Skip to main content

Advertisement

Log in

Neuroinflammation in Acute Ischemic and Hemorrhagic Stroke

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review aims to provide an overview of neuroinflammation in ischemic and hemorrhagic stroke, including recent findings on the mechanisms and cellular players involved in the inflammatory response to brain injury.

Recent Findings

Neuroinflammation is a crucial process following acute ischemic stroke (AIS) and hemorrhagic stroke (HS). In AIS, neuroinflammation is initiated within minutes of the ischemia onset and continues for several days. In HS, neuroinflammation is initiated by blood byproducts in the subarachnoid space and/or brain parenchyma. In both cases, neuroinflammation is characterized by the activation of resident immune cells, such as microglia and astrocytes, and infiltration of peripheral immune cells, leading to the release of pro-inflammatory cytokines, chemokines, and reactive oxygen species. These inflammatory mediators contribute to blood-brain barrier disruption, neuronal damage, and cerebral edema, promoting neuronal apoptosis and impairing neuroplasticity, ultimately exacerbating the neurologic deficit. However, neuroinflammation can also have beneficial effects by clearing cellular debris and promoting tissue repair. The role of neuroinflammation in AIS and ICH is complex and multifaceted, and further research is necessary to develop effective therapies that target this process. Intracerebral hemorrhage (ICH) will be the HS subtype addressed in this review.

Summary

Neuroinflammation is a significant contributor to brain tissue damage following AIS and HS. Understanding the mechanisms and cellular players involved in neuroinflammation is essential for developing effective therapies to reduce secondary injury and improve stroke outcomes. Recent findings have provided new insights into the pathophysiology of neuroinflammation, highlighting the potential for targeting specific cytokines, chemokines, and glial cells as therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

ADPKD:

Autosomal dominant polycystic kidney disease

AIS:

Acute ischemic stroke

AMPA:

a-Amino-3-hydroxy-5-methyl-4 isoxazole-propionic acid

ASCVD:

Atherosclerotic cardiovascular disease

AVMs:

Arteriovenous malformations

BBB:

Blood-brain barrier

BDNF:

Brain-derived neurotrophic factor

CAA:

Cerebral amyloid angiopathy

CBF:

Cerebral blood flow

CCR6:

Chemokine receptor 6

CNS:

Central nervous system

CRP:

C-reactive protein

CSF:

Cerebrospinal fluid

CVD:

Cardiovascular disease

DAMPs:

Danger-associated molecular patterns

EAAT2:

Excitatory amino acid transporter 2

GCS:

Glasgow Coma Scale

GDNF:

Glial cell line-derived neurotrophic factor

GFAP:

Glial fibrillary acidic protein

HIF-1α:

Hypoxia-inducible factor-1alpha

HMGB1:

High mobility group box-1

HPA:

Hypothalamic pituitary adrenal

HS:

Hemorrhagic stroke

ICAM:

Intracellular adhesion molecule

ICH:

Intracerebral hemorrhage

ICP:

Intracranial pressure

IFN-γ:

Interferon-gamma

IL-1β:

Interleukin-1beta

IRF:

Interferon regulatory factor

LAA:

Large artery atherosclerosis

LPS:

Lipopolysaccharides

MAC:

Membrane attack complex

MAdCAM-1:

Mucosal vascular adhesion molecule -1

MAPK:

Mitogen-activated protein kinase

MCI:

Mild cognitive impairment

MMPs:

Matrix metalloproteinases

MS:

Multiple sclerosis

NETs:

Neutrophil extracellular traps

NF-Κβ:

Nuclear factor kappa beta

Nrf2:

Nuclear factor erythroid 2-related factor 2

OPN:

Osteopontin

PAMPs:

Pathogen-associated molecular pattern molecules

PDGF:

Platelet-derived growth factor

PECAM-1:

Platelet and endothelial cell adhesion molecule-1

PPAR-γ:

Peroxisome proliferator-activated receptor gamma

PRRs:

Pattern recognition receptors

PSD:

Post-stroke depression

PSF:

Post-stroke fatigue

RAGE:

Receptor for advanced glycation end products

ROS:

Reactive oxygen species

SDF-1:

Stromal cell-derived factor-1

SEFIR:

SEF/IL-17R

SNS:

Sympathetic nervous system

Sox2:

SRY-box 2

SVD:

Small vessel disease

TGF-β:

Transforming growth factor beta

TLR:

Toll-like receptor

TNF-α:

Tumor necrosis factor-alpha

T-regs:

Regulatory T-cells

VCAM-1:

Vascular cell adhesion molecule-1

VEGF:

Vascular endothelial growth factor

VNS:

Vagus nerve stimulation

vWF:

Von Willebrand factor

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kleindorfer DO, Towfighi A, Chaturvedi S, Cockroft KM, Gutierrez J, Lombardi-Hill D, et al. 2021 Guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the American Heart Association/American Stroke Association. Stroke. 2021;52(7):e364–467. https://doi.org/10.1161/STR.0000000000000375.

    Article  PubMed  Google Scholar 

  2. •• Jung S, Gilgen M, Slotboom J, El-Koussy M, Zubler C, Kiefer C, et al. Factors that determine penumbral tissue loss in acute ischaemic stroke. Brain. 2013;136(Pt 12):3554–60. https://doi.org/10.1093/brain/awt246. This article examines the factors that contribute to the loss of penumbral tissue in cases of acute ischemic stroke. The study identifies variables such as time to treatment, collateral circulation, and infarct core size as critical determinants of penumbral tissue loss.

    Article  PubMed  Google Scholar 

  3. Jurcau A, Simion A. Neuroinflammation in cerebral ischemia and ischemia/reperfusion injuries: from pathophysiology to therapeutic strategies. Int J Mol Sci. 2021;23(1):14. https://doi.org/10.3390/ijms23010014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. Journal of neurochemistry. 2016;139(Suppl 2):136–53. https://doi.org/10.1111/jnc.13607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. •• Schaeffer S, Iadecola C. Revisiting the neurovascular unit. Nat Neurosci. 2021;24(9):1198–209. https://doi.org/10.1038/s41593-021-00904-7. This article revisits the concept of the neurovascular unit, emphasizing its crucial role in maintaining brain function and highlighting its relevance in neurological disorders. The review provides insights into the molecular and cellular mechanisms underlying neurovascular unit dysfunction and highlights its potential as a therapeutic target for various neurological conditions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jurcau A, Ardelean IA. Molecular pathophysiological mechanisms of ischemia/reperfusion injuries after recanalization therapy for acute ischemic stroke. J Integr Neurosci. 2021;20(3):727–44. https://doi.org/10.31083/j.jin2003078.

    Article  PubMed  Google Scholar 

  7. Khoshnam SE, Winlow W, Farzaneh M, Farbood Y, Moghaddam HF. Pathogenic mechanisms following ischemic stroke. Neurol Sci. 2017;38(7):1167–86. https://doi.org/10.1007/s10072-017-2938-1.

    Article  PubMed  Google Scholar 

  8. Yang C, Hawkins KE, Dore S, Candelario-Jalil E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol. 2019;316(2):C135–C53. https://doi.org/10.1152/ajpcell.00136.2018.

    Article  CAS  PubMed  Google Scholar 

  9. Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron. 2010;67(2):181–98. https://doi.org/10.1016/j.neuron.2010.07.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Haeusler KG, Schmidt WU, Fohring F, Meisel C, Helms T, Jungehulsing GJ, et al. Cellular immunodepression preceding infectious complications after acute ischemic stroke in humans. Cerebrovasc Dis. 2008;25(1-2):50–8. https://doi.org/10.1159/000111499.

    Article  CAS  PubMed  Google Scholar 

  11. Dropulic LK, Lederman HM. Overview of infections in the immunocompromised host. Microbiol Spectr. 2016;4(4):1–50. https://doi.org/10.1128/microbiolspec.DMIH2-0026-2016.

    Article  CAS  Google Scholar 

  12. •• Simats A, Liesz A. Systemic inflammation after stroke: implications for post-stroke comorbidities. EMBO Mol Med. 2022;14(9):e16269. https://doi.org/10.15252/emmm.202216269. The review highlights that stroke triggers an inflammatory response throughout the body, not just in the brain, which can have significant consequences for various organs and systems. Understanding the relationship between systemic inflammation and post-stroke comorbidities is crucial for the development of preventive and therapeutic strategies aimed at reducing the burden of these complications and improving the long-term outcomes of stroke patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maida CD, Norrito RL, Daidone M, Tuttolomondo A, Pinto A. Neuroinflammatory mechanisms in ischemic stroke: focus on cardioembolic stroke, background, and therapeutic approaches. Int J Mol Sci. 2020;21(18):6454. https://doi.org/10.3390/ijms21186454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57(2):173–85. https://doi.org/10.1124/pr.57.2.4.

    Article  CAS  PubMed  Google Scholar 

  15. •• Lochhead JJ, Yang J, Ronaldson PT, Davis TP. Structure, function, and regulation of the blood-brain barrier tight junction in central nervous system disorders. Front Physiol. 2020;11:914. https://doi.org/10.3389/fphys.2020.00914. The review highlights the critical role of the BBB in maintaining brain homeostasis by tightly regulating the passage of molecules between the blood and the brain. Understanding the mechanisms underlying BBB tight junction disruption provides insights into potential therapeutic targets for the treatment of CNS disorders and the development of strategies to enhance drug delivery to the brain.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bernardo-Castro S, Sousa JA, Bras A, Cecilia C, Rodrigues B, Almendra L, et al. Pathophysiology of blood-brain barrier permeability throughout the different stages of ischemic stroke and its implication on hemorrhagic transformation and recovery. Front Neurol. 2020;11:594672. https://doi.org/10.3389/fneur.2020.594672.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nayak AR, Kashyap RS, Kabra D, Purohit HJ, Taori GM, Daginawala HF. Time course of inflammatory cytokines in acute ischemic stroke patients and their relation to inter-alfa trypsin inhibitor heavy chain 4 and outcome. Ann Indian Acad Neurol. 2012;15(3):181–5. https://doi.org/10.4103/0972-2327.99707.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kaur D, Sharma V, Deshmukh R. Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer's disease. Inflammopharmacology. 2019;27(4):663–77. https://doi.org/10.1007/s10787-019-00580-x.

    Article  PubMed  Google Scholar 

  19. Mastronardi C, Whelan F, Yildiz OA, Hannestad J, Elashoff D, McCann SM, et al. Caspase 1 deficiency reduces inflammation-induced brain transcription. Proc Natl Acad Sci U S A. 2007;104(17):7205–10. https://doi.org/10.1073/pnas.0701366104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hill WD, Hess DC, Martin-Studdard A, Carothers JJ, Zheng J, Hale D, et al. SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke: association with bone marrow cell homing to injury. J Neuropathol Exp Neurol. 2004;63(1):84–96. https://doi.org/10.1093/jnen/63.1.84.

    Article  CAS  PubMed  Google Scholar 

  21. •• Sadri F, Rezaei Z, Fereidouni M. The significance of the SDF-1/CXCR4 signaling pathway in the normal development. Mol Biol Rep. 2022;49(4):3307–20. https://doi.org/10.1007/s11033-021-07069-3. This article highlights the significance of the SDF-1/CXCR4 signaling pathway in normal development processes. The review emphasizes the crucial role of this pathway in various biological events, including embryogenesis, organogenesis, tissue repair, and immune cell trafficking.

    Article  CAS  PubMed  Google Scholar 

  22. Linnerbauer M, Wheeler MA, Quintana FJ. Astrocyte crosstalk in CNS inflammation. Neuron. 2020;108(4):608–22. https://doi.org/10.1016/j.neuron.2020.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. •• Zhou SY, Guo ZN, Zhang DH, Qu Y, Jin H. The role of pericytes in ischemic stroke: fom cellular functions to therapeutic targets. Front Mol Neurosci. 2022;15:866700. https://doi.org/10.3389/fnmol.2022.866700. This article explores the role of pericytes in ischemic stroke, highlighting their diverse cellular functions and their potential as therapeutic targets. The review emphasizes the involvement of pericytes in maintaining blood-brain barrier integrity, regulating cerebral blood flow, modulating inflammation, and influencing neurovascular remodeling, thereby suggesting their importance in stroke pathophysiology and potential for targeted interventions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sakuma R, Kawahara M, Nakano-Doi A, Takahashi A, Tanaka Y, Narita A, et al. Brain pericytes serve as microglia-generating multipotent vascular stem cells following ischemic stroke. J Neuroinflammation. 2016;13(1):57. https://doi.org/10.1186/s12974-016-0523-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guijarro-Munoz I, Compte M, Alvarez-Cienfuegos A, Alvarez-Vallina L, Sanz L. Lipopolysaccharide activates Toll-like receptor 4 (TLR4)-mediated NF-kappaB signaling pathway and proinflammatory response in human pericytes. J Biol Chem. 2014;289(4):2457–68. https://doi.org/10.1074/jbc.M113.521161.

    Article  CAS  PubMed  Google Scholar 

  26. Jin R, Liu L, Zhang S, Nanda A, Li G. Role of inflammation and its mediators in acute ischemic stroke. J Cardiovasc Transl Res. 2013;6(5):834–51. https://doi.org/10.1007/s12265-013-9508-6.

    Article  PubMed  Google Scholar 

  27. Chen R, Zhang X, Gu L, Zhu H, Zhong Y, Ye Y, et al. New insight into neutrophils: a potential therapeutic target for cerebral ischemia. Front Immunol. 2021;12:692061. https://doi.org/10.3389/fimmu.2021.692061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao X, Wang H, Sun G, Zhang J, Edwards NJ, Aronowski J. Neuronal interleukin-4 as a modulator of microglial pathways and ischemic brain damage. J Neurosci. 2015;35(32):11281–91. https://doi.org/10.1523/JNEUROSCI.1685-15.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liesz A, Hu X, Kleinschnitz C, Offner H. Functional role of regulatory lymphocytes in stroke: facts and controversies. Stroke. 2015;46(5):1422–30. https://doi.org/10.1161/STROKEAHA.114.008608.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med. 2009;15(2):192–9. https://doi.org/10.1038/nm.1927.

    Article  CAS  PubMed  Google Scholar 

  31. Lužnik Z, Anchouche S, Dana R, Yin J. Regulatory T cells in angiogenesis. J Immunol. 2020;205(10):2557–65. https://doi.org/10.4049/jimmunol.2000574.

    Article  CAS  PubMed  Google Scholar 

  32. •• Li P, Gan Y, Sun BL, Zhang F, Lu B, Gao Y, et al. Adoptive regulatory T-cell therapy protects against cerebral ischemia. Ann Neurol. 2013;74(3):458–71. https://doi.org/10.1002/ana.23815. This study demonstrates that adoptive regulatory T-cell (Treg) therapy has a protective effect against cerebral ischemia, offering potential therapeutic benefits. The findings highlight the role of Treg cells in modulating immune responses and reducing inflammation in the brain, suggesting their potential as a targeted therapy for the treatment of cerebral ischemia and related conditions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Haley MJ, Lawrence CB. The blood-brain barrier after stroke: structural studies and the role of transcytotic vesicles. J Cereb Blood Flow Metab. 2017;37(2):456–70. https://doi.org/10.1177/0271678X16629976.

    Article  PubMed  Google Scholar 

  34. Hasel P, Cooper ML, Marchildon AE, Rufen-Blanchette UA, Kim RD, Ma TC et al. Defining the molecular identity and morphology of glia limitans superficialis astrocytes in mouse and human. https://www.biorxiv.org/content/10.1101/2023.04.06.535893v1.abstract. 2023

  35. Ioghen O, Chitoiu L, Gherghiceanu M, Ceafalan LC, Hinescu ME. CD36 - A novel molecular target in the neurovascular unit. Eur J Neurosci. 2021;53(8):2500–10. https://doi.org/10.1111/ejn.15147.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Otxoa-de-Amezaga A, Gallizioli M, Pedragosa J, Justicia C, Miro-Mur F, Salas-Perdomo A, et al. Location of neutrophils in different compartments of the damaged mouse brain after severe ischemia/reperfusion. Stroke. 2019;50(6):1548–57. https://doi.org/10.1161/STROKEAHA.118.023837.

    Article  CAS  PubMed  Google Scholar 

  37. Cugurra A, Mamuladze T, Rustenhoven J, Dykstra T, Beroshvili G, Greenberg ZJ, et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science. 2021;373(6553):eabf7844. https://doi.org/10.1126/science.abf7844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Herisson F, Frodermann V, Courties G, Rohde D, Sun Y, Vandoorne K, et al. Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat Neurosci. 2018;21(9):1209–17. https://doi.org/10.1038/s41593-018-0213-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Angelini G, Bani A, Constantin G, Rossi B. The interplay between T helper cells and brain barriers in the pathogenesis of multiple sclerosis. Front Cell Neurosci. 2023;17:1101379. https://doi.org/10.3389/fncel.2023.1101379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Steffen BJ, Breier G, Butcher EC, Schulz M, Engelhardt B. ICAM-1, VCAM-1, and MAdCAM-1 are expressed on choroid plexus epithelium but not endothelium and mediate binding of lymphocytes in vitro. The American journal of pathology. 1996;148(6):1819–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Strominger I, Elyahu Y, Berner O, Reckhow J, Mittal K, Nemirovsky A, et al. The choroid plexus functions as a niche for t-cell stimulation within the central nervous system. Front Immunol. 2018;9:1066. https://doi.org/10.3389/fimmu.2018.01066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stegner D, Klaus V, Nieswandt B. Platelets as modulators of cerebral ischemia/reperfusion injury. Front Immunol. 2019;10:2505. https://doi.org/10.3389/fimmu.2019.02505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. • Denorme F, De Meyer SF. The VWF-GPIb axis in ischaemic stroke: lessons from animal models. Thromb Haemost. 2016;116(4):597–604. https://doi.org/10.1160/TH16-01-0036. This article explores the role of the von Willebrand factor (VWF)-GPIb axis in ischemic stroke using animal models. It provides insights into the mechanisms underlying VWF-GPIb interactions and their implications in stroke pathophysiology, including thrombus formation, platelet activation, and endothelial dysfunction. The findings highlight the potential of targeting the VWF-GPIb axis as a therapeutic approach for preventing or treating ischemic stroke.

    Article  PubMed  Google Scholar 

  44. Rezkalla SH, Kloner RA. No-reflow phenomenon. Circulation. 2002;105(5):656–62. https://doi.org/10.1161/hc0502.102867.

    Article  PubMed  Google Scholar 

  45. Blair P, Flaumenhaft R. Platelet alpha-granules: basic biology and clinical correlates. Blood Rev. 2009;23(4):177–89. https://doi.org/10.1016/j.blre.2009.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cognasse F, Duchez AC, Audoux E, Ebermeyer T, Arthaud CA, Prier A, et al. Platelets as key factors in inflammation: focus on CD40L/CD40. Front Immunol. 2022;13:825892. https://doi.org/10.3389/fimmu.2022.825892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nguyen QL, Okuno N, Hamashima T, Dang ST, Fujikawa M, Ishii Y, et al. Vascular PDGFR-alpha protects against BBB dysfunction after stroke in mice. Angiogenesis. 2021;24(1):35–46. https://doi.org/10.1007/s10456-020-09742-w.

    Article  CAS  PubMed  Google Scholar 

  48. Krupinski J, Issa R, Bujny T, Slevin M, Kumar P, Kumar S, et al. A putative role for platelet-derived growth factor in angiogenesis and neuroprotection after ischemic stroke in humans. Stroke. 1997;28(3):564–73. https://doi.org/10.1161/01.str.28.3.564.

    Article  CAS  PubMed  Google Scholar 

  49. Rawish E, Nording H, Munte T, Langer HF. Platelets as mediators of neuroinflammation and thrombosis. Front Immunol. 2020;11:548631. https://doi.org/10.3389/fimmu.2020.548631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. •• Endres M, Moro MA, Nolte CH, Dames C, Buckwalter MS, Meisel A. Immune pathways in etiology, acute phase, and chronic sequelae of ischemic stroke. Circ Res. 2022;130(8):1167–86. https://doi.org/10.1161/CIRCRESAHA.121.319994. This article examines immune pathways involved in the etiology, acute phase, and chronic sequelae of ischemic stroke. It highlights the complex interplay between inflammatory responses, immune cell activation, and the neurovascular unit in different stages of stroke, providing insights into potential therapeutic targets for mitigating acute brain damage and preventing long-term complications.

    Article  CAS  PubMed  Google Scholar 

  51. • Tariq MB, Lee J, LD MC. Sex differences in the inflammatory response to stroke. In: Seminars in immunopathology. Berlin/Heidelberg: Springer Berlin Heidelberg; 2022. p. 1–19. https://doi.org/10.1007/s00281-022-00969-x. This article explores sex differences in the inflammatory response to stroke, highlighting the distinct immune responses observed between males and females. The review emphasizes the importance of considering sex as a biological variable in stroke research and suggests that understanding these sex-specific differences in inflammation could lead to tailored therapeutic strategies and improved outcomes for both male and female stroke patients.

    Chapter  Google Scholar 

  52. Harry GJ, McPherson CA. Microglia: neuroprotective and neurodestructive properties. In: Kostrzewa RM, editor. Handbook of Neurotoxicity. New York, NY: Springer New York; 2014. p. 109–32.

    Chapter  Google Scholar 

  53. •• Wang Y, Leak RK, Cao G. Microglia-mediated neuroinflammation and neuroplasticity after stroke. Front Cell Neurosci. 2022;16:980722. https://doi.org/10.3389/fncel.2022.980722. This review article focuses on microglia-mediated neuroinflammation and neuroplasticity following a stroke. It highlights the role of microglia, the resident immune cells in the brain, in the post-stroke inflammatory response and their influence on neuroplasticity, which refers to the brain's ability to reorganize and form new connections. The article discusses the complex interactions between microglia, inflammatory signaling pathways, and neuronal plasticity processes, shedding light on the potential therapeutic targets for promoting post-stroke recovery and rehabilitation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhao SC, Ma LS, Chu ZH, Xu H, Wu WQ, Liu F. Regulation of microglial activation in stroke. Acta Pharmacol Sin. 2017;38(4):445–58. https://doi.org/10.1038/aps.2016.162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee SS, Pang L, Cheng Y, Liu JX, Ng ACK, Leung GKK. A previous hemorrhagic stroke protects against a subsequent stroke via microglia alternative polarization. Commun Biol. 2022;5(1):654. https://doi.org/10.1038/s42003-022-03621-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke. 2012;43(11):3063–70. https://doi.org/10.1161/STROKEAHA.112.659656.

    Article  CAS  PubMed  Google Scholar 

  57. Anttila JE, Whitaker KW, Wires ES, Harvey BK, Airavaara M. Role of microglia in ischemic focal stroke and recovery: focus on Toll-like receptors. Prog Neuropsychopharmacol Biol Psychiatry. 2017;79(Pt A):3–14. https://doi.org/10.1016/j.pnpbp.2016.07.003.

    Article  CAS  PubMed  Google Scholar 

  58. Varnum MM, Kiyota T, Ingraham KL, Ikezu S, Ikezu T. The anti-inflammatory glycoprotein, CD200, restores neurogenesis and enhances amyloid phagocytosis in a mouse model of Alzheimer's disease. Neuro of aging. 2015;36(11):2995–3007. https://doi.org/10.1016/j.neurobiolaging.2015.07.027.

    Article  CAS  Google Scholar 

  59. Mahmoud S, Gharagozloo M, Simard C, Gris D. Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells. 2019;8(2):184. https://doi.org/10.3390/cells8020184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shen XY, Gao ZK, Han Y, Yuan M, Guo YS, Bi X. Activation and role of astrocytes in ischemic stroke. Front Cell Neurosci. 2021;15:755955. https://doi.org/10.3389/fncel.2021.755955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Marshall JS, Warrington R, Watson W, Kim HL. An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol. 2018;14(Suppl 2):49. https://doi.org/10.1186/s13223-018-0278-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tschoe C, Bushnell CD, Duncan PW, Alexander-Miller MA, Wolfe SQ. Neuroinflammation after intracerebral hemorrhage and potential therapeutic targets. J Stroke. 2020;22(1):29–46. https://doi.org/10.5853/jos.2019.02236.

    Article  PubMed  PubMed Central  Google Scholar 

  63. •• Zhu H, Wang Z, Yu J, Yang X, He F, Liu Z, et al. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Prog Neurobiol. 2019;178:101610. https://doi.org/10.1016/j.pneurobio.2019.03.003. This review article examines the role and mechanisms of cytokines in the secondary brain injury following intracerebral hemorrhage (ICH). It discusses how cytokines, as key mediators of the inflammatory response, contribute to the pathogenesis of secondary brain injury after ICH. The article explores the various cytokines involved, their sources, signaling pathways, and the impact they have on processes such as blood-brain barrier disruption, neuroinflammation, oxidative stress, and neuronal cell death. Understanding the role of cytokines in secondary brain injury can provide insights into potential therapeutic targets for mitigating the harmful effects of ICH and improving patient outcomes.

    Article  CAS  PubMed  Google Scholar 

  64. Zhou Y, Wang Y, Wang J, Anne Stetler R, Yang QW. Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol. 2014;115:25–44. https://doi.org/10.1016/j.pneurobio.2013.11.003.

    Article  CAS  PubMed  Google Scholar 

  65. Palomo J, Dietrich D, Martin P, Palmer G, Gabay C. The interleukin (IL)-1 cytokine family--Balance between agonists and antagonists in inflammatory diseases. Cytokine. 2015;76(1):25–37. https://doi.org/10.1016/j.cyto.2015.06.017.

    Article  CAS  PubMed  Google Scholar 

  66. Garcia JH, Liu KF, Relton JK. Interleukin-1 receptor antagonist decreases the number of necrotic neurons in rats with middle cerebral artery occlusion. Am J Clin Pathol. 1995;147(5):1477–86.

    CAS  Google Scholar 

  67. Betz AL, Yang GY, Davidson BL. Attenuation of stroke size in rats using an adenoviral vector to induce overexpression of interleukin-1 receptor antagonist in brain. J Cereb Blood Flow Metab. 1995;15(4):547–51. https://doi.org/10.1038/jcbfm.1995.68.

    Article  CAS  PubMed  Google Scholar 

  68. Galea J, Ogungbenro K, Hulme S, Patel H, Scarth S, Hoadley M, et al. Reduction of inflammation after administration of interleukin-1 receptor antagonist following aneurysmal subarachnoid hemorrhage: results of the Subcutaneous Interleukin-1Ra in SAH (SCIL-SAH) study. J Neurosurg. 2018;128(2):515–23. https://doi.org/10.3171/2016.9.JNS16615.

    Article  CAS  PubMed  Google Scholar 

  69. Zhu H, Hu S, Li Y, Sun Y, Xiong X, Hu X, et al. Interleukins and ischemic stroke. Front Immunol. 2022;13:828447. https://doi.org/10.3389/fimmu.2022.828447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Di Napoli M, Papa F, Villa Pini Stroke Data Bank I. Inflammation, hemostatic markers, and antithrombotic agents in relation to long-term risk of new cardiovascular events in first-ever ischemic stroke patients. Stroke. 2002;33(7):1763–71. https://doi.org/10.1161/01.str.0000019124.54361.08.

    Article  PubMed  Google Scholar 

  71. Tabarkiewicz J, Pogoda K, Karczmarczyk A, Pozarowski P, Giannopoulos K. The role of IL-17 and Th17 lymphocytes in autoimmune diseases. Arch Immunol Ther Exp (Warsz). 2015;63(6):435–49. https://doi.org/10.1007/s00005-015-0344-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gao L, Lu Q, Huang LJ, Ruan LH, Yang JJ, Huang WL, et al. Transplanted neural stem cells modulate regulatory T, gammadelta T cells and corresponding cytokines after intracerebral hemorrhage in rats. Int J Mol Sci. 2014;15(3):4431–41. https://doi.org/10.3390/ijms15034431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. • Jiang C, Wang Y, Hu Q, Shou J, Zhu L, Tian N, et al. Immune changes in peripheral blood and hematoma of patients with intracerebral hemorrhage. FASEB J. 2020;34(2):2774–91. https://doi.org/10.1096/fj.201902478R. This study investigates immune changes in the peripheral blood and hematoma of patients with intracerebral hemorrhage (ICH). The findings reveal alterations in immune profiles, including inflammatory and immune cell responses, in both peripheral blood and the hematoma of ICH patients. These findings provide valuable insights into the immune mechanisms involved in ICH pathophysiology and may have implications for developing immune-based therapeutic interventions for ICH patients.

    Article  CAS  PubMed  Google Scholar 

  74. Lively S, Schlichter LC. Microglia responses to pro-inflammatory stimuli (LPS, IFNgamma+TNFalpha) and reprogramming by resolving cytokines (IL-4, IL-10). Front Cell Neurosci. 2018;12:215. https://doi.org/10.3389/fncel.2018.00215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sun L, Li Y, Jia X, Wang Q, Li Y, Hu M, et al. Neuroprotection by IFN-gamma via astrocyte-secreted IL-6 in acute neuroinflammation. Oncotarget. 2017;8(25):40065–78. https://doi.org/10.18632/oncotarget.16990.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Divani AA, Majidi S, Barrett AM, Noorbaloochi S, Luft AR. Consequences of stroke in community-dwelling elderly: the health and retirement study, 1998 to 2008. Stroke. 2011;42(7):1821–5. https://doi.org/10.1161/STROKEAHA.110.607630.

    Article  PubMed  PubMed Central  Google Scholar 

  77. •• Hu J, Wang L, Fan K, Ren W, Wang Q, Ruan Y, et al. The association between systemic inflammatory markers and post-stroke depression: a prospective stroke cohort. Clin Interv Aging. 2021;16:1231–9. https://doi.org/10.2147/CIA.S314131. This prospective stroke cohort study examines the association between systemic inflammatory markers and post-stroke depression. The findings suggest that increased levels of systemic inflammatory markers are associated with a higher risk of developing post-stroke depression, highlighting the potential role of inflammation in the pathogenesis of post-stroke psychiatric complications. These results contribute to our understanding of the underlying mechanisms of post-stroke depression and may have implications for the development of targeted interventions for better management of psychiatric outcomes in stroke patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen H, Huang X, Zeng C, Sun D, Liu F, Zhang J, et al. The role of indoleamine 2,3-dioxygenase 1 in early-onset post-stroke depression. Front Immunol. 2023;14:1125634. https://doi.org/10.3389/fimmu.2023.1125634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bruce AJ, Boling W, Kindy MS, Peschon J, Kraemer PJ, Carpenter MK, et al. Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat Med. 1996;2(7):788–94. https://doi.org/10.1038/nm0796-788.

    Article  CAS  PubMed  Google Scholar 

  80. Ginis I, Jaiswal R, Klimanis D, Liu J, Greenspon J, Hallenbeck JM. TNF-alpha-induced tolerance to ischemic injury involves differential control of NF-kappaB transactivation: the role of NF-kappaB association with p300 adaptor. J Cereb Blood Flow Metab. 2002;22(2):142–52. https://doi.org/10.1097/00004647-200202000-00002.

    Article  CAS  PubMed  Google Scholar 

  81. Abd-El-Basset EM, Rao MS, Alshawaf SM, Ashkanani HK, Kabli AH. Tumor necrosis factor (TNF) induces astrogliosis, microgliosis and promotes survival of cortical neurons. AIMS Neurosci. 2021;8(4):558–84. https://doi.org/10.3934/Neuroscience.2021031.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lively S, Hutchings S, Schlichter LC. Molecular and cellular responses to interleukin-4 treatment in a rat model of transient ischemia. J Neuropathol Exp Neurol. 2016;75(11):1058–71. https://doi.org/10.1093/jnen/nlw081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang J, Rong P, Zhang L, He H, Zhou T, Fan Y, et al. IL4-driven microglia modulate stress resilience through BDNF-dependent neurogenesis. Sci Adv. 2021;7(12):eabb9888. https://doi.org/10.1126/sciadv.abb9888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Garcia JM, Stillings SA, Leclerc JL, Phillips H, Edwards NJ, Robicsek SA, et al. Role of interleukin-10 in acute brain injuries. Frontiers in neurology. 2017;8:244. https://doi.org/10.3389/fneur.2017.00244.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wang P, Wu P, Siegel MI, Egan RW, Billah MM. Interleukin (IL)-10 inhibits nuclear factor kappa B (NF kappa B) activation in human monocytes. IL-10 and IL-4 suppress cytokine synthesis by different mechanisms. J Biol Chem. 1995;270(16):9558–63. https://doi.org/10.1074/jbc.270.16.9558.

    Article  CAS  PubMed  Google Scholar 

  86. Ooboshi H, Ibayashi S, Shichita T, Kumai Y, Takada J, Ago T, et al. Postischemic gene transfer of interleukin-10 protects against both focal and global brain ischemia. Circulation. 2005;111(7):913–9. https://doi.org/10.1161/01.CIR.0000155622.68580.DC.

    Article  CAS  PubMed  Google Scholar 

  87. Li Q, Lan X, Han X, Durham F, Wan J, Weiland A, et al. Microglia-derived interleukin-10 accelerates post-intracerebral hemorrhage hematoma clearance by regulating CD36. Brain Behav Immun. 2021;94:437–57. https://doi.org/10.1016/j.bbi.2021.02.001.

    Article  CAS  PubMed  Google Scholar 

  88. Taylor RA, Chang CF, Goods BA, Hammond MD, Mac Grory B, Ai Y, et al. TGF-beta1 modulates microglial phenotype and promotes recovery after intracerebral hemorrhage. J Clin Invest. 2017;127(1):280–92. https://doi.org/10.1172/JCI88647.

    Article  PubMed  Google Scholar 

  89. Morganti-Kossmann MC, Hans VH, Lenzlinger PM, Dubs R, Ludwig E, Trentz O, et al. TGF-beta is elevated in the CSF of patients with severe traumatic brain injuries and parallels blood-brain barrier function. J Neurotrauma. 1999;16(7):617–28. https://doi.org/10.1089/neu.1999.16.617.

    Article  CAS  PubMed  Google Scholar 

  90. Chang CF, Wan J, Li Q, Renfroe SC, Heller NM, Wang J. Alternative activation-skewed microglia/macrophages promote hematoma resolution in experimental intracerebral hemorrhage. Neuro dis. 2017;103:54–69. https://doi.org/10.1016/j.nbd.2017.03.016.

    Article  CAS  Google Scholar 

  91. Ma Y, Liu Y, Zhang Z, Yang GY. Significance of complement system in ischemic stroke: a comprehensive review. Aging Dis. 2019;10(2):429–62. https://doi.org/10.14336/AD.2019.0119.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Pedersen ED, Waje-Andreassen U, Vedeler CA, Aamodt G, Mollnes TE. Systemic complement activation following human acute ischaemic stroke. Clin Exp Immunol. 2004;137(1):117–22. https://doi.org/10.1111/j.1365-2249.2004.02489.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dalakas MC, Alexopoulos H, Spaeth PJ. Complement in neurological disorders and emerging complement-targeted therapeutics. Nat Rev Neurol. 2020;16(11):601–17. https://doi.org/10.1038/s41582-020-0400-0.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ling M, Murali M. Analysis of the complement system in the clinical immunology laboratory. Clin Lab Med. 2019;39(4):579–90. https://doi.org/10.1016/j.cll.2019.07.006.

    Article  PubMed  Google Scholar 

  95. Alawieh A, Elvington A, Tomlinson S. Complement in the homeostatic and ischemic brain. Front Immunol. 2015;6:417. https://doi.org/10.3389/fimmu.2015.00417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mocco J, Mack WJ, Ducruet AF, Sosunov SA, Sughrue ME, Hassid BG, et al. Complement component C3 mediates inflammatory injury following focal cerebral ischemia. Circ Res. 2006;99(2):209–17. https://doi.org/10.1161/01.RES.0000232544.90675.42.

    Article  CAS  PubMed  Google Scholar 

  97. Schartz ND, Tenner AJ. The good, the bad, and the opportunities of the complement system in neurodegenerative disease. J Neuroinflammation. 2020;17(1):354. https://doi.org/10.1186/s12974-020-02024-8.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Yang P, Zhu Z, Zang Y, Bu X, Xu T, Zhong C, et al. Increased serum complement C3 levels are associated with adverse clinical outcomes after ischemic stroke. Stroke. 2021;52(3):868–77. https://doi.org/10.1161/STROKEAHA.120.031715.

    Article  CAS  PubMed  Google Scholar 

  99. Alawieh A, Langley EF, Tomlinson S. Targeted complement inhibition salvages stressed neurons and inhibits neuroinflammation after stroke in mice. Sci Transl Med. 2018;10(441):eaao6459. https://doi.org/10.1126/scitranslmed.aao6459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci. 2013;7:6. https://doi.org/10.3389/fncel.2013.00006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xu S, Lu J, Shao A, Zhang JH, Zhang J. Glial cells: role of the immune response in ischemic stroke. Front Immunol. 2020;11:294. https://doi.org/10.3389/fimmu.2020.00294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Monsour M, Borlongan CV. The central role of peripheral inflammation in ischemic stroke. J Cereb Blood Flow Metab. 2023;43(5):1. https://doi.org/10.1177/0271678X221149509.

    Article  Google Scholar 

  103. Kumar P, Hair P, Cunnion K, Krishna N, Bass T. Classical complement pathway inhibition reduces brain damage in a hypoxic ischemic encephalopathy animal model. PloS one. 2021;16(9):e0257960. https://doi.org/10.1371/journal.pone.0257960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kim GH, Mocco J, Hahn DK, Kellner CP, Komotar RJ, Ducruet AF, et al. Protective effect of C5a receptor inhibition after murine reperfused stroke. Neurosurgery. 2008;63(1):122–5. https://doi.org/10.1227/01.NEU.0000335079.70222.8D.

    Article  PubMed  Google Scholar 

  105. Carpanini SM, Torvell M, Morgan BP. Therapeutic inhibition of the complement system in diseases of the central nervous system. Front Immunol. 2019;10:362. https://doi.org/10.3389/fimmu.2019.00362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Arumugam TV, Woodruff TM, Lathia JD, Selvaraj PK, Mattson MP, Taylor SM. Neuroprotection in stroke by complement inhibition and immunoglobulin therapy. Neuroscience. 2009;158(3):1074–89. https://doi.org/10.1016/j.neuroscience.2008.07.015.

    Article  CAS  PubMed  Google Scholar 

  107. Elvington A, Atkinson C, Zhu H, Yu J, Takahashi K, Stahl GL, et al. The alternative complement pathway propagates inflammation and injury in murine ischemic stroke. J Immunol. 2012;189(9):4640–7. https://doi.org/10.4049/jimmunol.1201904.

    Article  CAS  PubMed  Google Scholar 

  108. Atkinson C, Zhu H, Qiao F, Varela JC, Yu J, Song H, et al. Complement-dependent P-selectin expression and injury following ischemic stroke. J Immunol. 2006;177(10):7266–74. https://doi.org/10.4049/jimmunol.177.10.7266.

    Article  CAS  PubMed  Google Scholar 

  109. Alawieh A, Elvington A, Zhu H, Yu J, Kindy MS, Atkinson C, et al. Modulation of post-stroke degenerative and regenerative processes and subacute protection by site-targeted inhibition of the alternative pathway of complement. J Neuroinflammation. 2015;12:247. https://doi.org/10.1186/s12974-015-0464-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shi Y, Jin Y, Li X, Chen C, Zhang Z, Liu X, et al. C5aR1 Mediates the progression of inflammatory responses in the brain of rats in the early stage after ischemia and reperfusion. ACS Chem Neurosci. 2021;12(21):3994–4006. https://doi.org/10.1021/acschemneuro.1c00244.

    Article  CAS  PubMed  Google Scholar 

  111. Zheng Y, Fan L, Xia S, Yang Q, Zhang Z, Chen H, et al. Role of complement C1q/C3-CR3 signaling in brain injury after experimental intracerebral hemorrhage and the effect of minocycline treatment. Front Immunol. 2022;13:919444. https://doi.org/10.3389/fimmu.2022.919444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang M, Xia F, Wan S, Hua Y, Keep RF, Xi G. Role of complement component 3 in early erythrolysis in the hematoma after experimental intracerebral hemorrhage. Stroke. 2021;52(8):2649–60. https://doi.org/10.1161/STROKEAHA.121.034372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. • Wang M, Hua Y, Keep RF, Wan S, Novakovic N, Xi G. Complement inhibition attenuates early erythrolysis in the hematoma and brain injury in aged rats. Stroke. 2019;50(7):1859–68. https://doi.org/10.1161/STROKEAHA.119.025170. This study demonstrates that complement inhibition can reduce early erythrolysis in the hematoma and brain injury in aged rats. The findings suggest that targeting the complement system has potential therapeutic benefits in attenuating the detrimental effects of hematoma-induced erythrolysis and brain injury, particularly in aged individuals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Morris G, Gevezova M, Sarafian V, Maes M. Redox regulation of the immune response. Cell Mol Immunol. 2022;19(10):1079–101. https://doi.org/10.1038/s41423-022-00902-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Qin C, Yang S, Chu YH, Zhang H, Pang XW, Chen L, et al. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2022;7(1):215. https://doi.org/10.1038/s41392-022-01064-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. •• Dong R, Huang R, Wang J, Liu H, Xu Z. Effects of microglial activation and polarization on brain injury after stroke. Front neuro. 2021;12:620948. https://doi.org/10.3389/fneur.2021.620948. This article explores the effects of microglial activation and polarization on brain injury following stroke. The review highlights the dynamic and complex role of microglia, the resident immune cells in the brain, in the post-stroke inflammatory response. It discusses how microglial activation and polarization can have both beneficial and detrimental effects on brain injury, influencing tissue damage, neuroinflammation, and tissue repair processes. Understanding the intricacies of microglial activation and polarization can provide insights into potential therapeutic strategies aimed at modulating these processes to promote better outcomes and enhance stroke recovery.

    Article  Google Scholar 

  117. Zhu SZ, Szeto V, Bao MH, Sun HS, Feng ZP. Pharmacological approaches promoting stem cell-based therapy following ischemic stroke insults. Acta Pharmacol Sin. 2018;39(5):695–712. https://doi.org/10.1038/aps.2018.23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang R, Zhang Z, Chopp M. Function of neural stem cells in ischemic brain repair processes. J Cereb Blood Flow Metab. 2016;36(12):2034–43. https://doi.org/10.1177/0271678X16674487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Diaz-Canestro C, Reiner MF, Bonetti NR, Liberale L, Merlini M, Wust P, et al. AP-1 (activated protein-1) transcription factor JunD regulates ischemia/reperfusion brain damage via IL-1beta (interleukin-1beta). Stroke. 2019;50(2):469–77. https://doi.org/10.1161/STROKEAHA.118.023739.

    Article  CAS  PubMed  Google Scholar 

  120. Gugliandolo A, Silvestro S, Sindona C, Bramanti P, Mazzon E. MiRNA: Involvement of the MAPK pathway in ischemic stroke. A promising therapeutic target. Medicina (Kaunas). 2021;57(10):1053. https://doi.org/10.3390/medicina57101053.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Dong P, Li Q, Han H. HIF-1alpha in cerebral ischemia (review). Mol Med Rep. 2022;25(2):1–11. https://doi.org/10.3892/mmr.2021.12557.

    Article  CAS  Google Scholar 

  122. Cai W, Yang T, Liu H, Han L, Zhang K, Hu X, et al. Peroxisome proliferator-activated receptor gamma (PPARgamma): a master gatekeeper in CNS injury and repair. Prog Neurobiol. 2018;163-164:27–58. https://doi.org/10.1016/j.pneurobio.2017.10.002.

    Article  CAS  PubMed  Google Scholar 

  123. Kang TC. Nuclear factor-erythroid 2-related factor 2 (Nrf2) and mitochondrial dynamics/mitophagy in neurological diseases. Antioxidants (Basel). 2020;9(7):617. https://doi.org/10.3390/antiox9070617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Stevanovic M, Drakulic D, Lazic A, Ninkovic DS, Schwirtlich M, Mojsin M. SOX transcription factors as important regulators of neuronal and glial differentiation during nervous system development and adult neurogenesis. Front Mol Neurosci. 2021;14:654031. https://doi.org/10.3389/fnmol.2021.654031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Farina M, Vieira LE, Buttari B, Profumo E, Saso L. The Nrf2 pathway in ischemic stroke: a review. Molecules. 2021;26(16):5001. https://doi.org/10.3390/molecules26165001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Liu ZC, Meng LQ, Song JH, Gao J. Dynamic protein expression of NF-kappaB following rat intracerebral hemorrhage and its association with apoptosis. Exp Ther Med. 2018;16(5):3903–8. https://doi.org/10.3892/etm.2018.6715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Xing G, Zhao T, Zhang X, Li H, Li X, Cui P, et al. Astrocytic sonic hedgehog alleviates intracerebral hemorrhagic brain injury via modulation of blood-brain barrier integrity. Front Cell Neurosci. 2020;14:575690. https://doi.org/10.3389/fncel.2020.575690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Loan JJM, Al-Shahi Salman R, McColl BW, Hardingham GE. Activation of Nrf2 to optimise immune responses to intracerebral haemorrhage. Biomolecules. 2022;12(10):1438. https://doi.org/10.3390/biom12101438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. • Christopher E, JJM L, Samarasekera N, McDade K, Rose J, Barrington J, et al. Nrf2 activation in the human brain after stroke due to supratentorial intracerebral haemorrhage: a case-control study. BMJ Neurol Open. 2022;4(1):e000238. https://doi.org/10.1136/bmjno-2021-000238. This case-control study investigates the activation of Nrf2 (nuclear factor erythroid 2-related factor 2) in the human brain following stroke caused by supratentorial intracerebral hemorrhage. The findings suggest that Nrf2 activation plays a role in the response to hemorrhagic stroke, potentially influencing oxidative stress and neuroinflammation, highlighting its potential as a therapeutic target for mitigating the damage caused by intracerebral hemorrhage.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Turnbull MT, Zubair AC, Meschia JF, Freeman WD. Mesenchymal stem cells for hemorrhagic stroke: status of preclinical and clinical research. NPJ Regen Med. 2019;4:10. https://doi.org/10.1038/s41536-019-0073-8.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Li R, Liu Z, Wu X, Yu Z, Zhao S, Tang X. Lithium chloride promoted hematoma resolution after intracerebral hemorrhage through GSK-3beta-mediated pathways-dependent microglia phagocytosis and M2-phenotype differentiation, angiogenesis and neurogenesis in a rat model. Brain res bull. 2019;152:117–27. https://doi.org/10.1016/j.brainresbull.2019.07.019.

    Article  CAS  PubMed  Google Scholar 

  132. Kumar V. Toll-like receptors in the pathogenesis of neuroinflammation. J Neuroimmunol. 2019;332:16–30. https://doi.org/10.1016/j.jneuroim.2019.03.012.

    Article  CAS  PubMed  Google Scholar 

  133. Maehara N, Taniguchi K, Okuno A, Ando H, Hirota A, Li Z, et al. AIM/CD5L attenuates DAMPs in the injured brain and thereby ameliorates ischemic stroke. Cell Rep. 2021;36(11):109693. https://doi.org/10.1016/j.celrep.2021.109693.

    Article  CAS  PubMed  Google Scholar 

  134. Liang C, Liu L, Bao S, Yao Z, Bai Q, Fu P, et al. Neuroprotection by Nrf2 via modulating microglial phenotype and phagocytosis after intracerebral hemorrhage. Heliyon. 2023;9(2):e13777. https://doi.org/10.1016/j.heliyon.2023.e13777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464(7285):104–7. https://doi.org/10.1038/nature08780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhu W, Tian L, Yue X, Liu J, Fu Y, Yan Y. LncRNA expression profiling of ischemic stroke during the transition from the acute to subacute stage. Front neuro. 2019;10:36. https://doi.org/10.3389/fneur.2019.00036.

    Article  Google Scholar 

  137. Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD. Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab. 2006;26(5):654–65. https://doi.org/10.1038/sj.jcbfm.9600217.

    Article  CAS  PubMed  Google Scholar 

  138. • Luo J, Chen Y, Tang G, Li Z, Yang X, Shang X, et al. Gut microbiota composition reflects disease progression, severity and outcome, and dysfunctional immune responses in patients with hypertensive intracerebral hemorrhage. Front Immunol. 2022;13:869846. https://doi.org/10.3389/fimmu.2022.869846. This study reveals that the composition of gut microbiota in patients with hypertensive intracerebral hemorrhage (ICH) reflects disease progression, severity, and outcome, as well as dysfunctional immune responses. The findings highlight the potential role of gut microbiota in influencing the pathophysiology of ICH and suggest that targeting the gut microbiota may hold promise for developing novel therapeutic strategies for managing this condition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Westendorp WF, Dames C, Nederkoorn PJ, Meisel A. Immunodepression, infections, and functional outcome in ischemic stroke. Stroke. 2022;53(5):1438–48. https://doi.org/10.1161/STROKEAHA.122.038867.

    Article  CAS  PubMed  Google Scholar 

  140. Xue M, Yong VW. Neuroinflammation in intracerebral haemorrhage: immunotherapies with potential for translation. The Lancet Neuro. 2020;19(12):1023–32. https://doi.org/10.1016/S1474-4422(20)30364-1.

    Article  CAS  Google Scholar 

  141. Gulke E, Gelderblom M, Magnus T. Danger signals in stroke and their role on microglia activation after ischemia. Ther Adv Neurol Disord. 2018;11:1756286418774254. https://doi.org/10.1177/1756286418774254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. • Yankova G, Bogomyakova O, Tulupov A. The glymphatic system and meningeal lymphatics of the brain: new understanding of brain clearance. Rev Neurosci. 2021;32(7):693–705. https://doi.org/10.1515/revneuro-2020-0106. This article presents new insights into the glymphatic system and meningeal lymphatics of the brain, shedding light on the mechanisms of brain clearance. The review highlights the importance of these systems in clearing waste products and metabolic byproducts from the brain, emphasizing their role in maintaining brain health and preventing the accumulation of toxic substances. Understanding the functions and regulation of the glymphatic system and meningeal lymphatics contributes to our knowledge of brain clearance processes and opens up potential avenues for therapeutic interventions targeting brain waste removal.

    Article  CAS  PubMed  Google Scholar 

  143. Balanca B, Desmurs L, Grelier J, Perret-Liaudet A, Lukaszewicz AC. DAMPs and RAGE pathophysiology at the acute phase of brain injury: an overview. Int J Mol Sci. 2021;22(5):2439. https://doi.org/10.3390/ijms22052439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Duran-Laforet V, Pena-Martinez C, Garcia-Culebras A, Cuartero MI, Lo EH, Moro MA, et al. Role of TLR4 in neutrophil dynamics and functions: contribution to stroke pathophysiology. Front Immunol. 2021;12:757872. https://doi.org/10.3389/fimmu.2021.757872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Courties G, Herisson F, Sager HB, Heidt T, Ye Y, Wei Y, et al. Ischemic stroke activates hematopoietic bone marrow stem cells. Circ Res. 2015;116(3):407–17. https://doi.org/10.1161/CIRCRESAHA.116.305207.

    Article  CAS  PubMed  Google Scholar 

  146. Yan HQ, Ma X, Chen X, Li Y, Shao L, Dixon CE. Delayed increase of tyrosine hydroxylase expression in rat nigrostriatal system after traumatic brain injury. Brain res. 2007;1134(1):171–9. https://doi.org/10.1016/j.brainres.2006.11.087.

    Article  CAS  PubMed  Google Scholar 

  147. Panther EJ, Dodd W, Clark A, Lucke-Wold B. Gastrointestinal microbiome and neurologic injury. Biomedicines. 2022;10:2. https://doi.org/10.3390/biomedicines10020500.

    Article  CAS  Google Scholar 

  148. Anrather J, Iadecola C. Inflammation and stroke: an overview. Neurotherapeutics. 2016;13(4):661–70. https://doi.org/10.1007/s13311-016-0483-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Houlden A, Goldrick M, Brough D, Vizi ES, Lenart N, Martinecz B, et al. Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behav Immun. 2016;57:10–20. https://doi.org/10.1016/j.bbi.2016.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Singh V, Roth S, Llovera G, Sadler R, Garzetti D, Stecher B, et al. Microbiota dysbiosis controls the neuroinflammatory response after stroke. J Neurosci Res. 2016;36(28):7428–40. https://doi.org/10.1523/JNEUROSCI.1114-16.2016.

    Article  CAS  Google Scholar 

  151. Chidambaram SB, Rathipriya AG, Mahalakshmi AM, Sharma S, Hediyal TA, Ray B, et al. The influence of gut dysbiosis in the pathogenesis and management of ischemic stroke. Cells. 2022;11(7):1239. https://doi.org/10.3390/cells11071239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Peh A, O'Donnell JA, Broughton BRS, Marques FZ. Gut microbiota and their metabolites in stroke: a double-edged sword. Stroke. 2022;53(5):1788–801. https://doi.org/10.1161/STROKEAHA.121.036800.

    Article  CAS  PubMed  Google Scholar 

  153. Zhang S, Jin M, Ren J, Sun X, Zhang Z, Luo Y, et al. New insight into gut microbiota and their metabolites in ischemic stroke: a promising therapeutic target. Biomed Pharmacother. 2023;162:114559. https://doi.org/10.1016/j.biopha.2023.114559.

    Article  CAS  PubMed  Google Scholar 

  154. Tascilar N, Irkorucu O, Tascilar O, Comert F, Eroglu O, Bahadir B, et al. Bacterial translocation in experimental stroke: what happens to the gut barrier? Bratisl Lek Listy. 2010;111(4):194–9.

    PubMed  Google Scholar 

  155. •• Lei C, Liu C, Chen E, Lin L, Liu T, Liu Z. Bidirectional microbiota-gut-brain axis after stroke and its implications for treating ischemic stroke. Explor Res Hypothesis Med. 2023;8(1):48–56. https://doi.org/10.14218/ERHM.2022.00040. The review discusses the influence of the gut microbiota on stroke outcomes and the impact of stroke on the gut microbiota composition. It proposes the modulation of the microbiota-gut-brain axis as a potential therapeutic approach for improving stroke recovery and preventing post-stroke complications.

    Article  Google Scholar 

  156. Benakis C, Brea D, Caballero S, Faraco G, Moore J, Murphy M, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat Med. 2016;22(5):516–23. https://doi.org/10.1038/nm.4068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Iadecola C, Buckwalter MS, Anrather J. Immune responses to stroke: mechanisms, modulation, and therapeutic potential. J Clin Invest. 2020;130(6):2777–88. https://doi.org/10.1172/JCI135530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. •• Liu Q, Johnson EM, Lam RK, Wang Q, Bo Ye H, Wilson EN, et al. Peripheral TREM1 responses to brain and intestinal immunogens amplify stroke severity. Nat Immunol. 2019;20(8):1023–34. https://doi.org/10.1038/s41590-019-0421-2. This study reveals that peripheral triggering receptor expressed on myeloid cells 1 (TREM1) responses to immunogens in the brain and intestines can exacerbate stroke severity. The findings emphasize the role of peripheral immune activation in influencing stroke outcomes and suggest that targeting TREM1 signaling may hold therapeutic potential for mitigating the detrimental effects of immune amplification in stroke patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Datta A, Saha C, Godse P, Sharma M, Sarmah D, Bhattacharya P. Neuroendocrine regulation in stroke. Trends Endocrinol Metab. 2023;34(5):260–77. https://doi.org/10.1016/j.tem.2023.02.005.

    Article  CAS  PubMed  Google Scholar 

  160. Prass K, Meisel C, Hoflich C, Braun J, Halle E, Wolf T, et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med. 2003;198(5):725–36. https://doi.org/10.1084/jem.20021098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lunardi Baccetto S, Lehmann C. Microcirculatory changes in experimental models of stroke and CNS-injury induced immunodepression. Int J Mol Sci. 2019;20(20):5184. https://doi.org/10.3390/ijms20205184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wu H, Li L, Su X. Vagus nerve through alpha7 nAChR modulates lung infection and inflammation: models, cells, and signals. Biomed Res Int. 2014;2014:283525. https://doi.org/10.1155/2014/283525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Tang H, Li J, Zhou Q, Li S, Xie C, Niu L, et al. Vagus nerve stimulation alleviated cerebral ischemia and reperfusion injury in rats by inhibiting pyroptosis via alpha7 nicotinic acetylcholine receptor. Cell Death Discov. 2022;8(1):54. https://doi.org/10.1038/s41420-022-00852-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Liu CY, Russin J, Adelson DP, Jenkins A, Hilmi O, Brown B, et al. Vagus nerve stimulation paired with rehabilitation for stroke: Implantation experience from the VNS-REHAB trial. J Clin Neurosci. 2022;105:122–8. https://doi.org/10.1016/j.jocn.2022.09.013.

    Article  PubMed  Google Scholar 

  165. van der Meij A, van Walderveen MAA, Kruyt ND, van Zwet EW, Liebler EJ, Ferrari MD, et al. NOn-invasive Vagus nerve stimulation in acute Ischemic Stroke (NOVIS): a study protocol for a randomized clinical trial. Trials. 2020;21(1):878. https://doi.org/10.1186/s13063-020-04794-1.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Akimoto T, Hara M, Ishihara M, Ogawa K, Nakajima H. Post-stroke pneumonia in real-world practice: background, microbiological examination, and treatment. Neurol Int. 2023;15(1):69–77. https://doi.org/10.3390/neurolint15010006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ghelani DP, Kim HA, Zhang SR, Drummond GR, Sobey CG, De Silva TM. Ischemic stroke and infection: a brief update on mechanisms and potential therapies. Biochem Pharmacol. 2021;193:114768. https://doi.org/10.1016/j.bcp.2021.114768.

    Article  CAS  PubMed  Google Scholar 

  168. Garcia-Pupo L, Van San E, Delgado-Hernandez R, Vanden Berghe T, Vanden BW. Emerging immune and cell death mechanisms in stroke: saponins as therapeutic candidates. Brain Behav Immun Health. 2020;9:100152. https://doi.org/10.1016/j.bbih.2020.100152.

    Article  PubMed  PubMed Central  Google Scholar 

  169. •• Parikh NS, Merkler AE, Iadecola C. Inflammation, autoimmunity, infection, and stroke: epidemiology and lessons from therapeutic intervention. Stroke. 2020;51(3):711–8. https://doi.org/10.1161/STROKEAHA.119.024157. The review highlights the complex interplay between these factors and their impact on stroke incidence, progression, and outcomes. Understanding these relationships can inform the development of effective therapeutic strategies for stroke prevention and treatment, taking into account the contributions of inflammation, autoimmunity, and infection.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Becker KJ, Kindrick DL, Lester MP, Shea C, Ye ZC. Sensitization to brain antigens after stroke is augmented by lipopolysaccharide. J Cereb Blood Flow Metab. 2005;25(12):1634–44. https://doi.org/10.1038/sj.jcbfm.9600160.

    Article  CAS  PubMed  Google Scholar 

  171. Tirandi A, Sgura C, Carbone F, Montecucco F, Liberale L. Inflammatory biomarkers of ischemic stroke. Intern Emerg Med. 2023;18(3):723–32. https://doi.org/10.1007/s11739-023-03201-2.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Perry VH, Teeling J. Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol. 2013;35(5):601–12. https://doi.org/10.1007/s00281-013-0382-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Li Y, Zhu ZY, Huang TT, Zhou YX, Wang X, Yang LQ, et al. The peripheral immune response after stroke-A double edge sword for blood-brain barrier integrity. CNS Neurosci Ther. 2018;24(12):1115–28. https://doi.org/10.1111/cns.13081.

    Article  PubMed  PubMed Central  Google Scholar 

  174. •• Wang Z, He D, Zeng YY, Zhu L, Yang C, Lu YJ, et al. The spleen may be an important target of stem cell therapy for stroke. J Neuroinflammation. 2019;16(1):20. https://doi.org/10.1186/s12974-019-1400-0. The spleen is identified as a potentially significant target for stem cell therapy in the treatment of stroke, according to a study published in the Journal of Neuroinflammation. The research highlights the role of the spleen in mediating inflammatory responses and suggests that stem cell therapy targeting the spleen may provide therapeutic benefits by modulating neuroinflammation in stroke patients.

    Article  PubMed  PubMed Central  Google Scholar 

  175. • Yamamoto S, Matsui A, Ohyagi M, Kikutake C, Harada Y, Iizuka-Koga M, et al. In vitro generation of brain regulatory T cells by co-culturing with astrocytes. Front Immunol. 2022;13:960036. https://doi.org/10.3389/fimmu.2022.960036. This study presents a method for generating brain regulatory T cells (Tregs) in vitro by co-culturing T cells with astrocytes. The findings suggest that the interaction between T cells and astrocytes plays a crucial role in promoting the differentiation and function of brain-specific Tregs, offering insights into potential strategies for modulating immune responses in neurological disorders through the manipulation of astrocyte-T cell interactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Becker KJ. Activation of immune responses to brain antigens after stroke. J Neurochem. 2012;123(2):148–55. https://doi.org/10.1111/j.1471-4159.2012.07953.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Vogelgesang A, Dressel A. Immunological consequences of ischemic stroke: immunosuppression and autoimmunity. J Neuroimmunol. 2011;231(1-2):105–10. https://doi.org/10.1016/j.jneuroim.2010.09.023.

    Article  CAS  PubMed  Google Scholar 

  178. Stevenson R, Samokhina E, Rossetti I, Morley JW, Buskila Y. Neuromodulation of glial function during neurodegeneration. Front Cell Neurosci. 2020;14:278. https://doi.org/10.3389/fncel.2020.00278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Henon H, Pasquier F, Durieu I, Pruvo JP, Leys D. Medial temporal lobe atrophy in stroke patients: relation to pre-existing dementia. J Neurol Neurosurg Psychiatry. 1998;65(5):641–7. https://doi.org/10.1136/jnnp.65.5.641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Sun Y, Yin XS, Guo H, Han RK, He RD, Chi LJ. Elevated osteopontin levels in mild cognitive impairment and Alzheimer's disease. Mediators Inflamm. 2013;2013:615745. https://doi.org/10.1155/2013/615745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Kliper E, Bashat DB, Bornstein NM, Shenhar-Tsarfaty S, Hallevi H, Auriel E, et al. Cognitive decline after stroke: relation to inflammatory biomarkers and hippocampal volume. Stroke. 2013;44(5):1433–5. https://doi.org/10.1161/STROKEAHA.111.000536.

    Article  CAS  PubMed  Google Scholar 

  182. Doyle KP, Quach LN, Sole M, Axtell RC, Nguyen TV, Soler-Llavina GJ, et al. B-lymphocyte-mediated delayed cognitive impairment following stroke. J Neurosci. 2015;35(5):2133–45. https://doi.org/10.1523/JNEUROSCI.4098-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. • Lemaitre P, Tareen SH, Pasciuto E, Mascali L, Martirosyan A, Callaerts-Vegh Z, et al. Molecular and cognitive signatures of ageing partially restored through synthetic delivery of IL2 to the brain. EMBO Mol Med. 2023;15(5):e16805. https://doi.org/10.15252/emmm.202216805. This study demonstrates that synthetic delivery of interleukin-2 (IL2) to the brain partially restores molecular and cognitive signatures of aging. The findings suggest that IL2 treatment has the potential to mitigate age-related molecular changes and improve cognitive function, highlighting its therapeutic potential for combating age-related cognitive decline.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Wen H, Weymann KB, Wood L, Wang QM. Inflammatory signaling in post-stroke fatigue and depression. Eur Neurol. 2018;80(3-4):138–48. https://doi.org/10.1159/000494988.

    Article  PubMed  Google Scholar 

  185. Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21(3):133–46. https://doi.org/10.1038/s41579-022-00846-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Mijajlovic MD, Pavlovic A, Brainin M, Heiss WD, Quinn TJ, Ihle-Hansen HB, et al. Post-stroke dementia - a comprehensive review. BMC Med. 2017;15(1):11. https://doi.org/10.1186/s12916-017-0779-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Liesz A, Kleinschnitz C. Regulatory T cells in post-stroke immune homeostasis. Transl Stroke Res. 2016;7(4):313–21. https://doi.org/10.1007/s12975-016-0465-7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The editors would like to thank Dr. John Brust for taking the time to review this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin A. Divani.

Ethics declarations

Conflict of Interest

Diana L. Alsbrook, Mario Di Napoli, Kunal Bhatia, José Biller, Sasan Andalib, Archana Hinduja, Roysten Rodrigues, Miguel Rodriguez; Sara Y. Sabbagh, Magdy Selim, Maryam Hosseini Farahabadi, Alibay Jafarli, and Afshin A. Divani each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsbrook, D.L., Di Napoli, M., Bhatia, K. et al. Neuroinflammation in Acute Ischemic and Hemorrhagic Stroke. Curr Neurol Neurosci Rep 23, 407–431 (2023). https://doi.org/10.1007/s11910-023-01282-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-023-01282-2

Keywords

Navigation