Skip to main content

Advertisement

Log in

Lead toxicity in rice: effects, mechanisms, and mitigation strategies—a mini review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Lead (Pb) is a major environmental pollutant that affects plant morpho-physiological and biochemical attributes. Its higher levels in the environment are not only toxic to human beings but also harmful for plants and soil microbes. We have reviewed the uptake, translocation, and accumulation mechanisms of Pb and its toxic effects on germination, growth, yield, nutrient relation, photosynthesis, respiration, oxidative damage, and antioxidant defense system of rice. Lead toxicity hampers rice germination, root/shoot length, growth, and final yield. It reduces nutrient uptake through roots, disrupts chloroplastic ultrastructure and cell membrane permeability, induces alterations in leaves respiratory activities, produces reactive oxygen species (ROS), and triggers some enzyme and non-enzymatic antioxidants (as defense to oxidative damage). In the end, biochar amendments and phytoremediation technologies have been proposed as soil remediation approaches for Pb tainted soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed A, Tajmir-Riahi HA (1993) Interaction of toxic metal ions Cd2+, Hg2+ and Pb2+ with light harvesting proteins of chloroplast thylakoid membranes. An FTIR spectroscopic study. J Inorg Biochem 50:235–243

    Article  CAS  Google Scholar 

  • Ali B, Xu X, Gill RA, Yang S, Ali S, Tahir M, Zhou W (2014) Promotive role of 5-aminolevulinic acid on mineral nutrients and antioxidative defense system under lead toxicity in Brassica napus. Ind Crop Prod 52:617–626

    Article  CAS  Google Scholar 

  • Alloway, BJ (2013) Heavy metals in soils, 3rd ed., Springer

  • Andra SS, Datta R, Sarkar D, Sarkar D, Saminathan SK, Mullens CP, Bach SB (2009) Analysis of phytochelatin complexes in the lead tolerant vetiver grass [Vetiveria zizanioides (L.)] using liquid chromatography and mass spectrometry. Environ Pollut 157(7):2173–2183

    Article  CAS  Google Scholar 

  • Anjum SA, Tanveer M, Hussain S, Bao M, Wang LC, Khan I, Ullah E, Tung SA, Samad RA, Shahzad B (2015) Cadmium toxicity in Maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environ Sci Pollut Res. doi:10.1007/s11356-015-4882-z

    Google Scholar 

  • Arce L, Yllano O (2008) Sensitivity and tolerance of Pokkali and IRRI-112 rice (Oryza sativa) varieties to lead (pb) stress. Univ Res J 11(2):1–15

    Google Scholar 

  • Arshad M, Silvestre J, Pinelli E, Kallerhoff J, Kaemmerer M, Tarigo A, Shahid M, Guiresse M, Pradere P, Dumat C (2008) A field study of lead phytoextraction by various scented Pelargonium cultivars. Chemosphere 71:2187–2192

    Article  CAS  Google Scholar 

  • Ashraf M, Ozturk M, Ahmad MSA (2010) Plant adaptation and phytoremediation. Springer Press, Berlin

    Book  Google Scholar 

  • ATSDR (2003) Agency for Toxic Substances and Disease Registry of the U.S. Department of Health and Human Services.http://www.atsdr.cdc.gov/spl/

  • Bazzaz FA, Carlson RW, Rolfe GL (1975) The inhibition of corn and soybean photosynthesis by lead. Physiol Plant 34:326–329

    Article  CAS  Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Curr Sci 89(7):1113–1121

    CAS  Google Scholar 

  • Bi X, Ren L, Gong M, He Y, Wang L, Ma Z (2010) Transfer of cadmium and lead from soil to mangoes in an uncontaminated area, Hainan Island, China. Geoderma 155(1–2):115–120

    Article  CAS  Google Scholar 

  • Bian R, Chen D, Liu X, Cui L, Li L, Pan G, Xie D, Zheng J, Zhang X, Zheng J (2013) Biochar soil amendment as a solution toprevent Cd-tainted rice from China: results from a cross-site field experiment. Ecol Eng 58:378–383

    Article  Google Scholar 

  • Bian R, Joseph S, Cui L, Pan G, Li L, Liu X, Zhang A, Rutlidge H, Wonge S, Chia C, Marjof C, Gongf B, Munroec P, Scott D (2014) A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. J Hazard Mater 272:121–128

    Article  CAS  Google Scholar 

  • Biederman LA, Harpole WS (2012) Biochar and its effects on plant productivity and nutrient cycling: a meta- analysis. GCB Bioenergy 5:202–214

    Article  CAS  Google Scholar 

  • Bozkurt S, Moreno L, Neretnieks I (1999) Long-term fate of organics in waste deposits and its effect on metal release. Sci Total Environ 228:135–152

    Article  CAS  Google Scholar 

  • Bradl HB (2004) Adsorption of heavy metal ions on soils and soils constituents. J Colloid Interface Sci 277:1–18

    Article  CAS  Google Scholar 

  • Burzynski M (1987) The influence of lead and cadmium on the absorption and distribution of potassium, calcium, magnesium and iron in cucumber seedlings. Acta Physiol Plant 9:229–238

    CAS  Google Scholar 

  • Burzynski M, Grabowski A (1984) Influence of lead on nitrate uptake and reduction in cucumber seedlings. Acta Soc Bot Pol 53:77–86

    Article  CAS  Google Scholar 

  • Cao X, Ma L, Liang Y, Gao B, Harris W (2011) Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environ Sci Technol 45:4884–4889

    Article  CAS  Google Scholar 

  • Casentini B, Hug SJ, Nikolaidis NP (2011) Arsenic accumulation in irrigated agricultural soils in Northern Greece. Sci Total Environ 409:4802–4810

    Article  CAS  Google Scholar 

  • Cenkci S, Cigerci IH, Yildiz M, Özay C, Bozdag A, Terzi H (2010) Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ Exp Bot 67(3):467–473

    Article  CAS  Google Scholar 

  • Chaney RL, Reeves PG, Ryan JA, Simmons RW, Welch RM, Angle JS (2004) An improved understanding of soil Cd risk to humans and low cost methods to phyto-extract Cd from contaminated soils to prevent soil Cd risks. Biol Met 17:549–553

    CAS  Google Scholar 

  • Chatterjee C, Dube BK, Sinha P, Srivastava P (2004) Detrimental effects of lead phytotoxicity on growth, yield and metabolism of rice. Commun Soil Sci Plant Anal 35:255–265

    Article  CAS  Google Scholar 

  • Chen J, Zhu C, Li L, Sun Z, Pan X (2007) Effects of exogenous salicylic acid on growth and H2O2-metabolizing enzymes in rice seedlings under lead stress. J Environ Sci (China) 19(1):44–49

    Article  CAS  Google Scholar 

  • Cheng WD, Zhang GP, Yao HG, Wu W, Xu M (2006) Genotypic and environmental variation in cadmium, chromium, arsenic, nickel and lead concentrations in rice grains. J Zhejiang Uni Sci B 7:565–571

    Article  CAS  Google Scholar 

  • Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163(3):319–332

    Article  CAS  Google Scholar 

  • Davies BE (1995) Lead. In: Alloway BJ (ed) Heavy metals in soils. Blackie Academic, London, pp 206–223

    Chapter  Google Scholar 

  • Davis JM, Elias RW, Grant LD (1993) Current issues in human lead exposure and regulation of lead. Neurotoxicology 14(2–3):15–27

    CAS  Google Scholar 

  • Dogan M, Saygideger SD, Colak U (2009) Effect of lead toxicity on aquatic macrophyte Elodea canadensis Michx. Bull Environ Contam Toxicol 83:249–254

    Article  CAS  Google Scholar 

  • Erakhrumen A, Agbontalor A (2007) Review phytoremediation: an environmentally sound technology for pollution prevention, control and remediation in developing countries. Edu Res Rev 2:151–156

    Google Scholar 

  • Erdei L, Mezosi G, Mecs I, Vass I, Foglein F, Bulik L (2005) Phytoremediation as a program for decontamination of heavy-metal polluted environment. Acta Biol Szeged 49:75–76

    Google Scholar 

  • European Commission DG ENV E3 (2002) Heavy metals in waste, Final Report Project ENV.E.3/ETU/2000/0058.http://ec.europa.eu/environment/waste/studies/pdf/heavymetalsreport.pdf

  • Fangmin C, Ningchun Z, Haiming X, Yi L, Wenfang Z, Zhiwei Z, Mingxue C (2006) Cadmium and lead contamination in japonica rice grains and its variation among the different locations in southeast China. Sci Total Environ 359:156–166

    Article  CAS  Google Scholar 

  • Feng J, Wang Y, Zha J, Zhu L, Bian X, Zhang W (2011) Source attributions of heavy metals in rice plant along highway in Eastern China. J Environ Sci 23(7):1158–1164

    Article  CAS  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534

    CAS  Google Scholar 

  • Gopal R, Rizvi AH (2008) Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere 70(9):1539–1544

    Article  CAS  Google Scholar 

  • Govil PK, Sorlie JE, Murthy NN, Sujatha D, Reddy GL, Rudolph-Lund K, Krishna AK, Rama MK (2008) Soil contamination of heavy metals in the Katedan industrial development area, Hyderabad, India. Environ Monit Assess 140(1–3):313–323

    Article  CAS  Google Scholar 

  • Granero S, Domingo JL (2002) Levels of metals in soils of Alcala de Henares, Spain: human health risks. Environ Int 28(3):159–164

    Article  CAS  Google Scholar 

  • Grimm NB, Foster D, Groffman P, Grove JM, Hopkinson CS, Nadelhoffer KJ, Pataki DE, Peters DP (2008) The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients. Front Ecol Environ 6:264–272

    Article  Google Scholar 

  • Grover P, Rekhadevi P, Danadevi K, Vuyyuri S, Rahman MM (2010) Genotoxicity evaluation in workers occupationally exposed to lead.Int. Int J Hyg Environ Health 213(2):99–106

    Article  CAS  Google Scholar 

  • Gu SH, Zhu JZ, Gu ZL (1989) Study on the critical lead content of red paddy soil. Agro-Environ Prot 8:17–22

    Google Scholar 

  • Gupta D, Nicoloso F, Schetinger M, Rossato L, Pereira L, Castro G, Srivastava S, Tripathi R (2009) Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater 172(1):479–484

    Article  CAS  Google Scholar 

  • Harpaz-Saad S, Azoulay T, Arazi T, Ben-Yaakov E, Mett A, Shiboleth YM, Hortensteiner S, Gidoni D, Gal-On A, Goldschmidt EE, Eyal Y (2007) Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is post translationally regulated. Plant Cell 19(3):1007–1022

    Article  CAS  Google Scholar 

  • Hinchman RR, Negri MC, Gatliff EG (1998) Phytoremediation: using green plants to clean up contaminated soil, groundwater, and wastewater. Argonne National Laboratory Hinchman, Applied Natural Sciences, Inc, 1995. http://www.treemediation.com/Technical/Phytoremediation1998.pdf

  • Hseu ZY, Su SW, Lai HY, Guo HY, Chen TC, Chen ZS (2010) Remediation techniques and heavy metal uptake by different rice varieties in metal-contaminated soils of Taiwan: new aspects for food safety regulation and sustainable agriculture. Soil Sci Plant Nutr 56:31–52

    Article  CAS  Google Scholar 

  • Hu J, Shi G, Xu Q, Wang X, Yuan Q, Du K (2007) Effects of Pb2+ on the active oxygen scavenging enzyme activities and ultrastructure in Potamogeton crispus leaves. Russ J Plant Physiol 54(3):414–419

    Article  CAS  Google Scholar 

  • Huang TL, Huang HJ (2008) ROS and CDPK-like kinase-mediated activation of MAP kinase in rice roots exposed to lead. Chemosphere 71:1377–1385

    Article  CAS  Google Scholar 

  • Huang SS, Liao QL, Hua M, Wu XM, Bi KS, Yan CY, Chen B, Zhang XY (2007) Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China. Chemosphere 67(11):2148–2155

    Article  CAS  Google Scholar 

  • Ibeanusi VM (2004) Denise Antonia Grab In collaboration with Larry, Jensen Stephen Ostrodka—Environmental Protection Agency. Radionuclide biological remediation resource guide, U. S. Environmental Protection Agency. http://www.clu-in.org/download/remed/905b04001.pdf

  • Interstate Technology and Regulatory Council (2009) Guidance and Decision Trees. http://www.itrcweb.org/guidancedocument.asp?TID=63

  • Islam E, Yang X, Li T, Liu D, Jin X, Meng F (2007) Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 147(3):806–816

    Article  CAS  Google Scholar 

  • Jiang W, Liu D (2010) Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant Biol 10:40–40

    Article  CAS  Google Scholar 

  • Jiang J, Xu R, Jiang T, Li Z (2012) Immobilization of Cu (II), Pb (II) and Cd (II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J Hazard Mater 229:145–150

    Article  CAS  Google Scholar 

  • Joseph S, Graber E, Chia C, Munroe P, Donne S, Thomas T, Nielsen S, Marjo C, Rutlidge H, Pan G (2013) Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Manage 4:323–343

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soils and Plants, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44:1247–1253

    Article  CAS  Google Scholar 

  • Kim YY, Yang YY, Lee Y (2002) Pb and Cd uptake in rice roots. Physiol Plant 116:368–372

    Article  CAS  Google Scholar 

  • Krzesłowska M, Lenartowska M, Samardakiewicz S, Bilski H, Wozny A (2010) Lead deposited in the cell wall of Funaria hygrometrica protonemata is not stable—a remobilization can occur. Environ Pollut 158(1):325–338

    Article  CAS  Google Scholar 

  • Lehmann J (2007) A handful of carbon. Nature 447:143–144

    Article  CAS  Google Scholar 

  • Li JX, Yang XE, He ZL, Jilani G, Sun CY, Chen SM (2007) Fractionation of lead in paddy soils and its bioavailability to rice plants. Geoderma 141:174–180

    Article  CAS  Google Scholar 

  • Li Y, Gou X, Wang G, Zhang Q, Su Q, Xiao G (2008) Heavy metal contamination and source in arid agricultural soil in Central Gansu Province, China. J Environ Sci (China) 20(5):607–612

    Article  CAS  Google Scholar 

  • Li X, Bu N, Yueying L, Maa L, Xin S, Zhang L (2012) Growth, photosynthesis and antioxidant responses of endophyte infected and non-infected rice under lead stress conditions. J Hazard Mater 213–214:55–61

    Article  CAS  Google Scholar 

  • Liao Y, Chien SC, Wang M, Shen Y, Hung P, Das B (2006) Effect of transpiration on Pb uptake by lettuce and on water soluble low molecular weight organic acids in rhizosphere. Chemosphere 65(2):343–351

    Article  CAS  Google Scholar 

  • Lin Y, Munroe P, Joseph S, Kimber S, Van Zwieten L (2012) Nanoscale organomineral reactions of biochars in ferrosol: an investigation using microscopy. Plant Soil 357:369–380

    Article  CAS  Google Scholar 

  • Ling Q, Hong FS (2009) Effects of Pb2+ on the structure and function of photosystem II of Spirodela polyrrhiza. Biol Trace Elem Res 129:251–260

    Article  CAS  Google Scholar 

  • Liu J, Li K, Xu J, Zhang Z, Ma T, Lu X, Yang J, Zhu Q (2003) Lead toxicity, uptake, and translocation in different rice cultivars. Plant Sci 165:793–802

    Article  CAS  Google Scholar 

  • Liu X, Zhang S, Wu W, Liu H (2007) Metal sorption on soils as affected by the dissolved organic matter in sewage sludge and the relative calculation of sewage sludge application. J Hazard Mater 149:399–407

    Article  CAS  Google Scholar 

  • Liu D, Li T, Jin X, Yang X, Islam E, Mahmood Q (2008) Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non-accumulating ecotypes of Sedum alfredii. J Integr Plant Biol 50(2):129–140

    Article  CAS  Google Scholar 

  • Liu X, Peng K, Wang A, Lian C, Shen Z (2010) Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration. Chemosphere 78(9):1136–1141

    Article  CAS  Google Scholar 

  • Liu J, Leng X, Wang M, Zhu Z, Dai Q (2011) Iron plaque formation on roots of different rice cultivars and the relation with lead uptake. Ecotoxicol Environ Saf 74:1304–1309

    Article  CAS  Google Scholar 

  • Liu J, Ma X, Wang M, Sun X (2013) Genotypic differences among rice cultivars in lead accumulation and translocation and the relation with grain Pb levels. Ecotoxicol Environ Saf 90:35–40

    Article  CAS  Google Scholar 

  • López ML, Peralta-Videa JR, Benitez T, Duarte-Gardea M, Gardea-Torresdey JL (2007) Effects of lead, EDTA, and IAA on nutrient uptake by alfalfa plants. J Plant Nutr 30(8):1247–1261

    Article  CAS  Google Scholar 

  • Lu H, Zhang YY, Huang X, Wang S, Qiu R (2012) Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res 46:854–862

    Article  CAS  Google Scholar 

  • Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68(1):1–13

    Article  CAS  Google Scholar 

  • Major J, Steiner C, Downie A, Lehmann J (2009) Biochar effects on nutrient leaching. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London

    Google Scholar 

  • Małecka A, Piechalak A, Morkunas I, Tomaszewska B (2008) Accumulation of lead in root cells of Pisum sativum. Acta Physiol Plant 30(5):629–637

    Article  CAS  Google Scholar 

  • Merkl N, Schultze-Kraft R, Infante C (2005) Phytoremediation in the tropics—influence of heavy crude oil on root morphological characteristics of graminoids. Environ Pollut 138:86–91

    Article  CAS  Google Scholar 

  • Mishra A, Choudhari MA (1998) Amelioration of lead and mercury effects on germination and rice seedling growth by antioxidants. Biol Plant 41:469–473

    Article  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi R, Kumar R, Seth C, Gupta D (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65(6):1027–1039

    Article  CAS  Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH (2008) Phytofiltration of mercury-contaminated water: volatilisation and plant-accumulation aspects. Environ Exp Bot 62:78–85

    Article  CAS  Google Scholar 

  • Mulligan C, Yong R, Gibbs B (2001) Remediation technologies for metal contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Article  Google Scholar 

  • Munné-Bosch S, Penuelas J (2003) Photo and antioxidative protection, and a role for salicylic acid during drought and recovery in field grown Phillyrea angustifolia plants. Planta 217:758–766

    Article  CAS  Google Scholar 

  • Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW, Niandou MAS (2009) Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci 174:105–112

    Article  CAS  Google Scholar 

  • Paivoke AEA (2002) Soil lead alters phytase activity and mineral nutrient balance of Pisum sativum. Environ Exp Bot 48:61–73

    Article  CAS  Google Scholar 

  • Pehlivan E, Ozkan AM, Dinc S, Parlayici S (2009) Adsorption of Cu2+ and Pb2+ ion on dolomite powder. J Hazard Mater 167:1044–1049

    Article  CAS  Google Scholar 

  • Peltz C, Nydick K, Fitzgerald G, Zillich C (2010) Biochar for soil remediation on abandoned mine lands Denver annual meeting geological society of America. Geological Society of America, Denver

    Google Scholar 

  • Prasad MNV, De Oliveira Freitas HM (2003) Metal hyperaccumulation in plants—biodiversity prospecting for phytoremediation technology. Electron J Biomed 6:110–146

    Google Scholar 

  • Prasad MNV, Strzałka K (1999) Heavy metal stress in plants. Springer, Berlin

    Book  Google Scholar 

  • Punamiya P, Datta R, Sarkar D, Barber S, Patel M, Das P (2010) Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. J Hazard Mater 177(1–3):465–474

    Article  CAS  Google Scholar 

  • Qufei L, Fashui H (2009) Effects of Pb2+ on the structure and function of photosystem II of Spirodela polyrrhiza. Biol Trace Elem Res 129(1):251–260

    Article  CAS  Google Scholar 

  • Rashid A, Bernier M, Pazdernick L, Carpentier L (1991) Interaction of Zn2+ with the donor side of photosystem II. Photosynth Res 30:123–130

    Article  CAS  Google Scholar 

  • Reddy AM, Kumar SG, Jyonthsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinumL.). Chemosphere 60:97–104

    Article  CAS  Google Scholar 

  • Rout GR, Samantaray S, Das P (2001) Differential lead tolerance of rice and black gram genotypes in hydroponic culture. Rost. Výroba (Praha) 47:541–548

  • Romanowska E, Igamberdiev AU, Parys E, Gardeström P (2002) Stimulation of respiration by Pb2+ in detached leaves and mitochondria of C3 and C4 plants. Physiol Plant 116(2):148–154

    Article  CAS  Google Scholar 

  • Romanowska E, Pokorska B, Siedlecka M (2005) The effects of oligomycin on content of adenylates in mesophyll protoplasts, chloroplasts and mitochondria from Pb2+ treated pea and barley leaves. Acta Physiol Plant 27(1):29–36

    Article  CAS  Google Scholar 

  • Romanowska E, Wróblewska B, Drozak A, Siedlecka M (2006) High light intensity protects photosynthetic apparatus of pea plants against exposure to lead. Plant Physiol Biochem 44(5–6):387–394

    Article  CAS  Google Scholar 

  • Sengar RS, Gautam M, Sengar RS, Sengar RS, Garg SK, Sengar K, Chaudhary R (2009) Lead stress effects on physiobiochemical activities of higher plants. Rev Environ Contam Toxicol 196:1–21

    Google Scholar 

  • Sersen F, Kralova K, Bumbalova A (1998) Action of mercury on the photosynthetic apparatus of the spinach chloroplasts. Photosynthetica 35:551–559

    Article  CAS  Google Scholar 

  • Shahid M, Pinelli E, Pourrut B, Silvestre J, Dumat C (2011) Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicol Environ Saf 74(1):78–84

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. BrazJ Plant Physiol 17(1):35–52

    Article  CAS  Google Scholar 

  • Shraim AM (2014) Rice is a potential dietary source of not only arsenic but also other toxic elements like lead and chromium. Arab J Chem. doi:10.1016/j.arabjc.2014.02.004

    Google Scholar 

  • Singh R, Tripathi RD, Dwivedi S, Kumar A, Trivedi PK, Chakrabarty D (2010) Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol 101:3025–3032

    Article  CAS  Google Scholar 

  • Sohi S, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82

    Article  CAS  Google Scholar 

  • Stefanov K, Seizova K, Popova I, Petkov VL, Kimenov G, Popov S (1995) Effects of lead ions on the phospholipid composition in leaves of Zea mays and Phaseolus vulgaris. J Plant Physiol 147:243–246

    Article  CAS  Google Scholar 

  • Steiner C, Das KC, Garcia M, Förster B, Zech W (2008) Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic ferralsol. Pedobiologia 51:359–366

    Article  CAS  Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Intl J Chem Eng 2011:1–31. doi:10.1155/2011/939161

    Article  Google Scholar 

  • Tariq SR, Rashid N (2013) Multivariate analysis of metal levels in paddy soil, rice plants, and rice grains: a case study from Shakargarh, Pakistan. J Chem. doi:10.1155/2013/539251

    Google Scholar 

  • Traunfeld JH, Clement DL (2001) Lead in garden soils. Home and garden. Maryland Cooperative Extention, University of Maryland. http://www.hgic.umd.edu/media/documents/hg18.pdf

  • U. S. Department of Energy (1994) Plume focus area, December. Mechanisms of plant uptake, translocation, and storage of toxic elements. Summary Report of a workshop on phytoremediation research needs. http://www.osti.gov/bridge/purl.cover.jsp;jsessionid=D72C8DD9003DCF51984EE254A6ED8BCB?purl=/10109412-BckU4U/webviewable/

  • Uchimiya M, Chang S, Klasson KT (2011) Screening biochars for heavy metal retention in soil: role of oxygen functional groups. J Hazard Mater 190:432–441

    Article  CAS  Google Scholar 

  • Uzu G, Sobanska S, Aliouane Y, Pradere P, Dumat C (2009) Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation. Environ Pollut 157(4):1178–1185

    Article  CAS  Google Scholar 

  • van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13(3):195–206

    Article  Google Scholar 

  • Van Zwieten L, Kimber S, Downie A, Morris S, Petty S, Rust J, Chan KY (2010) A glasshouse study on the interaction of low mineral ash biochar with nitrogen in a sandy soil. Aus J Soil Res 48:569–576

    Article  CAS  Google Scholar 

  • Vassileva E, Que’tel CR (2008) Influence of the correction for moisture/water content on the quality of the certification of cadmium, copper and lead mass fractions in rice. Food Chem 106:1485–1490

    Article  CAS  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    Article  CAS  Google Scholar 

  • Wang X, Wu YY (1997) Behavior property of heavy metals in soil-rice system. Chinese J Ecol 16:10–14

    CAS  Google Scholar 

  • Wang H, Shan X, Wen B, Owens G, Fang J, Zhang S (2007) Effect of indole-3-acetic acid on lead accumulation in maize (Zea mays L.) seedlings and the relevant antioxidant response. Environ Exp Bot 61(3):246–253

    Article  CAS  Google Scholar 

  • Xie ZM, Huang CY (1994) Relationships between lead zinc arsenic contents and rice tillering in soil-rice system. J Zhejiang Agric Uni 20:67–71

    Google Scholar 

  • Xiong Z, Zhao F, Li M (2006) Lead toxicity in Brassica pekinensis Rupr.: effect on nitrate assimilation and growth. Environ Toxicol 21(2):147–153

    Article  CAS  Google Scholar 

  • Yadav S (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76(2):167–179

    Article  CAS  Google Scholar 

  • Yang YY, Jung JY, Song WY, Suh HS, Le Y (2000) Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. Plant Physiol 124:1019–1026

  • Yang QW, Shu WS, Qiu JW, Wang HB, Lan CY (2004) Lead in paddy soils and rice plants and its potential health risk around Lechang Lead/Zinc Mine, Guangdong, China. Environ Int 30:883–889

    Article  CAS  Google Scholar 

  • Yizong H, Hu Y, Liu Y (2009) Heavy metal accumulation in iron plaque and growth of rice plants upon exposure to single and combined contamination by copper, cadmium and lead. Acta Ecol Sin 29:320–326

    Article  Google Scholar 

  • Zeng LS, Liao M, Chen CL, Huang CY (2006) Effects of lead contamination on soil microbial activity and rice physiological indices in soil–Pb–rice (Oryza sativa L.) system. Chemosphere 65:567–574

    Article  CAS  Google Scholar 

  • Zeng LS, Liao M, Chen CL, Huang CY (2007) Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil–lead–rice (Oryza sativa L.) system. Ecotoxicol Environ Saf 67:67–74

    Article  CAS  Google Scholar 

  • Zeng FR, Mao Y, Cheng WD, Wu FB, Zhang GP (2008) Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice. Environ Pollut 153:309–314

    Article  CAS  Google Scholar 

  • Zhang ZW, Moon CS, Watanabe T, Shimbo S, Ikeda M (1997) Contents of pollutant and nutrient elements in rice and wheat grown on the neighboring fields. Biol Trace Element Res 57:39–50

    Article  CAS  Google Scholar 

  • Zhang R, Liu G, Wu N, Gu M, Zeng H, Zhu Y, Xu G (2011) Adaptation of plasma membrane H+ ATPase and H+ pump to P deficiency in rice roots. Plant Soil 349:3–11. doi:10.1007/s11104-011-0774-2

  • Zhang X, Wang H, He L, Lu K, Sarmah A, Li J, Bolan NS, Pei J, Huang H (2013) Using biochar forremediation of soils contaminated with heavy metals and organic pollutants. Environ Sci Pollut Res 20:8472–8483

    Article  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangru Tang.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, U., Kanu, A.S., Mo, Z. et al. Lead toxicity in rice: effects, mechanisms, and mitigation strategies—a mini review. Environ Sci Pollut Res 22, 18318–18332 (2015). https://doi.org/10.1007/s11356-015-5463-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5463-x

Keywords

Navigation