Skip to main content
Log in

Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Carotenoids, a subfamily of terpenoids, are yellow- to red-colored pigments synthesized by plants, fungi, algae, and bacteria. They are ubiquitous in nature and take over crucial roles in many biological processes as for example photosynthesis, vision, and the quenching of free radicals and singlet oxygen. Due to their color and their potential beneficial effects on human health, carotenoids receive increasing attention. Carotenoids can be classified due to the length of their carbon backbone. Most carotenoids have a C40 backbone, but also C30 and C50 carotenoids are known. All carotenoids are derived from isopentenyl pyrophosphate (IPP) as a common precursor. Pathways leading to IPP as well as metabolic engineering of IPP synthesis and C40 carotenoid production have been reviewed expertly elsewhere. Since C50 carotenoids are synthesized from the C40 carotenoid lycopene, we will summarize common strategies for optimizing lycopene production and we will focus our review on the characteristics, biosynthesis, glycosylation, and overproduction of C50 carotenoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbes M, Baati H, Guermazi S, Messina C, Santulli A, Gharsallah N, Ammar E (2013) Biological properties of carotenoids extracted from Halobacterium halobium isolated from a Tunisian solar saltern. BMC Complement Alternat Med 13:255. doi:10.1186/1472-6882-13-255

    Google Scholar 

  • Alper H, Miyaoku K, Stephanopoulos G (2006) Characterization of lycopene-overproducing E. coli strains in high cell density fermentations. Appl Microbiol Biotechnol 72(5):968–974. doi:10.1007/s00253-006-0357-y

    CAS  PubMed  Google Scholar 

  • Andrewes AG, Starr MP (1976) (3R,3′R)-astaxanthin from the yeast Phaffia rhodozyma. Phytochemistry 15(6):1009–1011. doi:10.1016/S0031-9422(00)84391-5

    CAS  Google Scholar 

  • Araya-Garay JM, Ageitos JM, Vallejo JA, Veiga-Crespo P, Sanchez-Perez A, Villa TG (2012) Construction of a novel Pichia pastoris strain for production of xanthophylls. AMB Express 2(1):24. doi:10.1186/2191-0855-2-24

    CAS  PubMed Central  PubMed  Google Scholar 

  • Armstrong GA (1994) Eubacteria show their true colors: genetics of carotenoid pigment biosynthesis from microbes to plants. J Bacteriol 176(16):4795–4802

    CAS  PubMed Central  PubMed  Google Scholar 

  • Armstrong GA, Hearst JE (1996) Carotenoids 2: genetics and molecular biology of carotenoid pigment biosynthesis. FASEB J 10(2):228–237

    CAS  PubMed  Google Scholar 

  • Arpin N, Liaaen-Jensen S, Trouilloud M (1972) Bacterial carotenoids. 38. C50-carotenoids. 9. Isolation of decaprenoxanthin mono- and diglucoside from an Arthrobacter sp. Acta Chem Scand 26(6):2524–2526

    CAS  PubMed  Google Scholar 

  • Aschoff S (1818) Beiträge zur Kenntnis des Saffrans. Berl Jb Pharm 19:142–157

    Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69(4):473–488. doi:10.1007/s11103-008-9435-0

    CAS  PubMed  Google Scholar 

  • Beekwilder J, van der Meer IM, Simic A, Uitdewilligen J, van Arkel J, de Vos RC, Jonker H, Verstappen FW, Bouwmeester HJ, Sibbesen O, Qvist I, Mikkelsen JD, Hall RD (2008) Metabolism of carotenoids and apocarotenoids during ripening of raspberry fruit. Biofactors 34(1):57–66

    PubMed  Google Scholar 

  • Beuttler H, Hoffmann J, Jeske M, Hauer B, Schmid RD, Altenbuchner J, Urlacher VB (2011) Biosynthesis of zeaxanthin in recombinant Pseudomonas putida. Appl Microbiol Biotechnol 89(4):1137–1147. doi:10.1007/s00253-010-2961-0

    CAS  PubMed  Google Scholar 

  • Bhosale P, Bernstein PS (2005) Microbial xanthophylls. Appl Microbiol Biotechnol 68(4):445–455. doi:10.1007/s00253-005-0032-8

    CAS  PubMed  Google Scholar 

  • Boussiba S, Vonshak A, Cohen Z, Richmond A (2000) Procedure for large-scale production of astaxanthin from Haematococcus. US Patent 6022701

  • Bouvier F, Dogbo O, Camara B (2003) Biosynthesis of the food and cosmetic plant pigment bixin (annatto). Science 300(5628):2089–2091. doi:10.1126/science.1085162300/5628/2089

    CAS  PubMed  Google Scholar 

  • Brandi F, Bar E, Mourgues F, Horvath G, Turcsi E, Giuliano G, Liverani A, Tartarini S, Lewinsohn E, Rosati C (2011) Study of ‘Redhaven’ peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. BMC Plant Biol 11:24. doi:10.1186/1471-2229-11-24

    CAS  PubMed Central  PubMed  Google Scholar 

  • Britton G (2008) Functions of intact carotenoids. In: Britton, Liaaen-Jensen, Pfander (eds) Carotenoids: natural functions, vol 4. Birkhäuser Verlag, Basel, pp 189–212

    Google Scholar 

  • Chae HS, Kim KH, Kim SC, Lee PC (2010) Strain-dependent carotenoid productions in metabolically engineered Escherichia coli. Appl Biochem Biotechnol 162(8):2333–2344. doi:10.1007/s12010-010-9006-0

    CAS  PubMed  Google Scholar 

  • Chen YY, Shen HJ, Cui YY, Chen SG, Weng ZM, Zhao M, Liu JZ (2013) Chromosomal evolution of Escherichia coli for the efficient production of lycopene. BMC Biotechnol 13:6. doi:10.1186/1472-6750-13-6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng X, Ruyter-Spira C, Bouwmeester H (2013) The interaction between strigolactones and other plant hormones in the regulation of plant development. Front Plant Sci 4:199. doi:10.3389/fpls.2013.00199

    PubMed Central  PubMed  Google Scholar 

  • Chumpolkulwong N, Kakizono T, Handa T, Nishio N (1997) Isolation and characterization of compactin resistant mutants of an astaxanthin synthesizing green alga Haematococcus pluvialis. Biotechnol Lett 19(3):299–302. doi:10.1023/A:1018330329357

    CAS  Google Scholar 

  • Cooper DA, Eldridge AL, Peters JC (1999) Dietary carotenoids and certain cancers, heart disease, and age-related macular degeneration: a review of recent research. Nutr Rev 57(7):201–214

    CAS  PubMed  Google Scholar 

  • Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328(2):307–317

    CAS  PubMed  Google Scholar 

  • Cutzu R, Coi A, Rosso F, Bardi L, Ciani M, Budroni M, Zara G, Zara S, Mannazzu I (2013) From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant. World J Microbiol Biotechnol 29(6):1009–1017. doi:10.1007/s11274-013-1264-x

    CAS  PubMed  Google Scholar 

  • Das A, Yoon SH, Lee SH, Kim JY, Oh DK, Kim SW (2007) An update on microbial carotenoid production: application of recent metabolic engineering tools. Appl Microbiol Biotechnol 77(3):505–512. doi:10.1007/s00253-007-1206-3

    CAS  PubMed  Google Scholar 

  • Daum M, Herrmann S, Wilkinson B, Bechthold A (2009) Genes and enzymes involved in bacterial isoprenoid biosynthesis. Curr Opin Chem Biol 13(2):180–188. doi:10.1016/j.cbpa.2009.02.029

    CAS  PubMed  Google Scholar 

  • de Bont J (1998) Solvent-tolerant bacteria in biocatalysis. Trends Biotechnol 16(12):493–499. doi:10.1016/S0167-7799(98)01234-7

    Google Scholar 

  • De Roos AL, van Dijk AA, Folkertsma B (2005) Bleaching of dairy products. International Patent WO 2005/004616

  • Dembitsky VM (2005) Astonishing diversity of natural surfactants: 3. Carotenoid glycosides and isoprenoid glycolipids. Lipids 40(6):535–557

    CAS  PubMed  Google Scholar 

  • Downham A, Collins P (2000) Colouring our foods in the last and next millennium. Int J Food Sci Tech 35(1):5–22. doi:10.1046/j.1365-2621.2000.00373.x

    CAS  Google Scholar 

  • Fukuoka S, Ajiki Y, Ohga T, Kawanami Y, Izumori K (2004) Production of dihydroxy C50-carotenoid by Aureobacterium sp. FERM P-18698. Biosci Biotechnol Biochem 68(12):2646–2648

    CAS  PubMed  Google Scholar 

  • Gassel S, Schewe H, Schmidt I, Schrader J, Sandmann G (2013) Multiple improvement of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous by a combination of conventional mutagenesis and metabolic pathway engineering. Biotechnol Lett 35(4):565–569. doi:10.1007/s10529-012-1103-4

    CAS  PubMed  Google Scholar 

  • Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM (2011) Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum. Appl Microbiol Biotechnol 92(5):985–996. doi:10.1007/s00253-011-3478-x

    CAS  PubMed  Google Scholar 

  • Graham JE, Bryant DA (2009) The biosynthetic pathway for myxol-2′ fucoside (myxoxanthophyll) in the cyanobacterium Synechococcus sp. strain PCC 7002. J Bacteriol 191(10):3292–3300. doi:10.1128/JB.00050-09

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harada H, Misawa N (2009) Novel approaches and achievements in biosynthesis of functional isoprenoids in Escherichia coli. Appl Microbiol Biotechnol 84(6):1021–1031. doi:10.1007/s00253-009-2166-6

    CAS  PubMed  Google Scholar 

  • Havaux M (2013) Carotenoid oxidation products as stress signals in plants. Plant J. doi:10.1111/tpj.12386

    PubMed  Google Scholar 

  • Heider SA, Peters-Wendisch P, Wendisch VF (2012) Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum. BMC Microbiol 12(1):198. doi:10.1186/1471-2180-12-198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heider SA, Peters-Wendisch P, Netzer R, Stafnes M, Brautaset T, Wendisch VF (2013) Production and glucosylation of C40 and C50 carotenoids by metabolically engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol. doi:10.1007/s00253-013-5359-y

    PubMed  Google Scholar 

  • Hess BM, Xue J, Markillie LM, Taylor RC, Wiley HS, Ahring BK, Linggi B (2013) Coregulation of terpenoid pathway genes and prediction of isoprene production in using transcriptomics. PLoS One 8(6):e66104. doi:10.1371/journal.pone.0066104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hundle BS, O'Brien DA, Alberti M, Beyer P, Hearst JE (1992) Functional expression of zeaxanthin glucosyltransferase from Erwinia herbicola and a proposed uridine diphosphate binding site. Proc Natl Acad Sci U S A 89(19):9321–9325

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jackson H, Braun CL, Ernst H (2008) The chemistry of novel xanthophyll carotenoids. Am J Cardiol 101(10A):50D–57D. doi:10.1016/j.amjcard.2008.02.008

    CAS  PubMed  Google Scholar 

  • Johnson EA, Schroeder WA (1996) Microbial carotenoids. Adv Biochem Eng Biotechnol 53:119–178

    CAS  PubMed  Google Scholar 

  • Julsing MK, Rijpkema M, Woerdenbag HJ, Quax WJ, Kayser O (2007) Functional analysis of genes involved in the biosynthesis of isoprene in Bacillus subtilis. Appl Microbiol Biotechnol 75(6):1377–1384. doi:10.1007/s00253-007-0953-5

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kelly M, Jensen SL (1967) Bacterial carotenoids. 26. C50-carotenoids. 2. Bacterioruberin. Acta Chem Scand 21(9):2578

    CAS  PubMed  Google Scholar 

  • Kim SH, Park YH, Schmidt-Dannert C, Lee PC (2010) Redesign, reconstruction, and directed extension of the Brevibacterium linens C40 carotenoid pathway in Escherichia coli. Appl Environ Microbiol 76(15):5199–5206. doi:10.1128/AEM.00263-10

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355. doi:10.1146/annurev.arplant.043008.091955

    CAS  PubMed  Google Scholar 

  • Krinsky NI, Johnson EJ (2005) Carotenoid actions and their relation to health and disease. Mol Asp Med 26(6):459–516. doi:10.1016/j.mam.2005.10.001

    CAS  Google Scholar 

  • Krubasik P, Kobayashi M, Sandmann G (2001a) Expression and functional analysis of a gene cluster involved in the synthesis of decaprenoxanthin reveals the mechanisms for C50 carotenoid formation. Eur J Biochem 268(13):3702–3708

    CAS  PubMed  Google Scholar 

  • Krubasik P, Takaichi S, Maoka T, Kobayashi M, Masamoto K, Sandmann G (2001b) Detailed biosynthetic pathway to decaprenoxanthin diglucoside in Corynebacterium glutamicum and identification of novel intermediates. Arch Microbiol 176(3):217–223

    CAS  PubMed  Google Scholar 

  • Lale R, Berg L, Stuttgen F, Netzer R, Stafsnes M, Brautaset T, Vee Aune TE, Valla S (2011) Continuous control of the flow in biochemical pathways through 5′ untranslated region sequence modifications in mRNA expressed from the broad-host-range promoter Pm. Appl Environ Microbiol 77(8):2648–2655. doi:10.1128/AEM.02091-10

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lange N, Steinbüchel A (2011) beta-Carotene production by Saccharomyces cerevisiae with regard to plasmid stability and culture media. Appl Microbiol Biotechnol 91(6):1611–1622. doi:10.1007/s00253-011-3315-2

    CAS  PubMed  Google Scholar 

  • Lange BM, Rujan T, Martin W, Croteau R (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci U S A 97(24):13172–13177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee PC, Schmidt-Dannert C (2002) Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl Microbiol Biotechnol 60(1–2):1–11. doi:10.1007/s00253-002-1101-x

    CAS  PubMed  Google Scholar 

  • Li J, Zhu D, Niu J, Shen S, Wang G (2011) An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnol Adv 29(6):568–574. doi:10.1016/j.biotechadv.2011.04.001

    CAS  PubMed  Google Scholar 

  • Liaaen-Jensen S, Hertzberg S, Weeks OB, Schwieter U (1968) Bacterial carotenoids XXVII. C50-carotenoids. 3. Structure determination of dehydrogenans-P439. Acta Chem Scand 22(4):1171–1186

    CAS  PubMed  Google Scholar 

  • Maresca JA, Bryant DA (2006) Two genes encoding new carotenoid-modifying enzymes in the green sulfur bacterium Chlorobium tepidum. J Bacteriol 188(17):6217–6223. doi:10.1128/JB.00766-06

    CAS  PubMed Central  PubMed  Google Scholar 

  • Margalith PZ (1999) Production of ketocarotenoids by microalgae. Appl Microbiol Biotechnol 51(4):431–438

    CAS  PubMed  Google Scholar 

  • Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21(7):796–802

    CAS  PubMed  Google Scholar 

  • Meijnen JP, Verhoef S, Briedjlal AA, de Winde JH, Ruijssenaars HJ (2011) Improved p-hydroxybenzoate production by engineered Pseudomonas putida S12 by using a mixed-substrate feeding strategy. Appl Microbiol Biotechnol 90(3):885–893. doi:10.1007/s00253-011-3089-6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meiswinkel TM, Rittmann D, Lindner SN, Wendisch VF (2013) Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum. Bioresour Technol. doi:10.1016/j.biortech.2013.02.053

    PubMed  Google Scholar 

  • Miki W, Otaki N, Yokoyama A, Izumida H, Shimidzu N (1994) Okadaxanthin, a novel C50-narotenoid from a bacterium, Pseudomonas sp. KK10206c associated with marine sponge, Halichondria okadai. Experientia 50(7):684–686. doi:10.1007/Bf01952874

    CAS  Google Scholar 

  • Miller NJ, Sampson J, Candeias LP, Bramley PM, Rice-Evans CA (1996) Antioxidant activities of carotenes and xanthophylls. FEBS Lett 384(3):240–242

    CAS  PubMed  Google Scholar 

  • Misawa N, Nakagawa M, Kobayashi K, Yamano S, Izawa Y, Nakamura K, Harashima K (1990) Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J Bacteriol 172(12):6704–6712

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miura Y, Kondo K, Saito T, Shimada H, Fraser PD, Misawa N (1998) Production of the carotenoids lycopene, beta-carotene, and astaxanthin in the food yeast Candida utilis. Appl Environ Microbiol 64(4):1226–1229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Naguib YM (2000) Antioxidant activities of astaxanthin and related carotenoids. J Agric Food Chem 48(4):1150–1154

    CAS  PubMed  Google Scholar 

  • Netzer R, Stafsnes MH, Andreassen T, Goksoyr A, Bruheim P, Brautaset T (2010) Biosynthetic pathway for gamma-cyclic sarcinaxanthin in Micrococcus luteus: heterologous expression and evidence for diverse and multiple catalytic functions of C(50) carotenoid cyclases. J Bacteriol 192(21):5688–5699. doi:10.1128/JB.00724-10

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nishizaki T, Tsuge K, Itaya M, Doi N, Yanagawa H (2007) Metabolic engineering of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus subtilis. Appl Environ Microbiol 73(4):1355–1361. doi:10.1128/AEM.02268-06

    CAS  PubMed Central  PubMed  Google Scholar 

  • Norgård S, Aasen AJ, Liaaen-Jensen S (1970) Bacterial carotenoids. 32. C50-carotenoids 6. Carotenoids from Corynebacterium poinsettiae including four new C50-diols. Acta Chem Scand 24(6):2183–2197

    PubMed  Google Scholar 

  • Olson JA (1993) Molecular actions of carotenoids. Ann N Y Acad Sci 691:156–166

    CAS  PubMed  Google Scholar 

  • Osawa A, Ishii Y, Sasamura N, Morita M, Kasai H, Maoka T, Shindo K (2010) Characterization and antioxidative activities of rare C(50) carotenoids-sarcinaxanthin, sarcinaxanthin monoglucoside, and sarcinaxanthin diglucoside-obtained from Micrococcus yunnanensis. J Oleo Sci 59(12):653–659

    CAS  PubMed  Google Scholar 

  • Papagianni M (2012) Recent advances in engineering the central carbon metabolism of industrially important bacteria. Microb Cell Fact 11:50. doi:10.1186/1475-2859-11-50

    CAS  PubMed Central  PubMed  Google Scholar 

  • Papp T, Velayos A, Bartok T, Eslava AP, Vagvolgyi C, Iturriaga EA (2006) Heterologous expression of astaxanthin biosynthesis genes in Mucor circinelloides. Appl Microbiol Biotechnol 69(5):526–531. doi:10.1007/s00253-005-0026-6

    CAS  PubMed  Google Scholar 

  • Pfander H (1994) C-45-carotenoids and C-50-carotenoids. Pure Appl Chem 66(10–11):2369–2374. doi:10.1351/pac199466102369

    CAS  Google Scholar 

  • Pinnola A, Dall’Osto L, Gerotto C, Morosinotto T, Bassi R, Alboresi A (2013) Zeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in Physcomitrella patens. Plant Cell 25(9):3519–3534. doi:10.1105/tpc.113.114538

    CAS  PubMed  Google Scholar 

  • Quinones MA, Zeiger E (1994) A putative role of the xanthophyll, zeaxanthin, in blue light photoreception of corn coleoptiles. Science 264(5158):558–561. doi:10.1126/science.264.5158.558

    CAS  Google Scholar 

  • Rodrigues E, Mariutti LR, Mercadante AZ (2012) Scavenging capacity of marine carotenoids against reactive oxygen and nitrogen species in a membrane-mimicking system. Mar Drugs 10(8):1784–1798. doi:10.3390/md10081784

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez-Saiz M, de la Fuente JL, Barredo JL (2010) Xanthophyllomyces dendrorhous for the industrial production of astaxanthin. Appl Microbiol Biotechnol 88(3):645–658. doi:10.1007/s00253-010-2814-x

    CAS  PubMed  Google Scholar 

  • Rodriguez-Villalon A, Perez-Gil J, Rodriguez-Concepcion M (2008) Carotenoid accumulation in bacteria with enhanced supply of isoprenoid precursors by upregulation of exogenous or endogenous pathways. J Biotechnol 135(1):78–84. doi:10.1016/j.jbiotec.2008.02.023

    CAS  PubMed  Google Scholar 

  • Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16(5):565–574

    CAS  PubMed  Google Scholar 

  • Rohmer M, Bouvier P, Ourisson G (1979) Molecular evolution of biomembranes: structural equivalents and phylogenetic precursors of sterols. Proc Natl Acad Sci U S A 76(2):847–851

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rottem S, Markowitz O (1979) Carotenoids acts as reinforcers of the Acholeplasma laidlawii lipid bilayer. J Bacteriol 140(3):944–948

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saelices L, Youssar L, Holdermann I, Al-Babili S, Avalos J (2007) Identification of the gene responsible for torulene cleavage in the Neurospora carotenoid pathway. Mol Genet Genomics 278(5):527–537. doi:10.1007/s00438-007-0269-2

    CAS  PubMed  Google Scholar 

  • Sandmann G (2001) Carotenoid biosynthesis and biotechnological application. Arch Biochem Biophys 385(1):4–12. doi:10.1006/abbi.2000.2170

    CAS  PubMed  Google Scholar 

  • Scalcinati G, Partow S, Siewers V, Schalk M, Daviet L, Nielsen J (2012) Combined metabolic engineering of precursor and co-factor supply to increase alpha-santalene production by Saccharomyces cerevisiae. Microb Cell Fact 11:117. doi:10.1186/1475-2859-11-117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schwartz SH, Tan BC, Gage DA, Zeevaart JA, McCarty DR (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276(5320):1872–1874

    CAS  PubMed  Google Scholar 

  • Sedkova N, Tao L, Rouviere PE, Cheng Q (2005) Diversity of carotenoid synthesis gene clusters from environmental Enterobactetiaceae strains. Appl Environ Microbiol 71(12):8141–8146. doi:10.1128/aem.71.12.8141-8146.2005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ (2006) Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production. J Biotechnol 124(2):381–391. doi:10.1016/j.jbiotec.2005.12.027

    CAS  PubMed  Google Scholar 

  • Sivy TL, Fall R, Rosenstiel TN (2011) Evidence of isoprenoid precursor toxicity in Bacillus subtilis. Biosci Biotechnol Biochem 75(12):2376–2383

    CAS  PubMed  Google Scholar 

  • Song GH, Kim SH, Choi BH, Han SJ, Lee PC (2013) Heterologous carotenoid-biosynthetic enzymes: functional complementation and effects on carotenoid profiles in Escherichia coli. Appl Environ Microbiol 79(2):610–618. doi:10.1128/AEM.02556-12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steinbrenner J, Sandmann G (2006) Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl Environ Microbiol 72(12):7477–7484. doi:10.1128/AEM.01461-06

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sui X, Kiser PD, Lintig J, Palczewski K (2013) Structural basis of carotenoid cleavage: from bacteria to mammals. Arch Biochem Biophys 539(2):203–213. doi:10.1016/j.abb.2013.06.012

    CAS  PubMed  Google Scholar 

  • Takaichi S, Maoka T, Masamoto K (2001) Myxoxanthophyll in Synechocystis sp. PCC 6803 is myxol 2′-dimethyl-fucoside, (3R,2′S)-myxol 2′-(2,4-di-O-methyl-alpha-L-fucoside), not rhamnoside. Plant Cell Physiol 42(7):756–762

    CAS  PubMed  Google Scholar 

  • Tao L, Schenzle A, Odom JM, Cheng Q (2005) Novel carotenoid oxidase involved in biosynthesis of 4,4′-diapolycopene dialdehyde. Appl Environ Microbiol 71(6):3294–3301. doi:10.1128/AEM.71.6.3294-3301.2005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tao L, Yao H, Cheng Q (2007) Genes from a Dietzia sp. for synthesis of C40 and C50 beta-cyclic carotenoids. Gene 386(1–2):90–97. doi:10.1016/j.gene.2006.08.006

    CAS  PubMed  Google Scholar 

  • Tatituri RV, Illarionov PA, Dover LG, Nigou J, Gilleron M, Hitchen P, Krumbach K, Morris HR, Spencer N, Dell A, Eggeling L, Besra GS (2007) Inactivation of Corynebacterium glutamicum NCgl0452 and the role of MgtA in the biosynthesis of a novel mannosylated glycolipid involved in lipomannan biosynthesis. J Biol Chem 282(7):4561–4572. doi:10.1074/jbc.M608695200

    CAS  PubMed  Google Scholar 

  • Tjahjono AE, Kakizono T, Hayama Y, Nishio N, Nagai S (1994) Isolation of resistant mutants against carotenoid biosynthesis inhibitors for a green alga Haematococcus pluvialis, and their hybrid formation by protoplast fusion for breeding of higher astaxanthin producers. J Ferment Bioeng 77(4):352–357. doi:10.1016/0922-338x(94)90003-5

    CAS  Google Scholar 

  • To KY, Lai EM, Lee LY, Lin TP, Hung CH, Chen CL, Chang YS, Liu ST (1994) Analysis of the gene cluster encoding carotenoid biosynthesis in Erwinia herbicola Eho13. Microbiology 140(Pt 2):331–339

    CAS  PubMed  Google Scholar 

  • Tobias AV, Arnold FH (2006) Biosynthesis of novel carotenoid families based on unnatural carbon backbones: a model for diversification of natural product pathways. Biochim Biophys Acta 1761(2):235–246. doi:10.1016/j.bbalip.2006.01.003

    CAS  PubMed  Google Scholar 

  • Tsuchidate T, Tateno T, Okai N, Tanaka T, Ogino C, Kondo A (2011) Glutamate production from beta-glucan using endoglucanase-secreting Corynebacterium glutamicum. Appl Microbiol Biotechnol 90(3):895–901. doi:10.1007/s00253-011-3116-7

    CAS  PubMed  Google Scholar 

  • Uhde A, Youn JW, Maeda T, Clermont L, Matano C, Kramer R, Wendisch VF, Seibold GM, Marin K (2013) Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum. Appl Microbiol Biotechnol 97(4):1679–1687. doi:10.1007/s00253-012-4313-8

    CAS  PubMed  Google Scholar 

  • Ukibe K, Hashida K, Yoshida N, Takagi H (2009) Metabolic engineering of Saccharomyces cerevisiae for astaxanthin production and oxidative stress tolerance. Appl Environ Microbiol 75(22):7205–7211. doi:10.1128/AEM.01249-09

    CAS  PubMed Central  PubMed  Google Scholar 

  • Umeno D, Tobias AV, Arnold FH (2005) Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol Mol Biol Rev 69(1):51–78. doi:10.1128/MMBR.69.1.51-78.2005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vershinin A (1999) Biological functions of carotenoids—diversity and evolution. Biofactors 10(2–3):99–104

    CAS  PubMed  Google Scholar 

  • Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, van den Berg JA, van Ooyen AJ (2007) High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 73(13):4342–4350. doi:10.1128/AEM.02759-06

    CAS  PubMed Central  PubMed  Google Scholar 

  • Verwaal R, Jiang Y, Wang J, Daran JM, Sandmann G, van den Berg JA, van Ooyen AJ (2010) Heterologous carotenoid production in Saccharomyces cerevisiae induces the pleiotropic drug resistance stress response. Yeast 27(12):983–998. doi:10.1002/yea.1807

    CAS  PubMed  Google Scholar 

  • Wang F, Jiang JG, Chen Q (2007) Progress on molecular breeding and metabolic engineering of biosynthesis pathways of C30, C35, C40, C45, C50 carotenoids. Biotechnol Adv 25(3):211–222. doi:10.1016/j.biotechadv.2006.12.001

    PubMed  Google Scholar 

  • Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A, Fickes S, Diola D, Benjamin KR, Keasling JD, Leavell MD, McPhee DJ, Renninger NS, Newman JD, Paddon CJ (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci U S A 109(3):E111–E118. doi:10.1073/pnas.1110740109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Winterhalter P, Rouseff R (2001) Carotenoid-derived aroma compounds: an introduction carotenoid-derived aroma compounds. vol 802. ACS Symposium Series, Washington, DC, pp 1-17

  • Xue J, Ahring BK (2011) Enhancing isoprene production by genetic modification of the 1-deoxy-d-xylulose-5-phosphate pathway in Bacillus subtilis. Appl Environ Microbiol 77(7):2399–2405. doi:10.1128/AEM.02341-10

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ye VM, Bhatia SK (2012) Pathway engineering strategies for production of beneficial carotenoids in microbial hosts. Biotechnol Lett 34(8):1405–1414. doi:10.1007/s10529-012-0921-8

    CAS  PubMed  Google Scholar 

  • Yoshida K, Ueda S, Maeda I (2009) Carotenoid production in Bacillus subtilis achieved by metabolic engineering. Biotechnol Lett 31(11):1789–1793. doi:10.1007/s10529-009-0082-6

    CAS  PubMed  Google Scholar 

  • Zeiger E, Zhu JX (1998) Role of zeaxanthin in blue light photoreception and the modulation of light-CO2 interactions in guard cells. J Exp Bot 49:433–442. doi:10.1093/jexbot/49.suppl_1.433

    Google Scholar 

  • Zhao J, Li Q, Sun T, Zhu X, Xu H, Tang J, Zhang X, Ma Y (2013) Engineering central metabolic modules of Escherichia coli for improving beta-carotene production. Metab Eng 17:42–50. doi:10.1016/j.ymben.2013.02.002

    CAS  PubMed  Google Scholar 

  • Zhou K, Zou R, Zhang C, Stephanopoulos G, Too HP (2013) Optimization of amorphadiene synthesis in Bacillus subtilis via transcriptional, translational, and media modulation. Biotechnol Bioeng 110(9):2556–2561. doi:10.1002/bit.24900

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

SAEH, PPW and VFW acknowledge the support in part by grants from BMBF project 0316017A and from EU project PROMYSE. JB acknowledges the “Platform Green Synthetic Biology” program (http://www.pgsb.nl/) funded by the Netherlands Genomics Initiative for financial support. TB acknowledges the support in part by EU project PROMYSE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker F. Wendisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heider, S.A.E., Peters-Wendisch, P., Wendisch, V.F. et al. Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids. Appl Microbiol Biotechnol 98, 4355–4368 (2014). https://doi.org/10.1007/s00253-014-5693-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5693-8

Keywords

Navigation