–740.

    Article  CAS  Google Scholar 

  • Tamang, B. G., & Fukao, T. (2015). Plant adaptation to multiple stresses during submergence and following desubmergence. International Journal of Molecular Sciences, 16, 30164–30180.

    Article  CAS  Google Scholar 

  • Tereshchenko, O., Gordeeva, E., Arbuzova, V., Börner, A., & Khlestkina, E. (2012). The D genome carries a gene determining purple grain colour in wheat. Cereal Research Communications, 40(3), 334–341.

    Article  CAS  Google Scholar 

  • Tuteja, A. N., Singh, M. B., Misra, M. K., Bhalla, P. L., & Tuteja, R. (2001). Molecular mechanisms of DNA damage and repair: progress in plants. Critical Reviews in Biochemistry and Molecular Biology, 4, 337–397.

    Article  Google Scholar 

  • Vadez, V., Berger, J. D., Warkentin, T., Asseng, S., Ratnakumar, P., & Rao, K. P. C. (2012). Adaptation of grain legumes to climate change: a review. Agronomy for Sustainable Development, 32, 31–44.

    Article  Google Scholar 

  • Verma, S., & Dubey, R. S. (2003). Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science, 164(4), 645–655.

    Article  CAS  Google Scholar 

  • Viehweger, K. (2014). How plants cope with heavy metals. Botany Studies International Journal, 55, 1–12. https://doi.org/10.1186/1999-3110-55-35

    Article  CAS  Google Scholar 

  • Vinocur, B., & Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology, 16, 123–132.

    Article  CAS  Google Scholar 

  • Voss, I., Suni, B., Scheibe, R., & Raghavendra, S. (2013). Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biology, 15, 713–722.

    Article  CAS  Google Scholar 

  • Walia, H., Wilson, C., Zeng, L., Ismail, A. M., Condamine, P., & Close, T. J. (2007). Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Molecular Biology, 63, 609–623.

    Article  CAS  Google Scholar 

  • Wang, H., Cao, G., & Prior, R. L. (1997). Oxygen radical absorbing capacity of anthocyanins. Journal of Agricultural and Food Chemistry, 45, 304–309.

    Article  CAS  Google Scholar 

  • Wang, M., Lee, J., Choi, B., Park, Y., Sim, H. J., Kim, H., & Hwang, I. (2018). Physiological and molecular processes associated with long duration of ABA treatment. Frontiers in Plant Science, 21. https://doi.org/10.3389/fpls.2018.00176

  • Waseem, M., Athar, H., & Ashraf, M. (2006). Effect of salicylic acid applied through rooting medium on drought tolerance of wheat. Pakistan Journal of Botany, 38(4), 1127–1136.

    Google Scholar 

  • WMO. (2014). The State of greenhouse gases in the atmosphere based on global observations through 2013. Greenhouse Gas Bulletin No. 10, World Meteorological Organization.

    Google Scholar 

  • Wollenweber, B., Porter, J. R., & Schellberg, J. (2003). Lack of interaction between extreme high- temperature events at vegetative and reproductive growth stages in wheat. Journal of Agronomy and Crop Science, 189, 142–150.

    Article  Google Scholar 

  • Wu, W., Zhang, Q., Ervin, E. H., Yang, Z., & Zhang, X. (2017). Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-Epibrassinolide. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01017

  • Xu, Y., Xu, Q., & Huang, B. (2015). Ascorbic acid mitigation of water stress-inhibition of root growth in association with oxidative defense in tall fescue (Festucaarundinacea Schreb). Frontiers in Plant Science, 6, 807.

    Article  Google Scholar 

  • Xue-Xia, W. (2012). Effects of 24-epibrassinolide on photosynthesis of eggplant (Solanummelongena L.) seedlings under salt stress. African. Journal of Biotechnology, 11(35), 8665–8671.

    Google Scholar 

  • Yildirim, E., Turan, M., & Guvenc, I. (2008). Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. Journal of Plant Nutrition, 31(3), 593–612.

    Article  CAS  Google Scholar 

  • Younis, M. E., Hasaneen, M. N. A., & Kazamel, A. M. S. (2010). Exogenously applied ascorbic acid ameliorates detrimental effects of NaCl and mannitol stress in Viciafaba seedlings. Protoplasma, 239, 39–48.

    Article  CAS  Google Scholar 

  • Yusuf, M., Fariduddin, Q., & Ahmad, A. (2011). 28-Homobrassinolide mitigates boron induced toxicity through enhanced antioxidant system in Vignaradiata plants. Chemosphere, 85(10), 1574–1584.

    Article  CAS  Google Scholar 

  • Zhang, D., Yu, B., Bai, J., Qian, M., Shu, Q., Su, J., et al. (2012). Effects of high temperatures on UV-B/visible irradiation induced postharvest anthocyanin accumulation in ‘Yunhongli No. 1’ (Pyruspyrifolia Nakai) pears. Scientia Horticulturae, 134, 53–59.

    Article  CAS  Google Scholar 

  • Zhou, Y., Xia, X., Yu, G., Wang, J., Wu, J., Wang, M., et al. (2015). Brassinosteroids play a critical role in the regulation of pesticide metabolism in crop plants. Scientific Reports, 5(1). https://doi.org/10.1038/srep09018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameer Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, A., Hussain, M.A., Nawaz, H., Muhammad, G., Lang, I., Ashraf, U. (2023). Physiological Interventions of Antioxidants in Crop Plants Under Multiple Abiotic Stresses. In: Prakash, C.S., Fiaz, S., Nadeem, M.A., Baloch, F.S., Qayyum, A. (eds) Sustainable Agriculture in the Era of the OMICs Revolution. Springer, Cham. https://doi.org/10.1007/978-3-031-15568-0_20

Download citation

Publish with us

Policies and ethics