Skip to main content
Log in

Neurovascular Units and Neural-Glia Networks in Intracerebral Hemorrhage: from Mechanisms to Translation

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Intracerebral hemorrhage (ICH), the most lethal type of stroke, often leads to poor outcomes in the clinic. Due to the complex mechanisms and cell–cell crosstalk during ICH, the neurovascular unit (NVU) was proposed to serve as a promising therapeutic target for ICH research. This review aims to summarize the development of pathophysiological shifts in the NVU and neural–glia networks after ICH. In addition, potential targets for ICH therapy are discussed in this review. Beyond cerebral blood flow, the NVU also plays an important role in protecting neurons, maintaining central nervous system (CNS) homeostasis, coordinating neuronal activity among supporting cells, forming and maintaining the blood–brain barrier (BBB), and regulating neuroimmune responses. During ICH, NVU dysfunction is induced, along with neuronal cell death, microglia and astrocyte activation, endothelial cell (EC) and tight junction (TJ) protein damage, and BBB disruption. In addition, it has been shown that certain targets and candidates can improve ICH-induced secondary brain injury based on an NVU and neural–glia framework. Moreover, therapeutic approaches and strategies for ICH are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet. 2009;373(9675):1632–44.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol. 2012;11(8):720–31.

    Article  CAS  PubMed  Google Scholar 

  3. Stamova B, Ander BP, Jickling G, Hamade F, Durocher M, Zhan X, et al. The intracerebral hemorrhage blood transcriptome in humans differs from the ischemic stroke and vascular risk factor control blood transcriptomes. J Cereb Blood Flow Metab. 2019;39(9):1818–35.

    Article  CAS  PubMed  Google Scholar 

  4. Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol. 2009;8(4):355–69.

    Article  PubMed  Google Scholar 

  5. Williamson MR, Wilkinson CM, Dietrich K, Colbourne F. Acetazolamide mitigates intracranial pressure spikes without affecting functional outcome after experimental hemorrhagic stroke. Transl Stroke Res. 2019;10(4):428–39.

    Article  CAS  PubMed  Google Scholar 

  6. Liu ZH, Liu CH, Tu PH, Yip PK, Chen CC, Wang YC, et al. Prior antiplatelet therapy, excluding phosphodiesterase inhibitor is associated with poor outcome in patients with spontaneous intracerebral haemorrhage. Transl Stroke Res. 2020;11(2):185–94.

    Article  CAS  PubMed  Google Scholar 

  7. Li X, Feng D, Chen G. An update on medical treatment for intracerebral hemorrhage. Transl Stroke Res. 2018;9:549–54.

    Article  CAS  Google Scholar 

  8. Hostettler IC, Seiffge DJ, Werring DJ. Intracerebral hemorrhage: an update on diagnosis and treatment. Expert Rev Neurother. 2019;19(7):679–94.

    Article  CAS  PubMed  Google Scholar 

  9. Mendelow AD, Gregson BA, Fernandes HM, Murray GD, Teasdale GM, Hope DT, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial. Lancet. 2005;365(9457):387–97.

    Article  PubMed  Google Scholar 

  10. Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial. Lancet. 2013;382(9890):397–408.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Anderson CS, Heeley E, Huang Y, Wang J, Stapf C, Delcourt C, et al. Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. N Engl J Med. 2013;368(25):2355–65.

    Article  CAS  PubMed  Google Scholar 

  12. Butcher KS, Jeerakathil T, Hill M, Demchuk AM, Dowlatshahi D, Coutts SB, et al. The Intracerebral Hemorrhage Acutely Decreasing Arterial Pressure Trial. Stroke. 2013;44(3):620–6.

    Article  PubMed  Google Scholar 

  13. Qureshi AI, Palesch YY, Barsan WG, Hanley DF, Hsu CY, Martin RL, et al. Intensive blood-pressure lowering in patients with acute cerebral hemorrhage. N Engl J Med. 2016;375(11):1033–43.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wilkinson DA, Pandey AS, Thompson BG, Keep RF, Hua Y, Xi G. Injury mechanisms in acute intracerebral hemorrhage. Neuropharmacology. 2018;134(Pt B):240–8.

    Article  CAS  PubMed  Google Scholar 

  15. Sprigg N, Flaherty K, Appleton JP, Al-Shahi Salman R, Bereczki D, Beridze M, et al. Tranexamic acid for hyperacute primary intracerebral haemorrhage (TICH-2): an international randomised, placebo-controlled, phase 3 superiority trial. Lancet. 2018;391(10135):2107–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Withers SE, Parry-Jones AR, Allan SM, Kasher PR. A multi-model pipeline for translational intracerebral haemorrhage research. Transl Stroke Res. 2020;11(6):1229–42.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liddle LJ, Ralhan S, Ward DL, Colbourne F. Translational intracerebral hemorrhage research: has current neuroprotection research arrived at a standard for experimental design and reporting? Transl Stroke Res. 2020;11(6):1203–13.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hu R, Zhang C, Xia J, Ge H, Zhong J, Fang X, et al. Long-term outcomes and risk factors related to hydrocephalus after intracerebral hemorrhage. Transl Stroke Res. 2020;12(1):31–8.

    Article  PubMed  Google Scholar 

  19. Cheng Y, Qiao L, Jiang Z, Dong X, Feng H, Gui Q, et al. Significant reduction in the LDL cholesterol increases the risk of intracerebral hemorrhage: a systematic review and meta-analysis of 33 randomized controlled trials. Am J Transl Res. 2020;12(2):463–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ren H, Kong Y, Liu Z, Zang D, Yang X, Wood K, et al. Selective NLRP3 (Pyrin Domain-Containing Protein 3) inflammasome inhibitor reduces brain injury after intracerebral hemorrhage. Stroke. 2018;49(1):184–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sheth KN, Rosand J. Targeting the immune system in intracerebral hemorrhage. JAMA Neurol. 2014;71(9):1083–4.

    Article  PubMed  Google Scholar 

  22. Zhou Y, Wang Y, Wang J, Anne Stetler R, Yang QW. Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol. 2014;115:25–44.

    Article  CAS  PubMed  Google Scholar 

  23. Urday S, Kimberly WT, Beslow LA, Vortmeyer AO, Selim MH, Rosand J, et al. Targeting secondary injury in intracerebral haemorrhage--perihaematomal oedema. Nat Rev Neurol. 2015;11(2):111–22.

    Article  PubMed  Google Scholar 

  24. Chen G, Chen J, Ji X, Xi G, Zhang J. Editorial for the Third Pangu Stroke Conference. Exp Neurol. 2015;272:1–3.

    Article  PubMed  Google Scholar 

  25. Atangana E, Schneider UC, Blecharz K, Magrini S, Wagner J, Nieminen-Kelha M, et al. Intravascular inflammation triggers intracerebral activated microglia and contributes to secondary brain injury after experimental subarachnoid hemorrhage (eSAH). Transl Stroke Res. 2017;8(2):144–56.

    Article  CAS  PubMed  Google Scholar 

  26. Xiong XY, Yang QW. Rethinking the roles of inflammation in the intracerebral hemorrhage. Transl Stroke Res. 2015;6(5):339–41.

    Article  PubMed  Google Scholar 

  27. Behrouz R. Re-exploring tumor necrosis factor alpha as a target for therapy in intracerebral hemorrhage. Transl Stroke Res. 2016;7(2):93–6.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao X, Sun G, Zhang H, Ting SM, Song S, Gonzales N, et al. Polymorphonuclear neutrophil in brain parenchyma after experimental intracerebral hemorrhage. Transl Stroke Res. 2014;5(5):554–61.

    Article  PubMed  Google Scholar 

  29. Ozaki T, Nakamura H, Kishima H. Therapeutic strategy against ischemic stroke with the concept of neurovascular unit. Neurochem Int. 2019;126:246–51.

    Article  CAS  PubMed  Google Scholar 

  30. Yamashita T, Kamiya T, Deguchi K, Inaba T, Zhang H, Shang J, et al. Dissociation and protection of the neurovascular unit after thrombolysis and reperfusion in ischemic rat brain. J Cereb Blood Flow Metab. 2009;29(4):715–25.

    Article  CAS  PubMed  Google Scholar 

  31. Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron. 2017;96(1):17–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. del Zoppo GJ. Inflammation and the neurovascular unit in the setting of focal cerebral ischemia. Neuroscience. 2009;158(3):972–82.

    Article  PubMed  Google Scholar 

  33. Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7(1):41–53.

    Article  CAS  PubMed  Google Scholar 

  34. Tam SJ, Watts RJ. Connecting vascular and nervous system development: angiogenesis and the blood-brain barrier. Annu Rev Neurosci. 2010;33:379–408.

    Article  CAS  PubMed  Google Scholar 

  35. Harder DR, Zhang C, Gebremedhin D. Astrocytes function in matching blood flow to metabolic activity. News Physiol Sci. 2002;17:27–31.

    CAS  PubMed  Google Scholar 

  36. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57(2):173–85.

    Article  CAS  PubMed  Google Scholar 

  37. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature. 2010;468(7321):232–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McConnell HL, Kersch CN, Woltjer RL, Neuwelt EA. The translational significance of the neurovascular unit. J Biol Chem. 2017;292(3):762–70.

    Article  CAS  PubMed  Google Scholar 

  39. Thurgur H, Pinteaux E. Microglia in the neurovascular unit: blood-brain barrier-microglia interactions after central nervous system disorders. Neuroscience. 2019;405:55–67.

    Article  CAS  PubMed  Google Scholar 

  40. Banks WA, Gray AM, Erickson MA, Salameh TS, Damodarasamy M, Sheibani N, et al. Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit. J Neuroinflammation. 2015;12:223.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Muoio V, Persson PB, Sendeski MM. The neurovascular unit - concept review. Acta Physiol (Oxford). 2014;210(4):790–8.

    Article  CAS  Google Scholar 

  42. Kowianski P, Lietzau G, Steliga A, Waskow M, Morys J. The astrocytic contribution to neurovascular coupling--still more questions than answers? Neurosci Res. 2013;75(3):171–83.

    Article  CAS  PubMed  Google Scholar 

  43. Koehler RC, Gebremedhin D, Harder DR. Role of astrocytes in cerebrovascular regulation. J Appl Physiol (1985). 2006;100(1):307–17.

    Article  CAS  Google Scholar 

  44. Busija DW, Bari F, Domoki F, Louis T. Mechanisms involved in the cerebrovascular dilator effects of N-methyl-d-aspartate in cerebral cortex. Brain Res Rev. 2007;56(1):89–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Iadecola C. Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link? Trends Neurosci. 1993;16(6):206–14.

    Article  CAS  PubMed  Google Scholar 

  46. Ko KR, Ngai AC, Winn HR. Role of adenosine in regulation of regional cerebral blood flow in sensory cortex. Am J Phys. 1990;259(6 Pt 2):H1703–8.

    CAS  Google Scholar 

  47. Filosa JA, Bonev AD, Straub SV, Meredith AL, Wilkerson MK, Aldrich RW, et al. Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat Neurosci. 2006;9(11):1397–403.

    Article  CAS  PubMed  Google Scholar 

  48. Cauli B, Tong XK, Rancillac A, Serluca N, Lambolez B, Rossier J, et al. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J Neurosci. 2004;24(41):8940–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kocharyan A, Fernandes P, Tong XK, Vaucher E, Hamel E. Specific subtypes of cortical GABA interneurons contribute to the neurovascular coupling response to basal forebrain stimulation. J Cereb Blood Flow Metab. 2008;28(2):221–31.

    Article  CAS  PubMed  Google Scholar 

  50. Paulson OB, Newman EA. Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science. 1987;237(4817):896–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sosunov AA, Wu X, Tsankova NM, Guilfoyle E, McKhann GM 2nd, Goldman JE. Phenotypic heterogeneity and plasticity of isocortical and hippocampal astrocytes in the human brain. J Neurosci. 2014;34(6):2285–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Filosa JA, Morrison HW, Iddings JA, Du W, Kim KJ. Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone. Neuroscience. 2016;323:96–109.

    Article  CAS  PubMed  Google Scholar 

  53. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012;4(147):147ra111.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Alvarez JI, Katayama T, Prat A. Glial influence on the blood brain barrier. Glia. 2013;61(12):1939–58.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Colombo E, Farina C. Astrocytes: Key Regulators of neuroinflammation. Trends Immunol. 2016;37(9):608–20.

    Article  CAS  PubMed  Google Scholar 

  56. Wu X, Luo J, Liu H, Cui W, Guo K, Zhao L, et al. Recombinant adiponectin peptide ameliorates brain injury following intracerebral hemorrhage by suppressing astrocyte-derived inflammation via the inhibition of Drp1-mediated mitochondrial fission. Transl Stroke Res. 2020;11(5):924–39.

    Article  CAS  PubMed  Google Scholar 

  57. Thion MS, Ginhoux F, Garel S. Microglia and early brain development: an intimate journey. Science. 2018;362(6411):185–9.

    Article  CAS  PubMed  Google Scholar 

  58. Dudvarski Stankovic N, Teodorczyk M, Ploen R, Zipp F, Schmidt MHH. Microglia-blood vessel interactions: a double-edged sword in brain pathologies. Acta Neuropathol. 2016;131(3):347–63.

    Article  PubMed  Google Scholar 

  59. Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, et al. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol. 2018;163-164:144–71.

    Article  CAS  PubMed  Google Scholar 

  60. Lenz KM, Nugent BM, Haliyur R, McCarthy MM. Microglia are essential to masculinization of brain and behavior. J Neurosci. 2013;33(7):2761–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schafer DP, Stevens B. Microglia function in central nervous system development and plasticity. Cold Spring Harb Perspect Biol. 2015;7(10):a020545.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Weinhard L, di Bartolomei G, Bolasco G, Machado P, Schieber NL, Neniskyte U, et al. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat Commun. 2018;9(1):1228.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Miyamoto A, Wake H, Ishikawa AW, Eto K, Shibata K, Murakoshi H, et al. Microglia contact induces synapse formation in developing somatosensory cortex. Nat Commun. 2016;7:12540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Eldahshan W, Fagan SC, Ergul A. Inflammation within the neurovascular unit: focus on microglia for stroke injury and recovery. Pharmacol Res. 2019;147:104349.

    Article  PubMed  PubMed Central  Google Scholar 

  65. da Fonseca AC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, et al. The impact of microglial activation on blood-brain barrier in brain diseases. Front Cell Neurosci. 2014;8:362.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Goldmann T, Wieghofer P, Jordao MJ, Prutek F, Hagemeyer N, Frenzel K, et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol. 2016;17(7):797–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen SH, Oyarzabal EA, Sung YF, Chu CH, Wang Q, Chen SL, et al. Microglial regulation of immunological and neuroprotective functions of astroglia. Glia. 2015;63(1):118–31.

    Article  PubMed  Google Scholar 

  68. Iizumi T, Takahashi S, Mashima K, Minami K, Izawa Y, Abe T, et al. A possible role of microglia-derived nitric oxide by lipopolysaccharide in activation of astroglial pentose-phosphate pathway via the Keap1/Nrf2 system. J Neuroinflammation. 2016;13(1):99.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Jha MK, Kim JH, Song GJ, Lee WH, Lee IK, Lee HW, et al. Functional dissection of astrocyte-secreted proteins: Implications in brain health and diseases. Prog Neurobiol. 2018;162:37–69.

    Article  CAS  PubMed  Google Scholar 

  70. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shinozaki Y, Shibata K, Yoshida K, Shigetomi E, Gachet C, Ikenaka K, et al. Transformation of astrocytes to a neuroprotective phenotype by microglia via P2Y1 receptor downregulation. Cell Rep. 2017;19(6):1151–64.

    Article  CAS  PubMed  Google Scholar 

  72. Jha MK, Jo M, Kim JH, Suk K. Microglia-astrocyte crosstalk: an intimate molecular conversation. Neuroscientist. 2019;25(3):227–40.

    Article  CAS  PubMed  Google Scholar 

  73. Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57(2):178–201.

    Article  CAS  PubMed  Google Scholar 

  74. Andresen J, Shafi NI, Bryan RM Jr. Endothelial influences on cerebrovascular tone. J Appl Physiol (1985). 2006;100(1):318–27.

    Article  CAS  Google Scholar 

  75. Seals DR, Jablonski KL, Donato AJ. Aging and vascular endothelial function in humans. Clin Sci (Lond). 2011;120(9):357–75.

    Article  CAS  Google Scholar 

  76. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288(5789):373–6.

    Article  CAS  PubMed  Google Scholar 

  77. Duchemin S, Boily M, Sadekova N, Girouard H. The complex contribution of NOS interneurons in the physiology of cerebrovascular regulation. Front Neural Circuits. 2012;6:51.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Betz AL, Firth JA, Goldstein GW. Polarity of the blood-brain barrier: distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Res. 1980;192(1):17–28.

    Article  CAS  PubMed  Google Scholar 

  79. Stamatovic SM, Keep RF, Andjelkovic AV. Brain endothelial cell-cell junctions: how to "open" the blood brain barrier. Curr Neuropharmacol. 2008;6(3):179–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Drew PJ, Shih AY, Kleinfeld D. Fluctuating and sensory-induced vasodynamics in rodent cortex extend arteriole capacity. Proc Natl Acad Sci U S A. 2011;108(20):8473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ngai AC, Ko KR, Morii S, Winn HR. Effect of sciatic nerve stimulation on pial arterioles in rats. Am J Phys. 1988;254(1 Pt 2):H133–9.

    CAS  Google Scholar 

  82. Uhlirova H, Kilic K, Tian P, Thunemann M, Desjardins M, Saisan PA, et al. Cell type specificity of neurovascular coupling in cerebral cortex. Elife. 2016;5.

  83. Longden TA, Hill-Eubanks DC, Nelson MT. Ion channel networks in the control of cerebral blood flow. J Cereb Blood Flow Metab. 2016;36(3):492–512.

    Article  CAS  PubMed  Google Scholar 

  84. Hamilton NB, Attwell D, Hall CN. Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front Neuroenerg. 2010;2.

  85. Winkler EA, Bell RD, Zlokovic BV. Central nervous system pericytes in health and disease. Nat Neurosci. 2011;14(11):1398–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468(7323):557–61.

    Article  CAS  PubMed  Google Scholar 

  87. Armulik A, Genove G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21(2):193–215.

    Article  CAS  PubMed  Google Scholar 

  88. Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature. 2010;468(7323):562–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron. 2010;68(3):409–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Stratman AN, Malotte KM, Mahan RD, Davis MJ, Davis GE. Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood. 2009;114(24):5091–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Krueger M, Bechmann I. CNS pericytes: concepts, misconceptions, and a way out. Glia. 2010;58(1):1–10.

    Article  PubMed  Google Scholar 

  92. Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci. 2016;19(6):771–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sakuma R, Kawahara M, Nakano-Doi A, Takahashi A, Tanaka Y, Narita A, et al. Brain pericytes serve as microglia-generating multipotent vascular stem cells following ischemic stroke. J Neuroinflammation. 2016;13(1):57.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Nakagomi T, Kubo S, Nakano-Doi A, Sakuma R, Lu S, Narita A, et al. Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells. Stem Cells. 2015;33(6):1962–74.

    Article  CAS  PubMed  Google Scholar 

  95. Bastide M, Ouk T, Plaisier F, Petrault O, Stolc S, Bordet R. Neurogliovascular unit after cerebral ischemia: is the vascular wall a pharmacological target. Psychoneuroendocrinology. 2007;32(Suppl 1):S36–9.

    Article  CAS  PubMed  Google Scholar 

  96. Xing C, Hayakawa K, Lok J, Arai K, Lo EH. Injury and repair in the neurovascular unit. Neurol Res. 2012;34(4):325–30.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Armstead WM, Raghupathi R. Endothelin and the neurovascular unit in pediatric traumatic brain injury. Neurol Res. 2011;33(2):127–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Koide M, Sukhotinsky I, Ayata C, Wellman GC. Subarachnoid hemorrhage, spreading depolarizations and impaired neurovascular coupling. Stroke Res Treat. 2013;2013:819340.

    PubMed  PubMed Central  Google Scholar 

  99. Gao C, Meng Y, Chen G, Chen W, Chen XS, Luo CL, et al. Chronic restraint stress exacerbates neurological deficits and disrupts the remodeling of the neurovascular unit in a mouse intracerebral hemorrhage model. Stress. 2020;23(3):338–48.

    Article  CAS  PubMed  Google Scholar 

  100. Sasaki R, Yamashita T, Tadokoro K, Matsumoto N, Nomura E, Omote Y, et al. Direct arterial damage and neurovascular unit disruption by mechanical thrombectomy in a rat stroke model. J Neurosci Res. 2020.

  101. Ruhrberg C, Bautch VL. Neurovascular development and links to disease. Cell Mol Life Sci. 2013;70(10):1675–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fernandez-Klett F, Offenhauser N, Dirnagl U, Priller J, Lindauer U. Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc Natl Acad Sci U S A. 2010;107(51):22290–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Busch S, Wu L, Feng Y, Gretz N, Hoffmann S, Hammes HP. Alzheimer's disease and retinal neurodegeneration share a consistent stress response of the neurovascular unit. Cell Physiol Biochem. 2012;30(6):1436–43.

    Article  CAS  PubMed  Google Scholar 

  104. Elali A, Rivest S. The role of ABCB1 and ABCA1 in beta-amyloid clearance at the neurovascular unit in Alzheimer's disease. Front Physiol. 2013;4:45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bodmer D, Vaughan KA, Zacharia BE, Hickman ZL, Connolly ES. The molecular mechanisms that promote edema after intracerebral hemorrhage. Transl Stroke Res. 2012;3(Suppl 1):52–61.

    Article  CAS  PubMed  Google Scholar 

  106. Liu R, Li H, Hua Y, Keep RF, Xiao J, Xi G, et al. Early hemolysis within human intracerebral hematomas: an MRI study. Transl Stroke Res. 2019;10(1):52–6.

    Article  CAS  PubMed  Google Scholar 

  107. Dang G, Yang Y, Wu G, Hua Y, Keep RF, Xi G. Early erythrolysis in the hematoma after experimental intracerebral hemorrhage. Transl Stroke Res. 2017;8(2):174–82.

    Article  CAS  PubMed  Google Scholar 

  108. Xiong XY, Wang J, Qian ZM, Yang QW. Iron and intracerebral hemorrhage: from mechanism to translation. Transl Stroke Res. 2014;5(4):429–41.

    Article  CAS  PubMed  Google Scholar 

  109. Lu X, Ji C, Wu J, You W, Wang W, Wang Z, et al. Intrathecal fibrinolysis for aneurysmal subarachnoid hemorrhage: evidence from randomized controlled trials and cohort studies. Front Neurol. 2019;10:885.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zheng M, Du H, Ni W, Koch LG, Britton SL, Keep RF, et al. Iron-induced necrotic brain cell death in rats with different aerobic capacity. Transl Stroke Res. 2015;6(3):215–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Matsushita K, Meng W, Wang X, Asahi M, Asahi K, Moskowitz MA, et al. Evidence for apoptosis after intercerebral hemorrhage in rat striatum. J Cereb Blood Flow Metab. 2000;20(2):396–404.

    Article  CAS  PubMed  Google Scholar 

  112. He Y, Wan S, Hua Y, Keep RF, Xi G. Autophagy after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab. 2008;28(5):897–905.

    Article  CAS  PubMed  Google Scholar 

  113. Zille M, Karuppagounder SS, Chen Y, Gough PJ, Bertin J, Finger J, et al. Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis. Stroke. 2017;48(4):1033–43.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Zhu X, Tao L, Tejima-Mandeville E, Qiu J, Park J, Garber K, et al. Plasmalemma permeability and necrotic cell death phenotypes after intracerebral hemorrhage in mice. Stroke. 2012;43(2):524–31.

    Article  PubMed  Google Scholar 

  115. Wang Z, Chen Z, Yang J, Yang Z, Yin J, Duan X, et al. Treatment of secondary brain injury by perturbing postsynaptic density protein-95-NMDA receptor interaction after intracerebral hemorrhage in rats. J Cereb Blood Flow Metab. 2018;9(8):1588–601.

    Article  Google Scholar 

  116. Ardizzone TD, Zhan X, Ander BP, Sharp FR. SRC kinase inhibition improves acute outcomes after experimental intracerebral hemorrhage. Stroke. 2007;38(5):1621–5.

    Article  CAS  PubMed  Google Scholar 

  117. Anderson CM, Swanson RA. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia. 2000;32(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  118. Scimemi A. Astrocytes and the warning signs of intracerebral hemorrhagic stroke. Neural Plast. 2018;2018:7301623.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol. 2010;92(4):463–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lan X, Han X, Li Q, Yang QW, Wang J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat Rev Neurol. 2017;13(7):420–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Shi SX, Li YJ, Shi K, Wood K, Ducruet AF, Liu Q. IL (Interleukin)-15 bridges astrocyte-microglia crosstalk and exacerbates brain injury following intracerebral hemorrhage. Stroke. 2020;51(3):967–74.

    Article  CAS  PubMed  Google Scholar 

  122. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–86.

    Article  CAS  PubMed  Google Scholar 

  123. Nash B, Thomson CE, Linington C, Arthur AT, McClure JD, McBride MW, et al. Functional duality of astrocytes in myelination. J Neurosci. 2011;31(37):13028–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Keep RF, Andjelkovic AV, Xiang J, Stamatovic SM, Antonetti DA, Hua Y, et al. Brain endothelial cell junctions after cerebral hemorrhage: changes, mechanisms and therapeutic targets. J Cereb Blood Flow Metab. 2018;38(8):1255–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Liu DZ, Sharp FR. Excitatory and mitogenic signaling in cell death, blood-brain barrier breakdown, and BBB repair after intracerebral hemorrhage. Transl Stroke Res. 2012;3(Suppl 1):62–9.

    Article  PubMed  Google Scholar 

  126. Nadeau CA, Dietrich K, Wilkinson CM, Crawford AM, George GN, Nichol HK, et al. Prolonged blood-brain barrier injury occurs after experimental intracerebral hemorrhage and is not acutely associated with additional bleeding. Transl Stroke Res. 2019;10(3):287–97.

    Article  CAS  PubMed  Google Scholar 

  127. Warth A, Kroger S, Wolburg H. Redistribution of aquaporin-4 in human glioblastoma correlates with loss of agrin immunoreactivity from brain capillary basal laminae. Acta Neuropathol. 2004;107(4):311–8.

    Article  CAS  PubMed  Google Scholar 

  128. Jessen NA, Munk AS, Lundgaard I, Nedergaard M. The glymphatic system: a beginner's guide. Neurochem Res. 2015;40(12):2583–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gebel JM Jr, Jauch EC, Brott TG, Khoury J, Sauerbeck L, Salisbury S, et al. Relative edema volume is a predictor of outcome in patients with hyperacute spontaneous intracerebral hemorrhage. Stroke. 2002;33(11):2636–41.

    Article  PubMed  Google Scholar 

  130. Keep RF, Xiang J, Ennis SR, Andjelkovic A, Hua Y, Xi G, et al. Blood-brain barrier function in intracerebral hemorrhage. Acta Neurochir Suppl. 2008;105:73–7.

    Article  CAS  PubMed  Google Scholar 

  131. Lu T, Wang Z, Prativa S, Xu Y, Wang T, Zhang Y, et al. Macrophage stimulating protein preserves blood brain barrier integrity after intracerebral hemorrhage through recepteur d'origine nantais dependent GAB1/Src/beta-catenin pathway activation in a mouse model. J Neurochem. 2019;148(1):114–26.

    Article  CAS  PubMed  Google Scholar 

  132. Hua Y, Schallert T, Keep RF, Wu J, Hoff JT, Xi G. Behavioral tests after intracerebral hemorrhage in the rat. Stroke. 2002;33(10):2478–84.

    Article  PubMed  Google Scholar 

  133. James ML, Cox M, Xian Y, Smith EE, Bhatt DL, Schulte PJ, et al. Sex and age interactions and differences in outcomes after intracerebral hemorrhage. J Women's Health (Larchmt). 2017;26(4):380–8.

    Article  Google Scholar 

  134. James ML, Langefeld CD, Sekar P, Moomaw CJ, Elkind MSV, Worrall BB, et al. Assessment of the interaction of age and sex on 90-day outcome after intracerebral hemorrhage. Neurology. 2017;89(10):1011–9.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Hatakeyama T, Okauchi M, Hua Y, Keep RF, Xi G. Deferoxamine reduces neuronal death and hematoma lysis after intracerebral hemorrhage in aged rats. Transl Stroke Res. 2013;4(5):546–53.

    Article  CAS  PubMed  Google Scholar 

  136. Sun YM, Wang YT, Jiang L, Xue MZ. The effects of deferoxamine on inhibition for microglia activation and protection of secondary nerve injury after intracerebral hemorrhage in rats. Pak J Pharm Sci. 2016;29(3 Suppl):1087–93.

    CAS  PubMed  Google Scholar 

  137. Ni W, Okauchi M, Hatakeyama T, Gu Y, Keep RF, Xi G, et al. Deferoxamine reduces intracerebral hemorrhage-induced white matter damage in aged rats. Exp Neurol. 2015;272:128–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Xie Q, Gu Y, Hua Y, Liu W, Keep RF, Xi G. Deferoxamine attenuates white matter injury in a piglet intracerebral hemorrhage model. Stroke. 2014;45(1):290–2.

    Article  CAS  PubMed  Google Scholar 

  139. Gu Y, Hua Y, Keep RF, Morgenstern LB, Xi G. Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets. Stroke. 2009;40(6):2241–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hu S, Hua Y, Keep RF, Feng H, Xi G. Deferoxamine therapy reduces brain hemin accumulation after intracerebral hemorrhage in piglets. Exp Neurol. 2019;318:244–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Liu H, Hua Y, Keep RF, Xi G. Brain ceruloplasmin expression after experimental intracerebral hemorrhage and protection against iron-induced brain injury. Transl Stroke Res. 2019;10(1):112–9.

    Article  CAS  PubMed  Google Scholar 

  142. Hamada R, Matsuoka H. Antithrombin therapy for intracerebral hemorrhage. Stroke. 2000;31(3):794–5.

    Article  CAS  PubMed  Google Scholar 

  143. Zeng J, Chen Y, Ding R, Feng L, Fu Z, Yang S, et al. Isoliquiritigenin alleviates early brain injury after experimental intracerebral hemorrhage via suppressing ROS- and/or NF-kappaB-mediated NLRP3 inflammasome activation by promoting Nrf2 antioxidant pathway. J Neuroinflammation. 2017;14(1):119.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Tan X, Yang Y, Xu J, Zhang P, Deng R, Mao Y, et al. Luteolin exerts neuroprotection via modulation of the p62/Keap1/Nrf2 pathway in intracerebral hemorrhage. Front Pharmacol. 2019;10:1551.

    Article  CAS  PubMed  Google Scholar 

  145. Chen X, Xi Z, Liang H, Sun Y, Zhong Z, Wang B, et al. Melatonin prevents mice cortical astrocytes from hemin-induced toxicity through activating PKCalpha/Nrf2/HO-1 signaling in vitro. Front Neurosci. 2019;13:760.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Zhang P, Wang T, Zhang D, Zhang Z, Yuan S, Zhang J, et al. Exploration of MST1-mediated secondary brain injury induced by intracerebral hemorrhage in rats via hippo signaling pathway. Transl Stroke Res. 2019;10(6):729–43.

    Article  CAS  PubMed  Google Scholar 

  147. Qureshi AI, Ling GS, Khan J, Suri MF, Miskolczi L, Guterman LR, et al. Quantitative analysis of injured, necrotic, and apoptotic cells in a new experimental model of intracerebral hemorrhage. Crit Care Med. 2001;29(1):152–7.

    Article  CAS  PubMed  Google Scholar 

  148. Bobinger T, Burkardt P. B.H. H, and A. Manaenko, Programmed cell death after intracerebral hemorrhage. Curr Neuropharmacol. 2018;16(9):1267–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jiang Y, Li Z, Liu Y, Liu X, Chang Q, Liao Y, et al. Neuroprotective effect of water extract of Panax ginseng on corticosterone-induced apoptosis in PC12 cells and its underlying molecule mechanisms. J Ethnopharmacol. 2015;159:102–12.

    Article  CAS  PubMed  Google Scholar 

  150. Xu W, Li T, Gao L, Lenahan C, Zheng J, Yan J, et al. Sodium benzoate attenuates secondary brain injury by inhibiting neuronal apoptosis and reducing mitochondria-mediated oxidative stress in a rat model of intracerebral hemorrhage: possible involvement of DJ-1/Akt/IKK/NFkappaB pathway. Front Mol Neurosci. 2019;12:105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Duan XC, Wang W, Feng DX, Yin J, Zuo G, Chen DD, et al. Roles of autophagy and endoplasmic reticulum stress in intracerebral hemorrhage-induced secondary brain injury in rats. CNS Neurosci Ther. 2017;23(7):554–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ayer A, Hwang BY, Appelboom G, Connolly ES Jr. Clinical trials for neuroprotective therapies in intracerebral hemorrhage: a new roadmap from bench to bedside. Transl Stroke Res. 2012;3(4):409–17.

    Article  PubMed  Google Scholar 

  153. Fan W, Li X, Zhang D, Li H, Shen H, Liu Y, et al. Detrimental role of miRNA-144-3p in intracerebral hemorrhage induced secondary brain injury is mediated by formyl peptide receptor 2 downregulation both in vivo and in vitro. Cell Transplant. 2018;28(6):723–38.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Shen H, Liu C, Zhang D, Yao X, Zhang K, Li H, et al. Role for RIP1 in mediating necroptosis in experimental intracerebral hemorrhage model both in vivo and in vitro. Cell Death Dis. 2017;8(3):e2641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zhang Z, Wu Y, Yuan S, Zhang P, Zhang J, Li H, et al. Glutathione peroxidase 4 participates in secondary brain injury through mediating ferroptosis in a rat model of intracerebral hemorrhage. Brain Res. 2018;1701:112–25.

    Article  CAS  PubMed  Google Scholar 

  156. Li H, Wu J, Shen H, Yao X, Liu C, Pianta S, et al. Autophagy in hemorrhagic stroke: mechanisms and clinical implications. Prog Neurobiol. 2018;163-164:79–97.

    Article  CAS  PubMed  Google Scholar 

  157. Li H, Gao A, Feng D, Wang Y, Zhang L, Cui Y, et al. Evaluation of the protective potential of brain microvascular endothelial cell autophagy on blood-brain barrier integrity during experimental cerebral ischemia-reperfusion injury. Transl Stroke Res. 2014;5(5):618–26.

    Article  PubMed  Google Scholar 

  158. Armstead WM, Hekierski H, Pastor P, Yarovoi S, Higazi AA, Cines DB. Release of IL-6 after stroke contributes to impaired cerebral autoregulation and hippocampal neuronal necrosis through NMDA receptor activation and upregulation of ET-1 and JNK. Transl Stroke Res. 2018;10(1):104–11.

    Article  PubMed  Google Scholar 

  159. Wang Z, Chen Z, Yang J, Yang Z, Yin J, Duan X, et al. Treatment of secondary brain injury by perturbing postsynaptic density protein-95-NMDA receptor interaction after intracerebral hemorrhage in rats. J Cereb Blood Flow Metab. 2019;39(8):1588–601.

    Article  CAS  PubMed  Google Scholar 

  160. Suzumura A. The role of microglia in neuroinflammation. Brain Nerve. 2017;69(9):975–84.

    CAS  PubMed  Google Scholar 

  161. Walsh JG, Muruve DA, Power C. Inflammasomes in the CNS. Nat Rev Neurosci. 2014;15(2):84–97.

    Article  CAS  PubMed  Google Scholar 

  162. Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5(1):53–63.

    Article  PubMed  Google Scholar 

  163. Wu Y, Wang L, Hu K, Yu C, Zhu Y, Zhang S, et al. Mechanisms and therapeutic targets of depression after intracerebral hemorrhage. Front Psych. 2018;9:682.

    Article  Google Scholar 

  164. Shao Z, Tu S, Shao A. Pathophysiological mechanisms and potential therapeutic targets in intracerebral hemorrhage. Front Pharmacol. 2019;10:1079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Saand AR, Yu F, Chen J, Chou SH. Systemic inflammation in hemorrhagic strokes - a novel neurological sign and therapeutic target? J Cereb Blood Flow Metab. 2019;39(6):959–88.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Xiong XY, Liu L, Yang QW. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog Neurobiol. 2016;142:23–44.

    Article  CAS  PubMed  Google Scholar 

  167. Wu J, Sun L, Li H, Shen H, Zhai W, Yu Z, et al. Roles of programmed death protein 1/programmed death-ligand 1 in secondary brain injury after intracerebral hemorrhage in rats: selective modulation of microglia polarization to anti-inflammatory phenotype. J Neuroinflammation. 2017;14(1):36.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Chen ZQ, Yu H, Li HY, Shen HT, Li X, Zhang JY, et al. Negative regulation of glial Tim-3 inhibits the secretion of inflammatory factors and modulates microglia to antiinflammatory phenotype after experimental intracerebral hemorrhage in rats. CNS Neurosci Ther. 2019;25(6):674–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wang YC, Wang PF, Fang H, Chen J, Xiong XY, Yang QW. Toll-like receptor 4 antagonist attenuates intracerebral hemorrhage-induced brain injury. Stroke. 2013;44(9):2545–52.

    Article  CAS  PubMed  Google Scholar 

  170. Wang YC, Zhou Y, Fang H, Lin S, Wang PF, Xiong RP, et al. Toll-like receptor 2/4 heterodimer mediates inflammatory injury in intracerebral hemorrhage. Ann Neurol. 2014;75(6):876–89.

    Article  CAS  PubMed  Google Scholar 

  171. Kim YS, Kwon JS, Cho YK, Jeong MH, Cho JG, Park JC, et al. Curcumin reduces the cardiac ischemia-reperfusion injury: involvement of the toll-like receptor 2 in cardiomyocytes. J Nutr Biochem. 2012;23(11):1514–23.

    Article  CAS  PubMed  Google Scholar 

  172. Park SJ, Youn HS. Suppression of homodimerization of toll-like receptor 4 by isoliquiritigenin. Phytochemistry. 2010;71(14-15):1736–40.

    Article  CAS  PubMed  Google Scholar 

  173. Wang Z, Wu L, You W, Ji C, Chen G. Melatonin alleviates secondary brain damage and neurobehavioral dysfunction after experimental subarachnoid hemorrhage: possible involvement of TLR4-mediated inflammatory pathway. J Pineal Res. 2013;55(4):399–408.

    Article  CAS  PubMed  Google Scholar 

  174. Shao Z, Jiao B, Liu T, Cheng Y, Liu H, Liu Y. TAK-242 treatment ameliorates liver ischemia/reperfusion injury by inhibiting TLR4 signaling pathway in a swine model of Maastricht-category-III cardiac death. Biomed Pharmacother. 2016;84:495–501.

    Article  CAS  PubMed  Google Scholar 

  175. Hua F, Tang H, Wang J, Prunty MC, Hua X, Sayeed I, et al. TAK-242, an antagonist for Toll-like receptor 4, protects against acute cerebral ischemia/reperfusion injury in mice. J Cereb Blood Flow Metab. 2015;35(4):536–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Nakamura M, Shimizu Y, Sato Y, Miyazaki Y, Satoh T, Mizuno M, et al. Toll-like receptor 4 signal transduction inhibitor, M62812, suppresses endothelial cell and activation and prevents lethal septic shock in mice. Eur J Pharmacol. 2007;569(3):237–43.

    Article  CAS  PubMed  Google Scholar 

  177. Wang T, Nowrangi D, Yu L, Lu T, Tang J, Han B, et al. Activation of dopamine D1 receptor decreased NLRP3-mediated inflammation in intracerebral hemorrhage mice. J Neuroinflammation. 2018;15(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Li X, Wang T, Zhang D, Li H, Shen H, Ding X, et al. Andrographolide ameliorates intracerebral hemorrhage induced secondary brain injury by inhibiting neuroinflammation induction. Neuropharmacology. 2018;141:305–15.

    Article  CAS  PubMed  Google Scholar 

  179. Mollica L, De Marchis F, Spitaleri A, Dallacosta C, Pennacchini D, Zamai M, et al. Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chem Biol. 2007;14(4):431–41.

    Article  CAS  PubMed  Google Scholar 

  180. Tian X, Liu C, Shu Z, Chen G. Review: Therapeutic targeting of HMGB1 in stroke. Curr Drug Deliv. 2017;14(6):785–90.

    Article  CAS  PubMed  Google Scholar 

  181. Gautam J, Miner JH, Yao Y. Loss of endothelial laminin alpha5 exacerbates hemorrhagic brain injury. Transl Stroke Res. 2019;10(6):705–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Zhang S, Hu ZW, Luo HY, Mao CY, Tang MB, Li YS, et al. AAV/BBB-mediated gene transfer of CHIP attenuates brain injury following experimental intracerebral hemorrhage. Transl Stroke Res. 2020;11(2):296–309.

    Article  PubMed  Google Scholar 

  183. Wanyong Y, Zefeng T, Xiufeng X, Dawei D, Xiaoyan L, Ying Z, et al. Tempol alleviates intracerebral hemorrhage-induced brain injury possibly by attenuating nitrative stress. Neuroreport. 2015;26(14):842–9.

    Article  PubMed  Google Scholar 

  184. Xie RX, Li DW, Liu XC, Yang MF, Fang J, Sun BL, et al. Carnosine attenuates brain oxidative stress and apoptosis after intracerebral hemorrhage in rats. Neurochem Res. 2017;42(2):541–51.

    Article  CAS  PubMed  Google Scholar 

  185. Yang Y, Zhang Y, Wang Z, Wang S, Gao M, Xu R, et al. Attenuation of acute phase injury in rat intracranial hemorrhage by cerebrolysin that inhibits brain edema and inflammatory response. Neurochem Res. 2016;41(4):748–57.

    Article  CAS  PubMed  Google Scholar 

  186. Sun Y, Dai M, Wang Y, Wang W, Sun Q, Yang GY, et al. Neuroprotection and sensorimotor functional improvement by curcumin after intracerebral hemorrhage in mice. J Neurotrauma. 2011;28(12):2513–21.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Chen H, Guan B, Chen X, Chen X, Li C, Qiu J, et al. Baicalin attenuates blood-brain barrier disruption and hemorrhagic transformation and improves neurological outcome in ischemic stroke rats with delayed t-PA treatment: involvement of ONOO(-)-MMP-9 pathway. Transl Stroke Res. 2017;9(5):515–29.

    Article  PubMed  Google Scholar 

  188. Pang J, Chen Y, Kuai L, Yang P, Peng J, Wu Y, et al. Inhibition of blood-brain barrier disruption by an apolipoprotein E-mimetic peptide ameliorates early brain injury in experimental subarachnoid hemorrhage. Transl Stroke Res. 2017;8(3):257–72.

    Article  CAS  PubMed  Google Scholar 

  189. Liu H, Wang Y, Xiao Y, Hua Z, Cheng J, Jia J. Hydrogen sulfide attenuates tissue plasminogen activator-induced cerebral hemorrhage following experimental stroke. Transl Stroke Res. 2016;7(3):209–19.

    Article  CAS  PubMed  Google Scholar 

  190. Wu B, Ma Q, Khatibi N, Chen W, Sozen T, Cheng O, et al. Ac-YVAD-CMK Decreases blood-brain barrier degradation by inhibiting caspase-1 activation of interleukin-1beta in intracerebral hemorrhage mouse model. Transl Stroke Res. 2010;1(1):57–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Lu Z, Wang Z, Yu L, Ding Y, Xu Y, Xu N, et al. GCN2 reduces inflammation by p-eIF2alpha/ATF4 pathway after intracerebral hemorrhage in mice. Exp Neurol. 2018;313:16–25.

    Article  PubMed  Google Scholar 

  192. Wang G, Li Z, Li S, Ren J, Suresh V, Xu D, et al. Minocycline preserves the integrity and permeability of BBB by altering the activity of DKK1-Wnt signaling in ICH model. Neuroscience. 2019;415:135–46.

    Article  CAS  PubMed  Google Scholar 

  193. Zhao Z, Zlokovic BV. Blood-brain barrier: a dual life of MFSD2A? Neuron. 2014;82(4):728–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Wang Z, Chen Z, Yang J, Yang Z, Yin J, Zuo G, et al. Identification of two phosphorylation sites essential for annexin A1 in blood-brain barrier protection after experimental intracerebral hemorrhage in rats. J Cereb Blood Flow Metab. 2017;37(7):2509–25.

    Article  PubMed  Google Scholar 

  195. Park JC, Baik SH, Han SH, Cho HJ, Choi H, Kim HJ, et al. Annexin A1 restores Abeta1-42 -induced blood-brain barrier disruption through the inhibition of RhoA-ROCK signaling pathway. Aging Cell. 2017;16(1):149–61.

    Article  CAS  PubMed  Google Scholar 

  196. Rosenberg GA, Navratil M. Metalloproteinase inhibition blocks edema in intracerebral hemorrhage in the rat. Neurology. 1997;48(4):921–6.

    Article  CAS  PubMed  Google Scholar 

  197. Katsu M, Niizuma K, Yoshioka H, Okami N, Sakata H, Chan PH. Hemoglobin-induced oxidative stress contributes to matrix metalloproteinase activation and blood-brain barrier dysfunction in vivo. J Cereb Blood Flow Metab. 2010;30(12):1939–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Lei C, Lin S, Zhang C, Tao W, Dong W, Hao Z, et al. Activation of cerebral recovery by matrix metalloproteinase-9 after intracerebral hemorrhage. Neuroscience. 2013;230:86–93.

    Article  CAS  PubMed  Google Scholar 

  199. Han X, Zhao X, Lan X, Li Q, Gao Y, Liu X, et al. 20-HETE synthesis inhibition promotes cerebral protection after intracerebral hemorrhage without inhibiting angiogenesis. J Cereb Blood Flow Metab. 2019;39(8):1531–43.

    Article  CAS  PubMed  Google Scholar 

  200. Li H, Xu H, Wen H, Liu T, Sun Y, Xiao N, et al. Overexpression of LH3 reduces the incidence of hypertensive intracerebral hemorrhage in mice. J Cereb Blood Flow Metab. 2019;39(3):547–61.

    Article  CAS  PubMed  Google Scholar 

  201. Zhao X, Kruzel M, Ting SM, Sun G, Savitz SI, Aronowski J. Optimized lactoferrin as a highly promising treatment for intracerebral hemorrhage: Pre-clinical experience. J Cereb Blood Flow Metab. 2020;41(1):53–66.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Jiang B, Li L, Chen Q, Tao Y, Yang L, Zhang B, et al. Role of glibenclamide in brain injury after intracerebral hemorrhage. Transl Stroke Res. 2017;8(2):183–93.

    Article  CAS  PubMed  Google Scholar 

  203. Sukumari-Ramesh S, Alleyne CH Jr, Dhandapani KM. The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) confers acute neuroprotection after intracerebral hemorrhage in mice. Transl Stroke Res. 2016;7(2):141–8.

    Article  CAS  PubMed  Google Scholar 

  204. Yu L, Lu Z, Burchell S, Nowrangi D, Manaenko A, Li X, et al. Adropin preserves the blood-brain barrier through a Notch1/Hes1 pathway after intracerebral hemorrhage in mice. J Neurochem. 2017;143(6):750–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Zhao L, Chen S, Sherchan P, Ding Y, Zhao W, Guo Z, et al. Recombinant CTRP9 administration attenuates neuroinflammation via activating adiponectin receptor 1 after intracerebral hemorrhage in mice. J Neuroinflammation. 2018;15(1):215.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Gladstone DJ, Aviv RI, Demchuk AM, Hill MD, Thorpe KE, Khoury JC, et al. Effect of recombinant activated coagulation factor VII on hemorrhage expansion among patients with spot sign-positive acute intracerebral hemorrhage: the SPOTLIGHT and STOP-IT randomized clinical trials. JAMA Neurol. 2019;76(12):1493–501.

    Article  PubMed Central  PubMed  Google Scholar 

  207. Selim M, Foster LD, Moy CS, Xi G, Hill MD, Morgenstern LB, et al. Deferoxamine mesylate in patients with intracerebral haemorrhage (i-DEF): a multicentre, randomised, placebo-controlled, double-blind phase 2 trial. Lancet Neurol. 2019;18(5):428–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Lyden PD, Shuaib A, Lees KR, Davalos A, Davis SM, Diener HC, et al. Safety and tolerability of NXY-059 for acute intracerebral hemorrhage: the CHANT Trial. Stroke. 2007;38(8):2262–9.

    Article  CAS  PubMed  Google Scholar 

  209. Lee SH, Park HK, Ryu WS, Lee JS, Bae HJ, Han MK, et al. Effects of celecoxib on hematoma and edema volumes in primary intracerebral hemorrhage: a multicenter randomized controlled trial. Eur J Neurol. 2013;20(8):1161–9.

    Article  PubMed  Google Scholar 

  210. Tapia-Perez H, Sanchez-Aguilar M, Torres-Corzo JG, Rodriguez-Leyva I, Gonzalez-Aguirre D, Gordillo-Moscoso A, et al. Use of statins for the treatment of spontaneous intracerebral hemorrhage: results of a pilot study. Cent Eur Neurosurg. 2009;70(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  211. De Michele M, Touzani O, Foster AC, Fieschi C, Sette G, McCulloch J. Corticotropin-releasing factor: effect on cerebral blood flow in physiologic and ischaemic conditions. Exp Brain Res. 2005;165(3):375–82.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaocheng Lu or Xiang Li.

Ethics declarations

Compliance with Ethics Requirements

The study was approved by the Ethics Committee of the First Affiliated Hospital of Soochow University. And there is no human or animal subject in this article.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Xu, X., Wang, T. et al. Neurovascular Units and Neural-Glia Networks in Intracerebral Hemorrhage: from Mechanisms to Translation. Transl. Stroke Res. 12, 447–460 (2021). https://doi.org/10.1007/s12975-021-00897-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-021-00897-2

Keywords

Navigation