Skip to main content

Advertisement

Log in

The Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid (SAHA) Confers Acute Neuroprotection After Intracerebral Hemorrhage in Mice

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Spontaneous intracerebral hemorrhage (ICH) is a stroke subtype with no effective treatment. Though ICH is known to induce severe neurological damage, the molecular mechanisms of neurological injury after ICH remain largely unclear. Given the emerging role of epigenetic mechanisms in neurodegeneration, the present study evaluated whether suberoylanilide hydroxamic acid (SAHA: vorinostat), a clinically well-tolerated pan-histone deacetylase inhibitor (HDACi), would attenuate neurological injury and improve functional outcomes in a preclinical model of ICH. Mice were administered with SAHA or vehicle after an induction of ICH and acute neuronal death, glial activation, and neurological outcomes were assessed. SAHA-treated mice exhibited less neurodegeneration with concomitant improvement in neurological outcomes than vehicle-treated mice. Furthermore, SAHA downregulated glial activation and the expression of heme oxygenase-1, a stress-inducible enzyme that plays critical roles in neurological damage after ICH. Altogether, the data strongly suggest the role of epigenetic mechanisms in inducing neurological injury after ICH and raise the possible clinical utility of SAHA for therapeutic intervention after ICH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ribo M, Grotta JC. Latest advances in intracerebral hemorrhage. Curr Neurol Neurosci Rep. 2006;6:17–22.

    Article  PubMed  Google Scholar 

  2. Morgenstern LB, Hemphill 3rd JC, Anderson C, Becker K, Broderick JP, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2010;41:2108–29.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Manno EM. Update on intracerebral hemorrhage. Continuum (Minneap Minn). 2012;18:598–610.

    Google Scholar 

  4. Ciccone A, Pozzi M, Motto C, Tiraboschi P, Sterzi R. Epidemiological, clinical, and therapeutic aspects of primary intracerebral hemorrhage. Neurol Sci. 2008;29 Suppl 2:S256–7.

    Article  PubMed  Google Scholar 

  5. Yang GY, Betz AL, Chenevert TL, Brunberg JA, Hoff JT. Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood-brain barrier permeability in rats. J Neurosurg. 1994;81:93–102.

    Article  CAS  PubMed  Google Scholar 

  6. Wagner KR, Xi G, Hua Y, Kleinholz M, de Courten-Myers GM, et al. Lobar intracerebral hemorrhage model in pigs: rapid edema development in perihematomal white matter. Stroke. 1996;27:490–7.

    Article  CAS  PubMed  Google Scholar 

  7. Babu R, Bagley JH, Di C, Friedman AH, Adamson C. Thrombin and hemin as central factors in the mechanisms of intracerebral hemorrhage-induced secondary brain injury and as potential targets for intervention. Neurosurg Focus. 2012;32:E8.

    Article  PubMed  Google Scholar 

  8. Koeppen AH, Dickson AC, Smith J. Heme oxygenase in experimental intracerebral hemorrhage: the benefit of tin-mesoporphyrin. J Neuropathol Exp Neurol. 2004;63:587–97.

    Article  CAS  PubMed  Google Scholar 

  9. Abraham NG, Kappas A. Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev. 2008;60:79–127.

    Article  CAS  PubMed  Google Scholar 

  10. Chen M, Regan RF. Time course of increased heme oxygenase activity and expression after experimental intracerebral hemorrhage: correlation with oxidative injury. J Neurochem. 2007;103:2015–21.

    Article  CAS  PubMed  Google Scholar 

  11. Glozak MA, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. Gene. 2005;363:15–23.

    Article  CAS  PubMed  Google Scholar 

  12. Verdone L, Caserta M, Di Mauro E. Role of histone acetylation in the control of gene expression. Biochem Cell Biol. 2005;83:344–53.

    Article  CAS  PubMed  Google Scholar 

  13. Rouaux C, Jokic N, Mbebi C, Boutillier S, Loeffler JP, et al. Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration. EMBO J. 2003;22:6537–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Boutillier AL, Trinh E, Loeffler JP. Selective E2F-dependent gene transcription is controlled by histone deacetylase activity during neuronal apoptosis. J Neurochem. 2003;84:814–28.

    Article  CAS  PubMed  Google Scholar 

  15. Leoni F, Zaliani A, Bertolini G, Porro G, Pagani P, et al. The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc Natl Acad Sci U S A. 2002;99:2995–3000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Choo QY, Ho PC, Tanaka Y, Lin HS. Histone deacetylase inhibitors MS-275 and SAHA induced growth arrest and suppressed lipopolysaccharide-stimulated NF-kappaB p65 nuclear accumulation in human rheumatoid arthritis synovial fibroblastic E11 cells. Rheumatology (Oxford). 2010;49:1447–60.

    Article  CAS  Google Scholar 

  17. Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist. 2007;12:1247–52.

    Article  CAS  PubMed  Google Scholar 

  18. Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc Natl Acad Sci U S A. 2003;100:2041–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. King MD, McCracken DJ, Wade FM, Meiler SE, Alleyne Jr CH, et al. Attenuation of hematoma size and neurological injury with curcumin following intracerebral hemorrhage in mice. J Neurosurg. 2011;115:116–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Sukumari-Ramesh S, Alleyne Jr CH, Dhandapani KM. Astrocyte-specific expression of survivin after intracerebral hemorrhage in mice: a possible role in reactive gliosis? J Neurotrauma. 2012;29:2798–804.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Laird MD, Sukumari-Ramesh S, Swift AE, Meiler SE, Vender JR, et al. Curcumin attenuates cerebral edema following traumatic brain injury in mice: a possible role for aquaporin-4? J Neurochem. 2010;113:637–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Wu H, Wu T, Li M, Wang J. Efficacy of the lipid-soluble iron chelator 2,2′-dipyridyl against hemorrhagic brain injury. Neurobiol Dis. 2012;45:388–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Sansing LH, Harris TH, Welsh FA, Kasner SE, Hunter CA, et al. Toll-like receptor 4 contributes to poor outcome after intracerebral hemorrhage. Ann Neurol. 2011;70:646–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol. 2010;92:463–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Kazantsev AG, Thompson LM. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov. 2008;7:854–68.

    Article  CAS  PubMed  Google Scholar 

  26. Duvic M, Talpur R, Ni X, Zhang C, Hazarika P, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 2007;109:31–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Ramalingam SS, Maitland ML, Frankel P, Argiris AE, Koczywas M, et al. Carboplatin and Paclitaxel in combination with either vorinostat or placebo for first-line therapy of advanced non-small-cell lung cancer. J Clin Oncol. 2010;28:56–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Munster PN, Thurn KT, Thomas S, Raha P, Lacevic M, et al. A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer. Br J Cancer. 2011;104:1828–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Kirschbaum M, Frankel P, Popplewell L, Zain J, Delioukina M, et al. Phase II study of vorinostat for treatment of relapsed or refractory indolent non-Hodgkin’s lymphoma and mantle cell lymphoma. J Clin Oncol. 2011;29:1198–203.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Wang J, Dore S. Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage. Brain. 2007;130:1643–52.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Xue M, Del Bigio MR. Intracerebral injection of autologous whole blood in rats: time course of inflammation and cell death. Neurosci Lett. 2000;283:230–2.

    Article  CAS  PubMed  Google Scholar 

  32. Aronowski J, Hall CE. New horizons for primary intracerebral hemorrhage treatment: experience from preclinical studies. Neurol Res. 2005;27:268–79.

    Article  PubMed  Google Scholar 

  33. Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol. 2012;11:720–31.

    Article  CAS  PubMed  Google Scholar 

  34. Lu J, Frerich JM, Turtzo LC, Li S, Chiang J, et al. Histone deacetylase inhibitors are neuroprotective and preserve NGF-mediated cell survival following traumatic brain injury. Proc Natl Acad Sci U S A. 2013;110:10747–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Faraco G, Pancani T, Formentini L, Mascagni P, Fossati G, et al. Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain. Mol Pharmacol. 2006;70:1876–84.

    Article  CAS  PubMed  Google Scholar 

  36. Ryu H, Lee J, Olofsson BA, Mwidau A, Dedeoglu A, et al. Histone deacetylase inhibitors prevent oxidative neuronal death independent of expanded polyglutamine repeats via an Sp1-dependent pathway. Proc Natl Acad Sci U S A. 2003;100:4281–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Liu DZ, Ander BP. Cell cycle inhibition without disruption of neurogenesis is a strategy for treatment of aberrant cell cycle diseases: an update. Sci World J. 2012;2012:491737.

    Google Scholar 

  38. Ziesche E, Kettner-Buhrow D, Weber A, Wittwer T, Jurida L, et al. The coactivator role of histone deacetylase 3 in IL-1-signaling involves deacetylation of p65 NF-kappaB. Nucleic Acids Res. 2013;41:90–109.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Baltan S, Bachleda A, Morrison RS, Murphy SP. Expression of histone deacetylases in cellular compartments of the mouse brain and the effects of ischemia. Transl Stroke Res. 2011;2:411–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Faraco G, Pittelli M, Cavone L, Fossati S, Porcu M, et al. Histone deacetylase (HDAC) inhibitors reduce the glial inflammatory response in vitro and in vivo. Neurobiol Dis. 2009;36:269–79.

    Article  CAS  PubMed  Google Scholar 

  41. Bode KA, Schroder K, Hume DA, Ravasi T, Heeg K, et al. Histone deacetylase inhibitors decrease toll-like receptor-mediated activation of proinflammatory gene expression by impairing transcription factor recruitment. Immunology. 2007;122:596–606.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Perry VH, Nicoll JA, Holmes C. Microglia in neurodegenerative disease. Nat Rev Neurol. 2010;6:193–201.

    Article  PubMed  Google Scholar 

  43. Lin S, Yin Q, Zhong Q, Lv FL, Zhou Y, et al. Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J Neuroinflammation. 2012;9:46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Wu H, Wu T, Xu X, Wang J. Iron toxicity in mice with collagenase-induced intracerebral hemorrhage. J Cereb Blood Flow Metab. 2011;31:1243–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the American Heart Association (14SDG18730034 to SSR) and National Institute of Health (R01NS065172, R21NS075774 to KMD).

Conflict of Interest

The authors declare that they have no competing interests.

Compliance with Ethical Standards

All institutional and national guidelines for the care and use of animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeetha Sukumari-Ramesh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

HO-1 expression is co localized in Iba1 positive microglia. Brain sections from vehicle/SAHA-treated ICH mice were immunolabeled for HO-1 (green), and Iba1 (red), 3 days post-surgery. HO-1 expression was mostly observed in Iba1 positive microglia and SAHA treatment attenuated both HO-1 expression and number of amoeboid microglia after ICH. n = 4–6/group. (GIF 340 kb)

High Resolution (TIFF 1521 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukumari-Ramesh, S., Alleyne, C.H. & Dhandapani, K.M. The Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid (SAHA) Confers Acute Neuroprotection After Intracerebral Hemorrhage in Mice. Transl. Stroke Res. 7, 141–148 (2016). https://doi.org/10.1007/s12975-015-0421-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-015-0421-y

Keywords

Navigation