Skip to main content

Advertisement

Log in

Microglia–blood vessel interactions: a double-edged sword in brain pathologies

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Microglia are long-living resident immune cells of the brain, which secure a stable chemical and physical microenvironment necessary for the proper functioning of the central nervous system (CNS). These highly dynamic cells continuously scan their environment for pathogens and possess the ability to react to damage-induced signals in order to protect the brain. Microglia, together with endothelial cells (ECs), pericytes and astrocytes, form the functional blood–brain barrier (BBB), a specialized endothelial structure that selectively separates the sensitive brain parenchyma from blood circulation. Microglia are in bidirectional and permanent communication with ECs and their perivascular localization enables them to survey the influx of blood-borne components into the CNS. Furthermore, they may stimulate the opening of the BBB, extravasation of leukocytes and angiogenesis. However, microglia functioning requires tight control as their dysregulation is implicated in the initiation and progression of numerous neurological diseases. Disruption of the BBB, changes in blood flow, introduction of pathogens in the sensitive CNS niche, insufficient nutrient supply, and abnormal secretion of cytokines or expression of endothelial receptors are reported to prime and attract microglia. Such reactive microglia have been reported to even escalate the damage of the brain parenchyma as is the case in ischemic injuries, brain tumors, multiple sclerosis, Alzheimer's and Parkinson's disease. In this review, we present the current state of the art of the causes and mechanisms of pathological interactions between microglia and blood vessels and explore the possibilities of targeting those dysfunctional interactions for the development of future therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adams RA, Bauer J, Flick MJ, Sikorski SL, Nuriel T, Lassmann H, Degen JL, Akassoglou K (2007) The fibrin-derived gamma377-395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease. J Exp Med 204:571–582. doi:10.1084/jem.20061931

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Adams RA, Schachtrup C, Davalos D, Tsigelny I, Akassoglou K (2007) Fibrinogen signal transduction as a mediator and therapeutic target in inflammation: lessons from multiple sclerosis. Curr Med Chem 14:2925–2936

    Article  CAS  PubMed  Google Scholar 

  3. Aisen PS, Davis KL, Berg JD, Schafer K, Campbell K, Thomas RG, Weiner MF, Farlow MR, Sano M, Grundman M et al (2000) A randomized controlled trial of prednisone in Alzheimer’s disease. Alzheimer’s Disease Cooperative Study. Neurology 54:588–593

    Article  CAS  PubMed  Google Scholar 

  4. Aisen PS, Schafer KA, Grundman M, Pfeiffer E, Sano M, Davis KL, Farlow MR, Jin S, Thomas RG, Thal LJ et al (2003) Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA 289:2819–2826. doi:10.1001/jama.289.21.2819

    Article  CAS  PubMed  Google Scholar 

  5. Aisen PS, Schmeidler J, Pasinetti GM (2002) Randomized pilot study of nimesulide treatment in Alzheimer’s disease. Neurology 58:1050–1054

    Article  CAS  PubMed  Google Scholar 

  6. Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM (2011) Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 14:1142–1149. doi:10.1038/nn.2887

    Article  CAS  PubMed  Google Scholar 

  7. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543. doi:10.1038/nn2014

    Article  CAS  PubMed  Google Scholar 

  8. Alves TR, Lima FRS, Kahn SA, Lobo D, Dubois LGF, Soletti R, Borges H, Neto VM (2011) Glioblastoma cells: a heterogeneous and fatal tumor interacting with the parenchyma. Life Sci 89:532–539. doi:10.1016/j.lfs.2011.04.022

    Article  CAS  PubMed  Google Scholar 

  9. Amiri-Nikpour MR, Nazarbaghi S, Hamdi-Holasou M, Rezaei Y (2015) An open-label evaluator-blinded clinical study of minocycline neuroprotection in ischemic stroke: gender-dependent effect. Acta Neurol Scand 131:45–50. doi:10.1111/ane.12296

    Article  CAS  PubMed  Google Scholar 

  10. Arnold T, Betsholtz C (2013) Correction: the importance of microglia in the development of the vasculature in the central nervous system. Vasc Cell 5:12. doi:10.1186/2045-824X-5-12

    Article  PubMed Central  PubMed  Google Scholar 

  11. Asahina M, Yoshiyama Y, Hattori T (2001) Expression of matrix metalloproteinase-9 and urinary-type plasminogen activator in Alzheimer’s disease brain. Clin Neuropathol 20:60–63

    CAS  PubMed  Google Scholar 

  12. Barcia C, Bautista V, Sanchez-Bahillo A, Fernandez-Villalba E, Faucheux B, Poza y Poza M, Fernandez Barreiro A, Hirsch EC, Herrero MT (2005) Changes in vascularization in substantia nigra pars compacta of monkeys rendered parkinsonian. J Neural Transm 112:1237–1248. doi:10.1007/s00702-004-0256-2

    Article  CAS  PubMed  Google Scholar 

  13. Barkauskas DS, Dixon Dorand R, Myers JT, Evans TA, Barkauskas KJ, Askew D, Purgert R, Huang AY (2015) Focal transient CNS vessel leak provides a tissue niche for sequential immune cell accumulation during the asymptomatic phase of EAE induction. Exp Neurol 266:74–85. doi:10.1016/j.expneurol.2015.02.018

    Article  CAS  PubMed  Google Scholar 

  14. Barten DM, Albright CF (2008) Therapeutic strategies for Alzheimer’s disease. Mol Neurobiol 37:171–186. doi:10.1007/s12035-008-8031-2

    Article  CAS  PubMed  Google Scholar 

  15. Bell-Temin H, Culver-Cochran AE, Chaput D, Carlson CM, Kuehl MN, Burkhardt BR, Bickford PC, Liu B, Stevens SM Jr (2015) Novel molecular insights into classical and alternative activation states of microglia as revealed by SILAC-based proteomics. Mol Cell Proteom MCP. doi:10.1074/mcp.M115.053926

    Google Scholar 

  16. Bell RD, Zlokovic BV (2009) Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer’s disease. Acta Neuropathol 118:103–113. doi:10.1007/s00401-009-0522-3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ben-Nun A, Kaushansky N, Kawakami N, Krishnamoorthy G, Berer K, Liblau R, Hohlfeld R, Wekerle H (2014) From classic to spontaneous and humanized models of multiple sclerosis: impact on understanding pathogenesis and drug development. J Autoimmun 54:33–50. doi:10.1016/j.jaut.2014.06.004

    Article  CAS  PubMed  Google Scholar 

  18. Blouw B, Song H, Tihan T, Bosze J, Ferrara N, Gerber HP, Johnson RS, Bergers G (2003) The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell 4:133–146

    Article  CAS  PubMed  Google Scholar 

  19. Blum-Degen D, Muller T, Kuhn W, Gerlach M, Przuntek H, Riederer P (1995) Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 202:17–20

    Article  CAS  PubMed  Google Scholar 

  20. Boche D, Perry VH, Nicoll JA (2013) Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol 39:3–18. doi:10.1111/nan.12011

    Article  CAS  PubMed  Google Scholar 

  21. Boroujerdi A, Welser-Alves JV, Milner R (2013) Extensive vascular remodeling in the spinal cord of pre-symptomatic experimental autoimmune encephalomyelitis mice; increased vessel expression of fibronectin and the alpha5beta1 integrin. Exp Neurol 250:43–51. doi:10.1016/j.expneurol.2013.09.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Bradshaw EM, Chibnik LB, Keenan BT, Ottoboni L, Raj T, Tang A, Rosenkrantz LL, Imboywa S, Lee M, Von Korff A et al (2013) CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci 16:848–850. doi:10.1038/nn.3435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Brochard V, Combadiere B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, Bonduelle O, Alvarez-Fischer D, Callebert J, Launay JM et al (2009) Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Investig 119:182–192. doi:10.1172/JCI36470

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Brown GC, Neher JJ (2014) Microglial phagocytosis of live neurons. Nat Rev Neurosci 15:209–216. doi:10.1038/nrn3710

    Article  CAS  PubMed  Google Scholar 

  25. Bruck W, Bitsch A, Kolenda H, Bruck Y, Stiefel M, Lassmann H (1997) Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol 42:783–793. doi:10.1002/ana.410420515

    Article  CAS  PubMed  Google Scholar 

  26. Bruttger J, Karram K, Wortge S, Regen T, Marini F, Hoppmann N, Klein M, Blank T, Yona S, Wolf Y et al (2015) Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system. Immunity 43:92–106. doi:10.1016/j.immuni.2015.06.012

    Article  CAS  PubMed  Google Scholar 

  27. Cacabelos R, Barquero M, Garcia P, Alvarez XA, Varela de Seijas E (1991) Cerebrospinal fluid interleukin-1 beta (IL-1 beta) in Alzheimer’s disease and neurological disorders. Methods Find Exp Clin Pharmacol 13:455–458

    CAS  PubMed  Google Scholar 

  28. Carmeliet P, Mackman N, Moons L, Luther T, Gressens P, Van Vlaenderen I, Demunck H, Kasper M, Breier G, Evrard P et al (1996) Role of tissue factor in embryonic blood vessel development. Nature 383:73–75. doi:10.1038/383073a0

    Article  CAS  PubMed  Google Scholar 

  29. Cartier N, Lewis CA, Zhang R, Rossi FM (2014) The role of microglia in human disease: therapeutic tool or target? Acta Neuropathol 128:363–380. doi:10.1007/s00401-014-1330-y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Carvey PM, Zhao CH, Hendey B, Lum H, Trachtenberg J, Desai BS, Snyder J, Zhu YG, Ling ZD (2005) 6-Hydroxydopamine-induced alterations in blood–brain barrier permeability. Eur J Neurosci 22:1158–1168. doi:10.1111/j.1460-9568.2005.04281.x

    Article  CAS  PubMed  Google Scholar 

  31. Chao Y, Wong SC, Tan EK (2014) Evidence of inflammatory system involvement in Parkinson’s disease. BioMed Res Int 2014:308654. doi:10.1155/2014/308654

    PubMed Central  PubMed  Google Scholar 

  32. Chen SK, Tvrdik P, Peden E, Cho S, Wu S, Spangrude G, Capecchi MR (2010) Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141:775–785. doi:10.1016/j.cell.2010.03.055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Cherry JD, Olschowka JA, O’Banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 11:98. doi:10.1186/1742-2094-11-98

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Constantinescu CS, Asher A, Fryze W, Kozubski W, Wagner F, Aram J, Tanasescu R, Korolkiewicz RP, Dirnberger-Hertweck M, Steidl S et al (2015) Randomized phase 1b trial of MOR103, a human antibody to GM-CSF, in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 2:e117. doi:10.1212/NXI.0000000000000117

    Article  PubMed Central  PubMed  Google Scholar 

  35. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758. doi:10.1038/nn1472

    Article  CAS  PubMed  Google Scholar 

  36. Davalos D, Ryu JK, Merlini M, Baeten KM, Le Moan N, Petersen MA, Deerinck TJ, Smirnoff DS, Bedard C, Hakozaki H et al (2012) Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat Commun 3:1227. doi:10.1038/ncomms2230

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Davies DC, Hardy JA (1988) Blood brain barrier in ageing and Alzheimer’s disease. Neurobiol Aging 9:46–48

    Article  CAS  PubMed  Google Scholar 

  38. Davies LC, Rosas M, Jenkins SJ, Liao CT, Scurr MJ, Brombacher F, Fraser DJ, Allen JE, Jones SA, Taylor PR (2013) Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation. Nat Commun 4:1886. doi:10.1038/ncomms2877

  39. De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, Naldini L (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8:211–226. doi:10.1016/j.ccr.2005.08.002

    Article  PubMed  CAS  Google Scholar 

  40. Dénes A, Ferenczi S, Halász J, Környei Z, Kovács KJ (2008) Role of CX3CR1 (fractalkine receptor) in brain damage and inflammation induced by focal cerebral ischemia in mouse. J Cereb Blood Flow Metab 28:1707–1721. doi:10.1038/jcbfm.2008.64

    Article  PubMed  CAS  Google Scholar 

  41. Desai Bradaric B, Patel A, Schneider JA, Carvey PM, Hendey B (2012) Evidence for angiogenesis in Parkinson’s disease, incidental Lewy body disease, and progressive supranuclear palsy. J Neural Transm 119:59–71. doi:10.1007/s00702-011-0684-8

    Article  PubMed  Google Scholar 

  42. Dickson DW (1997) The pathogenesis of senile plaques. J Neuropathol Exp Neurol 56:321–339

    Article  CAS  PubMed  Google Scholar 

  43. Dzamko N, Geczy CL, Halliday GM (2015) Inflammation is genetically implicated in Parkinson’s disease. Neuroscience 302:89–102. doi:10.1016/j.neuroscience.2014.10.028

    Article  CAS  PubMed  Google Scholar 

  44. El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD (2007) Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 13:432–438. doi:10.1038/nm1555

    Article  PubMed  CAS  Google Scholar 

  45. El Khoury JB, Moore KJ, Means TK, Leung J, Terada K, Toft M, Freeman MW, Luster AD (2003) CD36 mediates the innate host response to beta-amyloid. J Exp Med 197:1657–1666. doi:10.1084/jem.20021546

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, Kitazawa M, Matusow B, Nguyen H, West BL et al (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82:380–397. doi:10.1016/j.neuron.2014.02.040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S, Peri F, Wilson SW, Ruhrberg C (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116:829–840. doi:10.1182/blood-2009-12-257832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Farfara D, Lifshitz V, Frenkel D (2008) Neuroprotective and neurotoxic properties of glial cells in the pathogenesis of Alzheimer’s disease. J Cell Mol Med 12:762–780. doi:10.1111/j.1582-4934.2008.00314.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Flavin MP, Zhao G, Ho LT (2000) Microglial tissue plasminogen activator (tPA) triggers neuronal apoptosis in vitro. Glia 29:347–354

    Article  CAS  PubMed  Google Scholar 

  50. Frautschy SA, Yang F, Irrizarry M, Hyman B, Saido TC, Hsiao K, Cole GM (1998) Microglial response to amyloid plaques in APPsw transgenic mice. Am J Pathol 152:307–317

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Fu R, Shen Q, Xu P, Luo JJ, Tang Y (2014) Phagocytosis of microglia in the central nervous system diseases. Mol Neurobiol 49:1422–1434. doi:10.1007/s12035-013-8620-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Fujiwara Y, Komohara Y, Ikeda T, Takeya M (2011) Corosolic acid inhibits glioblastoma cell proliferation by suppressing the activation of signal transducer and activator of transcription-3 and nuclear factor-kappa B in tumor cells and tumor-associated macrophages. Cancer Sci 102:206–211. doi:10.1111/j.1349-7006.2010.01772.x

    Article  CAS  PubMed  Google Scholar 

  53. Fujiwara Y, Komohara Y, Kudo R, Tsurushima K, Ohnishi K, Ikeda T, Takeya M (2011) Oleanolic acid inhibits macrophage differentiation into the M2 phenotype and glioblastoma cell proliferation by suppressing the activation of STAT3. Oncol Rep 26:1533–1537. doi:10.3892/or.2011.1454

    CAS  PubMed  Google Scholar 

  54. Fukumura D, Xu L, Chen Y, Gohongi T, Seed B, Jain RK (2001) Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res 61:6020–6024

    CAS  PubMed  Google Scholar 

  55. Furlan M, Marchal G, Viader F, Derlon JM, Baron JC (1996) Spontaneous neurological recovery after stroke and the fate of the ischemic penumbra. Ann Neurol 40:216–226. doi:10.1002/ana.410400213

    Article  CAS  PubMed  Google Scholar 

  56. Gabrusiewicz K, Ellert-Miklaszewska A, Lipko M, Sielska M, Frankowska M, Kaminska B (2011) Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas. PLoS ONE 6:e23902. doi:10.1371/journal.pone.0023902

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Galea I, Bechmann I, Perry VH (2007) What is immune privilege (not)? Trends Immunol 28:12–18. doi:10.1016/j.it.2006.11.004

    Article  CAS  PubMed  Google Scholar 

  58. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K (2010) Development of monocytes, macrophages, and dendritic cells. Science 327:656–661. doi:10.1126/science.1178331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, Arumugam TV, Orthey E, Gerloff C, Tolosa E et al (2009) Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 40:1849–1857. doi:10.1161/strokeaha.108.534503

    Article  PubMed  Google Scholar 

  60. Gelosa P, Lecca D, Fumagalli M, Wypych D, Pignieri A, Cimino M, Verderio C, Enerbäck M, Nikookhesal E, Tremoli E et al (2014) Microglia is a key player in the reduction of stroke damage promoted by the new antithrombotic agent ticagrelor. J Cereb Blood Flow Metab 34:979–988. doi:10.1038/jcbfm.2014.45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845. doi:10.1126/science.1194637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Girolamo F, Coppola C, Ribatti D, Trojano M (2014) Angiogenesis in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol Commun 2:84. doi:10.1186/s40478-014-0084-z

    Article  PubMed Central  PubMed  Google Scholar 

  63. Graeber MB, Streit WJ, Kreutzberg GW (1989) Identity of ED2-positive perivascular cells in rat brain. J Neurosci Res 22:103–106. doi:10.1002/jnr.490220114

    Article  CAS  PubMed  Google Scholar 

  64. Gray MT, Woulfe JM (2015) Striatal blood–brain barrier permeability in Parkinson’s disease. J Cereb Blood Flow Metab 35:747–750. doi:10.1038/jcbfm.2015.32

    Article  CAS  PubMed  Google Scholar 

  65. Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K, Hooli B, Choi SH, Hyman BT, Tanzi RE (2013) Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78:631–643. doi:10.1016/j.neuron.2013.04.014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, White CL 3rd, Araoz C (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci USA 86:7611–7615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Guerreiro R, Hardy J (2013) TREM2 and neurodegenerative disease. N Engl J Med 369:1569–1570

    CAS  PubMed  Google Scholar 

  68. Halliday G, Robinson SR, Shepherd C, Kril J (2000) Alzheimer’s disease and inflammation: a review of cellular and therapeutic mechanisms. Clin Exp Pharmacol Physiol 27:1–8

    Article  CAS  PubMed  Google Scholar 

  69. Hanisch UK (2013) Functional diversity of microglia—how heterogeneous are they to begin with? Front Cell Neurosci 7:65. doi:10.3389/fncel.2013.00065

    Article  PubMed Central  PubMed  Google Scholar 

  70. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093. doi:10.1038/ng.440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Harry GJ (2013) Microglia during development and aging. Pharmacol Ther 139:313–326. doi:10.1016/j.pharmthera.2013.04.013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9:1512–1519. doi:10.1038/nn1805

    Article  CAS  PubMed  Google Scholar 

  73. Healy LM, Michell-Robinson MA, Antel JP (2015) Regulation of human glia by multiple sclerosis disease modifying therapies. Semin Immunopathol. doi:10.1007/s00281-015-0514-4

    PubMed  Google Scholar 

  74. Heiss W-D (2012) The ischemic penumbra: how does tissue injury evolve? Ann N Y Acad Sci 1268:26–34. doi:10.1111/j.1749-6632.2012.06668.x

    Article  PubMed  Google Scholar 

  75. Heiss WD (2000) Ischemic penumbra: evidence from functional imaging in man. J Cereb Blood Flow Metab 20:1276–1293. doi:10.1097/00004647-200009000-00002

    Article  CAS  PubMed  Google Scholar 

  76. Heiss WD (2012) The ischemic penumbra: how does tissue injury evolve? Ann N Y Acad Sci 1268:26–34. doi:10.1111/j.1749-6632.2012.06668.x

    Article  PubMed  Google Scholar 

  77. Herrera AJ, Espinosa-Oliva AM, Carrillo-Jimenez A, Oliva-Martin MJ, Garcia-Revilla J, Garcia-Quintanilla A, de Pablos RM, Venero JL (2015) Relevance of chronic stress and the two faces of microglia in Parkinson’s disease. Front Cell Neurosci 9:312. doi:10.3389/fncel.2015.00312

    Article  PubMed Central  PubMed  Google Scholar 

  78. Herrero MT, Estrada C, Maatouk L, Vyas S (2015) Inflammation in Parkinson’s disease: role of glucocorticoids. Front Neuroanat 9:32. doi:10.3389/fnana.2015.00032

    Article  PubMed Central  PubMed  Google Scholar 

  79. Hickey WF, Kimura H (1987) Graft-vs.-host disease elicits expression of class I and class II histocompatibility antigens and the presence of scattered T lymphocytes in rat central nervous system. Proc Natl Acad Sci USA 84:2082–2086

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Hickman SE, Allison EK, El Khoury J (2008) Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 28:8354–8360. doi:10.1523/JNEUROSCI.0616-08.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Hickman SE, El Khoury J (2010) Mechanisms of mononuclear phagocyte recruitment in Alzheimer’s disease. CNS Neurol Disord Drug Targets 9:168–173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Hirao K, Ohnishi T, Hirata Y, Yamashita F, Mori T, Moriguchi Y, Matsuda H, Nemoto K, Imabayashi E, Yamada M et al (2005) The prediction of rapid conversion to Alzheimer’s disease in mild cognitive impairment using regional cerebral blood flow SPECT. Neuroimage 28:1014–1021. doi:10.1016/j.neuroimage.2005.06.066

    Article  PubMed  Google Scholar 

  83. Hristova M, Cuthill D, Zbarsky V, Acosta-Saltos A, Wallace A, Blight K, Buckley SM, Peebles D, Heuer H, Waddington SN et al (2010) Activation and deactivation of periventricular white matter phagocytes during postnatal mouse development. Glia 58:11–28. doi:10.1002/glia.20896

    Article  PubMed  Google Scholar 

  84. Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, Gao Y, Chen J (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43:3063–3070. doi:10.1161/strokeaha.112.659656

    Article  CAS  PubMed  Google Scholar 

  85. Hussain S, Yang D, Suki D, Grimm E, Heimberger A (2006) Innate immune functions of microglia isolated from human glioma patients. J Transl Med 4:1–9. doi:10.1186/1479-5876-4-15

    Article  CAS  Google Scholar 

  86. Hussain SF, Yang D, Suki D, Aldape K, Grimm E, Heimberger AB (2006) The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro Oncol 8:261–279. doi:10.1215/15228517-2006-008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y (2001) Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke 32:1208–1215

    Article  CAS  PubMed  Google Scholar 

  88. Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8:610-622. doi:http://www.nature.com/nrn/journal/v8/n8/suppinfo/nrn2175_S1.html

  89. Jian Liu K, Rosenberg GA (2005) Matrix metalloproteinases and free radicals in cerebral ischemia. Free Radic Biol Med 39:71–80. doi:10.1016/j.freeradbiomed.2005.03.033

    Article  CAS  PubMed  Google Scholar 

  90. Johnson NA, Jahng GH, Weiner MW, Miller BL, Chui HC, Jagust WJ, Gorno-Tempini ML, Schuff N (2005) Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology 234:851–859. doi:10.1148/radiol.2343040197

    Article  PubMed Central  PubMed  Google Scholar 

  91. Jolivel V, Bicker F, Biname F, Ploen R, Keller S, Gollan R, Jurek B, Birkenstock J, Poisa-Beiro L, Bruttger J et al (2015) Perivascular microglia promote blood vessel disintegration in the ischemic penumbra. Acta Neuropathol 129:279–295. doi:10.1007/s00401-014-1372-1

    Article  PubMed  Google Scholar 

  92. Watters JJ, Schartner JM, Badie B (2005) Microglia function in brain tumors. J Neurosci Res 81:447–455

    Article  CAS  PubMed  Google Scholar 

  93. Kahles T, Luedike P, Endres M, Galla HJ, Steinmetz H, Busse R, Neumann-Haefelin T, Brandes RP (2007) NADPH oxidase plays a central role in blood–brain barrier damage in experimental stroke. Stroke 38:3000–3006. doi:10.1161/strokeaha.107.489765

    Article  CAS  PubMed  Google Scholar 

  94. Kalaria RN, Harik SI (1989) Reduced glucose transporter at the blood–brain barrier and in cerebral cortex in Alzheimer disease. J Neurochem 53:1083–1088

    Article  CAS  PubMed  Google Scholar 

  95. Kermode AG, Thompson AJ, Tofts P, MacManus DG, Kendall BE, Kingsley DP, Moseley IF, Rudge P, McDonald WI (1990) Breakdown of the blood–brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis. Pathogenetic and clinical implications. Brain 113(Pt 5):1477–1489

    Article  PubMed  Google Scholar 

  96. Kida S, Steart PV, Zhang ET, Weller RO (1993) Perivascular cells act as scavengers in the cerebral perivascular spaces and remain distinct from pericytes, microglia and macrophages. Acta Neuropathol 85:646–652

    Article  CAS  PubMed  Google Scholar 

  97. Kieburtz K, Wunderle KB (2013) Parkinson’s disease: evidence for environmental risk factors. Mov Disord 28:8–13. doi:10.1002/mds.25150

    Article  CAS  PubMed  Google Scholar 

  98. Kim C, Ho DH, Suk JE, You S, Michael S, Kang J, Joong Lee S, Masliah E, Hwang D, Lee HJ et al (2013) Neuron-released oligomeric alpha-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun 4:1562. doi:10.1038/ncomms2534

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  99. Kirk J, Plumb J, Mirakhur M, McQuaid S (2003) Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood–brain barrier leakage and active demyelination. J Pathol 201:319–327. doi:10.1002/path.1434

    Article  PubMed  Google Scholar 

  100. Klein R, Roggendorf W (2001) Increased microglia proliferation separates pilocytic astrocytomas from diffuse astrocytomas: a double labeling study. Acta Neuropathol 101:245–248

    CAS  PubMed  Google Scholar 

  101. Kobayashi K, Imagama S, Ohgomori T, Hirano K, Uchimura K, Sakamoto K, Hirakawa A, Takeuchi H, Suzumura A, Ishiguro N et al (2013) Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis 4:e525. doi:10.1038/cddis.2013.54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Kofler J, Wiley CA (2011) Microglia: key innate immune cells of the brain. Toxicol Pathol 39:103–114. doi:10.1177/0192623310387619

    Article  PubMed  Google Scholar 

  103. Kohler E, Prentice DA, Bates TR, Hankey GJ, Claxton A, van Heerden J, Blacker D (2013) Intravenous minocycline in acute stroke: a randomized, controlled pilot study and meta-analysis. Stroke 44:2493–2499. doi:10.1161/strokeaha.113.000780

    Article  CAS  PubMed  Google Scholar 

  104. Kohutnicka M, Lewandowska E, Kurkowska-Jastrzebska I, Czlonkowski A, Czlonkowska A (1998) Microglial and astrocytic involvement in a murine model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Immunopharmacology 39:167–180

    Article  CAS  PubMed  Google Scholar 

  105. Kostianovsky AM, Maier LM, Anderson RC, Bruce JN, Anderson DE (2008) Astrocytic regulation of human monocytic/microglial activation. J Immunol 181:5425–5432

    Article  CAS  PubMed  Google Scholar 

  106. Kunsch C, Medford RM (1999) Oxidative stress as a regulator of gene expression in the vasculature. Circ Res 85:753–766

    Article  CAS  PubMed  Google Scholar 

  107. Kurz H, Christ B (1998) Embryonic CNS macrophages and microglia do not stem from circulating, but from extravascular precursors. Glia 22:98–102

    Article  CAS  PubMed  Google Scholar 

  108. Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41:1094–1099. doi:10.1038/ng.439

    Article  CAS  PubMed  Google Scholar 

  109. Lampl Y, Boaz M, Gilad R, Lorberboym M, Dabby R, Rapoport A, Anca-Hershkowitz M, Sadeh M (2007) Minocycline treatment in acute stroke: an open-label, evaluator-blinded study. Neurology 69:1404–1410. doi:10.1212/01.wnl.0000277487.04281.db

    Article  CAS  PubMed  Google Scholar 

  110. Lassmann H, Bruck W, Lucchinetti CF (2007) The immunopathology of multiple sclerosis: an overview. Brain Pathol 17:210–218. doi:10.1111/j.1750-3639.2007.00064.x

    Article  PubMed  Google Scholar 

  111. Lassmann H, Zimprich F, Vass K, Hickey WF (1991) Microglial cells are a component of the perivascular glia limitans. J Neurosci Res 28:236–243. doi:10.1002/jnr.490280211

    Article  CAS  PubMed  Google Scholar 

  112. Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170. doi:10.1016/0306-4522(90)90229-W

    Article  CAS  PubMed  Google Scholar 

  113. Lee Y, Lee SR, Choi SS, Yeo HG, Chang KT, Lee HJ (2014) Therapeutically targeting neuroinflammation and microglia after acute ischemic stroke. BioMed Res Int 2014:297241. doi:10.1155/2014/297241

    PubMed Central  PubMed  Google Scholar 

  114. Li G, Hattermann K, Mentlein R, Mehdorn HM, Held-Feindt J (2013) The transmembrane chemokines CXCL16 and CX3CL1 and their receptors are expressed in human meningiomas. Oncol Rep 29:563–570. doi:10.3892/or.2012.2164

    PubMed  Google Scholar 

  115. Li J, McCullough LD (2009) Sex differences in minocycline-induced neuroprotection after experimental stroke. J Cereb Blood Flow Metab 29:670–674. doi:10.1038/jcbfm.2009.3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Li W, Graeber MB (2012) The molecular profile of microglia under the influence of glioma. Neuro Oncol 14:958–978. doi:10.1093/neuonc/nos116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Li Y, Liu DX, Li MY, Qin XX, Fang WG, Zhao WD, Chen YH (2014) Ephrin-A3 and ephrin-A4 contribute to microglia-induced angiogenesis in brain endothelial cells. Anat Rec (Hoboken) 297:1908–1918. doi:10.1002/ar.22998

    Article  CAS  Google Scholar 

  118. Liu M, Bing G (2011) Lipopolysaccharide animal models for Parkinson’s disease. Parkinson’s Dis 2011:327089. doi:10.4061/2011/327089

    Google Scholar 

  119. Lo EH (2008) A new penumbra: transitioning from injury into repair after stroke. Nat Med 14:497–500. doi:10.1038/nm1735

    Article  CAS  PubMed  Google Scholar 

  120. Lopes MBS (2003) Angiogenesis in brain tumors. Microsc Res Tech 60:225–230. doi:10.1002/jemt.10260

    Article  CAS  PubMed  Google Scholar 

  121. Lorger M (2012) Tumor microenvironment in the brain. Cancers 4:218–243. doi:10.3390/cancers4010218

    Article  PubMed Central  PubMed  Google Scholar 

  122. Lorger M, Krueger JS, O’Neal M, Staflin K, Felding-Habermann B (2009) Activation of tumor cell integrin alphavbeta3 controls angiogenesis and metastatic growth in the brain. Proc Natl Acad Sci USA 106:10666–10671. doi:10.1073/pnas.0903035106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–341. doi:10.1038/nature14432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Lue LF, Rydel R, Brigham EF, Yang LB, Hampel H, Murphy GM Jr, Brachova L, Yan SD, Walker DG, Shen Y et al (2001) Inflammatory repertoire of Alzheimer’s disease and nondemented elderly microglia in vitro. Glia 35:72–79

    Article  CAS  PubMed  Google Scholar 

  125. Machado LS, Kozak A, Ergul A, Hess DC, Borlongan CV, Fagan SC (2006) Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke. BMC Neurosci 7:56. doi:10.1186/1471-2202-7-56

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  126. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555. doi:10.1016/S1471-4906(02)02302-5

    Article  CAS  PubMed  Google Scholar 

  127. Marik C, Felts PA, Bauer J, Lassmann H, Smith KJ (2007) Lesion genesis in a subset of patients with multiple sclerosis: a role for innate immunity? Brain 130:2800–2815. doi:10.1093/brain/awm236

    Article  PubMed Central  PubMed  Google Scholar 

  128. Markovic DS, Vinnakota K, van Rooijen N, Kiwit J, Synowitz M, Glass R, Kettenmann H (2011) Minocycline reduces glioma expansion and invasion by attenuating microglial MT1-MMP expression. Brain Behav Immun 25:624–628. doi:10.1016/j.bbi.2011.01.015

    Article  CAS  PubMed  Google Scholar 

  129. Markovic DS, Vinnakota K, Chirasani S, Synowitz M, Raguet H, Stock K, et al (2009) Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion. Proc Natl Acad Sci USA 106:12530–12535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Mato M, Ookawara S, Sakamoto A, Aikawa E, Ogawa T, Mitsuhashi U, Masuzawa T, Suzuki H, Honda M, Yazaki Y et al (1996) Involvement of specific macrophage-lineage cells surrounding arterioles in barrier and scavenger function in brain cortex. Proc Natl Acad Sci USA 93:3269–3274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Matsubara T, Ono T, Yamanoi A, Tachibana M, Nagasue N (2007) Fractalkine-CX3CR1 axis regulates tumor cell cycle and deteriorates prognosis after radical resection for hepatocellular carcinoma. J Surg Oncol 95:241–249. doi:10.1002/jso.20642

    Article  CAS  PubMed  Google Scholar 

  132. Matsumoto J, Dohgu S, Takata F, Nishioku T, Sumi N, Machida T, Takahashi H, Yamauchi A, Kataoka Y (2012) Lipopolysaccharide-activated microglia lower P-glycoprotein function in brain microvascular endothelial cells. Neurosci Lett 524:45–48. doi:10.1016/j.neulet.2012.07.004

    Article  CAS  PubMed  Google Scholar 

  133. Melani A, Amadio S, Gianfriddo M, Vannucchi MG, Volonte C, Bernardi G, Pedata F, Sancesario G (2006) P2X7 receptor modulation on microglial cells and reduction of brain infarct caused by middle cerebral artery occlusion in rat. J Cereb Blood Flow Metab 26:974–982. doi:10.1038/sj.jcbfm.9600250

    Article  CAS  PubMed  Google Scholar 

  134. Meyer-Luehmann M, Prinz M (2015) Myeloid cells in Alzheimer’s Disease: culprits, victims or innocent bystanders? Trends Neurosci 38:659–668. doi:10.1016/j.tins.2015.08.011

    Article  CAS  PubMed  Google Scholar 

  135. Mildner A, Mack M, Schmidt H, Bruck W, Djukic M, Zabel MD, Hille A, Priller J, Prinz M (2009) CCR2+ Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain 132:2487–2500. doi:10.1093/brain/awp144

    Article  PubMed  Google Scholar 

  136. Mittelbronn M, Dietz K, Schluesener HJ, Meyermann R (2001) Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol 101:249–255

    CAS  PubMed  Google Scholar 

  137. Mizutani M, Pino PA, Saederup N, Charo IF, Ransohoff RM, Cardona AE (2012) The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood. J Immunol 188:29–36. doi:10.4049/jimmunol.1100421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. Moehle MS, West AB (2015) M1 and M2 immune activation in Parkinson’s Disease: foe and ally? Neuroscience 302:59–73. doi:10.1016/j.neuroscience.2014.11.018

    Article  CAS  PubMed  Google Scholar 

  139. Montaner J, Alvarez-Sabin J, Molina CA, Angles A, Abilleira S, Arenillas J, Monasterio J (2001) Matrix metalloproteinase expression is related to hemorrhagic transformation after cardioembolic stroke. Stroke 32:2762–2767

    Article  CAS  PubMed  Google Scholar 

  140. Morantz RA, Wood GW, Foster M, Clark M, Gollahon K (1979) Macrophages in experimental and human brain tumors. Part 1: studies of the macrophage content of experimental rat brain tumors of varying immunogenicity. J Neurosurg 50:298–304. doi:10.3171/jns.1979.50.3.0298

    Article  CAS  PubMed  Google Scholar 

  141. Morantz RA, Wood GW, Foster M, Clark M, Gollahon K (1979) Macrophages in experimental and human brain tumors. Part 2: studies of the macrophage content of human brain tumors. J Neurosurg 50:305–311. doi:10.3171/jns.1979.50.3.0305

    Article  CAS  PubMed  Google Scholar 

  142. Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67:181–198. doi:10.1016/j.neuron.2010.07.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, Laurie C, Gendelman HE (2006) Neuroinflammation, Oxidative stress and the pathogenesis of Parkinson’s Disease. Clin Neurosci Res 6:261–281. doi:10.1016/j.cnr.2006.09.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Nayak D, Roth TL, McGavern DB (2014) Microglia development and function. Annu Rev Immunol 32:367–402. doi:10.1146/annurev-immunol-032713-120240

    Article  CAS  PubMed  Google Scholar 

  145. Nicholas MK, Antel JP, Stefansson K, Arnason BG (1987) Rejection of fetal neocortical neural transplants by H-2 incompatible mice. J Immunol 139:2275–2283

    CAS  PubMed  Google Scholar 

  146. Nikolic I, Stankovic ND, Bicker F, Meister J, Braun H, Awwad K, Baumgart J, Simon K, Thal SC, Patra C et al (2013) EGFL7 ligates alphavbeta3 integrin to enhance vessel formation. Blood 121:3041–3050. doi:10.1182/blood-2011-11-394882

    Article  CAS  PubMed  Google Scholar 

  147. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343:938–952. doi:10.1056/NEJM200009283431307

    Article  CAS  PubMed  Google Scholar 

  148. Opal SM, van der Poll T (2015) Endothelial barrier dysfunction in septic shock. J Intern Med 277:277–293. doi:10.1111/joim.12331

    Article  CAS  PubMed  Google Scholar 

  149. Ortiz GG, Pacheco-Moises FP, Macias-Islas MA, Flores-Alvarado LJ, Mireles-Ramirez MA, Gonzalez-Renovato ED, Hernandez-Navarro VE, Sanchez-Lopez AL, Alatorre-Jimenez MA (2014) Role of the blood–brain barrier in multiple sclerosis. Arch Med Res 45:687–697. doi:10.1016/j.arcmed.2014.11.013

    Article  CAS  PubMed  Google Scholar 

  150. Padden M, Leech S, Craig B, Kirk J, Brankin B, McQuaid S (2007) Differences in expression of junctional adhesion molecule-A and beta-catenin in multiple sclerosis brain tissue: increasing evidence for the role of tight junction pathology. Acta Neuropathol 113:177–186. doi:10.1007/s00401-006-0145-x

    Article  CAS  PubMed  Google Scholar 

  151. Paresce DM, Ghosh RN, Maxfield FR (1996) Microglial cells internalize aggregates of the Alzheimer’s disease amyloid beta-protein via a scavenger receptor. Neuron 17:553–565

    Article  CAS  PubMed  Google Scholar 

  152. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd, Lafaille JJ, Hempstead BL, Littman DR, Gan WB (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155:1596–1609. doi:10.1016/j.cell.2013.11.030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  153. Patel AR, Ritzel R, McCullough LD, Liu F (2013) Microglia and ischemic stroke: a double-edged sword. Int J Physiol Pathophysiol Pharmacol 5:73–90

    PubMed Central  PubMed  Google Scholar 

  154. Patel NS, Paris D, Mathura V, Quadros AN, Crawford FC, Mullan MJ (2005) Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. J Neuroinflammation 2:9. doi:10.1186/1742-2094-2-9

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  155. Pihlstrom L, Axelsson G, Bjornara KA, Dizdar N, Fardell C, Forsgren L, Holmberg B, Larsen JP, Linder J, Nissbrandt H et al (2013) Supportive evidence for 11 loci from genome-wide association studies in Parkinson’s disease. Neurobiol Aging 34(1708):e1707–e1713. doi:10.1016/j.neurobiolaging.2012.10.019

    Google Scholar 

  156. Pisani V, Stefani A, Pierantozzi M, Natoli S, Stanzione P, Franciotta D, Pisani A (2012) Increased blood-cerebrospinal fluid transfer of albumin in advanced Parkinson’s disease. J Neuroinflammation 9:188. doi:10.1186/1742-2094-9-188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  157. Plate KH, Mennel HD (1995) Vascular morphology and angiogenesis in glial tumors. Exp Toxicol Pathol 47:89–94. doi:10.1016/S0940-2993(11)80292-7

    Article  CAS  PubMed  Google Scholar 

  158. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146:873–887. doi:10.1016/j.cell.2011.08.039

    Article  CAS  PubMed  Google Scholar 

  159. Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15:300–312. doi:10.1038/nrn3722

    Article  CAS  PubMed  Google Scholar 

  160. Prinz M, Tay TL, Wolf Y, Jung S (2014) Microglia: unique and common features with other tissue macrophages. Acta Neuropathol 128:319–331. doi:10.1007/s00401-014-1267-1

    Article  PubMed  Google Scholar 

  161. Proescholdt MA, Jacobson S, Tresser N, Oldfield EH, Merrill MJ (2002) Vascular endothelial growth factor is expressed in multiple sclerosis plaques and can induce inflammatory lesions in experimental allergic encephalomyelitis rats. J Neuropathol Exp Neurol 61:914–925

    Article  CAS  PubMed  Google Scholar 

  162. Pul R, Moharregh-Khiabani D, Skuljec J, Skripuletz T, Garde N, Voss EV, Stangel M (2011) Glatiramer acetate modulates TNF-alpha and IL-10 secretion in microglia and promotes their phagocytic activity. J Neuroimmune Pharmacol 6:381–388. doi:10.1007/s11481-010-9248-1

    Article  PubMed  Google Scholar 

  163. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, Olson OC, Quick ML, Huse JT, Teijeiro V et al (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19:1264–1272. doi:10.1038/nm.3337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  164. Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145. doi:10.1146/annurev.immunol.021908.132528

    Article  CAS  PubMed  Google Scholar 

  165. Rogers J, Kirby LC, Hempelman SR, Berry DL, McGeer PL, Kaszniak AW, Zalinski J, Cofield M, Mansukhani L, Willson P et al (1993) Clinical trial of indomethacin in Alzheimer’s disease. Neurology 43:1609–1611

    Article  CAS  PubMed  Google Scholar 

  166. Rosell A, Ortega-Aznar A, Alvarez-Sabin J, Fernandez-Cadenas I, Ribo M, Molina CA, Lo EH, Montaner J (2006) Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke 37:1399–1406. doi:10.1161/01.STR.0000223001.06264.af

    Article  CAS  PubMed  Google Scholar 

  167. Russo I, Bubacco L, Greggio E (2014) LRRK2 and neuroinflammation: partners in crime in Parkinson’s disease? J Neuroinflammation 11:52. doi:10.1186/1742-2094-11-52

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  168. Rymo SF, Gerhardt H, Wolfhagen Sand F, Lang R, Uv A, Betsholtz C (2011) A two-way communication between microglial cells and angiogenic sprouts regulates angiogenesis in aortic ring cultures. PLoS ONE 6:e15846. doi:10.1371/journal.pone.0015846

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  169. Sagare A, Deane R, Bell RD, Johnson B, Hamm K, Pendu R, Marky A, Lenting PJ, Wu Z, Zarcone T et al (2007) Clearance of amyloid-beta by circulating lipoprotein receptors. Nat Med 13:1029–1031. doi:10.1038/nm1635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  170. Samuraki M, Matsunari I, Chen WP, Yajima K, Yanase D, Fujikawa A, Takeda N, Nishimura S, Matsuda H, Yamada M (2007) Partial volume effect-corrected FDG PET and grey matter volume loss in patients with mild Alzheimer’s disease. Eur J Nucl Med Mol Imaging 34:1658–1669. doi:10.1007/s00259-007-0454-x

    Article  PubMed  Google Scholar 

  171. Schilling M, Besselmann M, Leonhard C, Mueller M, Ringelstein EB, Kiefer R (2003) Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 183:25–33

    Article  PubMed  Google Scholar 

  172. Segal BM (2014) Stage-specific immune dysregulation in multiple sclerosis. J Interferon Cytokine Res 34:633–640. doi:10.1089/jir.2014.0025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  173. Sheng J, Ruedl C, Karjalainen K (2015) Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity 43:382–393. doi:10.1016/j.immuni.2015.07.016

    Article  CAS  PubMed  Google Scholar 

  174. Siffrin V, Vogt J, Radbruch H, Nitsch R, Zipp F (2010) Multiple sclerosis—candidate mechanisms underlying CNS atrophy. Trends Neurosci 33:202–210. doi:10.1016/j.tins.2010.01.002

    Article  CAS  PubMed  Google Scholar 

  175. Soulet D, Rivest S (2008) Microglia. Curr Biol 18:R506–R508. doi:10.1016/j.cub.2008.04.047

    Article  CAS  PubMed  Google Scholar 

  176. Stefanik DF, Fellows WK, Rizkalla LR, Rizkalla WM, Stefanik PP, Deleo AB, Welch WC (2001) Monoclonal antibodies to vascular endothelial growth factor (VEGF) and the VEGF receptor, FLT-1, inhibit the growth of C6 glioma in a mouse xenograft. J Neurooncol 55:91–100

    Article  CAS  PubMed  Google Scholar 

  177. Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L, Zhong R, Frazier WA et al (2010) CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 11:155–161. doi:10.1038/ni.1836

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  178. Streit WJ, Graeber MB, Kreutzberg GW (1988) Functional plasticity of microglia: a review. Glia 1:301–307. doi:10.1002/glia.440010502

    Article  CAS  PubMed  Google Scholar 

  179. Sumi N, Nishioku T, Takata F, Matsumoto J, Watanabe T, Shuto H, Yamauchi A, Dohgu S, Kataoka Y (2010) Lipopolysaccharide-activated microglia induce dysfunction of the blood–brain barrier in rat microvascular endothelial cells co-cultured with microglia. Cell Mol Neurobiol 30:247–253. doi:10.1007/s10571-009-9446-7

    Article  CAS  PubMed  Google Scholar 

  180. Tang Z, Gan Y, Liu Q, Yin J-X, Liu Q, Shi J, Shi F-D (2014) CX3CR1 deficiency suppresses activation and neurotoxicity of microglia/macrophage in experimental ischemic stroke. J Neuroinflammation 11:26. doi:10.1186/1742-2094-11-26

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  181. Torres-Platas SG, Comeau S, Rachalski A, Bo GD, Cruceanu C, Turecki G, Giros B, Mechawar N (2014) Morphometric characterization of microglial phenotypes in human cerebral cortex. J Neuroinflammation 11:12. doi:10.1186/1742-2094-11-12

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  182. Town T, Jeng D, Alexopoulou L, Tan J, Flavell RA (2006) Microglia recognize double-stranded RNA via TLR3. J Immunol 176:3804–3812

    Article  CAS  PubMed  Google Scholar 

  183. van Rossum D, Hanisch U-K (2004) Microglia. Metab Brain Dis 19:393–411. doi:10.1023/B:MEBR.0000043984.73063.d8

    Article  PubMed  Google Scholar 

  184. Vos CM, Geurts JJ, Montagne L, van Haastert ES, Bo L, van der Valk P, Barkhof F, de Vries HE (2005) Blood–brain barrier alterations in both focal and diffuse abnormalities on postmortem MRI in multiple sclerosis. Neurobiol Dis 20:953–960. doi:10.1016/j.nbd.2005.06.012

    Article  CAS  PubMed  Google Scholar 

  185. Wada K, Arai H, Takanashi M, Fukae J, Oizumi H, Yasuda T, Mizuno Y, Mochizuki H (2006) Expression levels of vascular endothelial growth factor and its receptors in Parkinson’s disease. NeuroReport 17:705–709. doi:10.1097/01.wnr.0000215769.71657.65

    Article  CAS  PubMed  Google Scholar 

  186. Wang S, Chu CH, Stewart T, Ginghina C, Wang Y, Nie H, Guo M, Wilson B, Hong JS, Zhang J (2015) Alpha-synuclein, a chemoattractant, directs microglial migration via H2O2-dependent Lyn phosphorylation. Proc Natl Acad Sci USA 112:E1926–E1935. doi:10.1073/pnas.1417883112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  187. Wegiel J, Wisniewski HM (1990) The complex of microglial cells and amyloid star in three-dimensional reconstruction. Acta Neuropathol 81:116–124

    Article  CAS  PubMed  Google Scholar 

  188. Wei J, Gabrusiewicz K, Heimberger A (2013) The Controversial role of microglia in malignant gliomas. Clin Dev Immunol 2013:12. doi:10.1155/2013/285246

    Article  CAS  Google Scholar 

  189. Welser JV, Li L, Milner R (2010) Microglial activation state exerts a biphasic influence on brain endothelial cell proliferation by regulating the balance of TNF and TGF-beta1. J Neuroinflammation 7:89. doi:10.1186/1742-2094-7-89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  190. Whitton PS (2007) Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol 150:963–976. doi:10.1038/sj.bjp.0707167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  191. Woo MS, Park JS, Choi IY, Kim WK, Kim HS (2008) Inhibition of MMP-3 or -9 suppresses lipopolysaccharide-induced expression of proinflammatory cytokines and iNOS in microglia. J Neurochem 106:770–780. doi:10.1111/j.1471-4159.2008.05430.x

    Article  CAS  PubMed  Google Scholar 

  192. Wu A, Wei J, Kong L-Y, Wang Y, Priebe W, Qiao W, Sawaya R, Heimberger AB (2010) Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol 12:1113–1125. doi:10.1093/neuonc/noq082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  193. Xu C, Wu X, Zhu J (2013) VEGF promotes proliferation of human glioblastoma multiforme stem-like cells through VEGF receptor 2. Sci World J 2013:8. doi:10.1155/2013/417413

    Google Scholar 

  194. Xu J, Zhu L, He S, Wu Y, Jin W, Yu T, Qu JY, Wen Z (2015) Temporal-spatial resolution fate mapping reveals distinct origins for embryonic and adult microglia in zebrafish. Dev Cell 34:632–641. doi:10.1016/j.devcel.2015.08.018

    Article  CAS  PubMed  Google Scholar 

  195. Yenari MA, Xu L, Tang XN, Qiao Y, Giffard RG (2006) Microglia potentiate damage to blood–brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke 37:1087–1093. doi:10.1161/01.STR.0000206281.77178.ac

    Article  PubMed  Google Scholar 

  196. Yeung YT, Bryce NS, Adams S, Braidy N, Konayagi M, McDonald KL, Teo C, Guillemin GJ, Grewal T, Munoz L (2012) p38 MAPK inhibitors attenuate pro-inflammatory cytokine production and the invasiveness of human U251 glioblastoma cells. J Neurooncol 109:35–44. doi:10.1007/s11060-012-0875-7

    Article  CAS  PubMed  Google Scholar 

  197. Yi L, Xiao H, Xu M, Ye X, Hu J, Li F, Li M, Luo C, Yu S, Bian X et al (2011) Glioma-initiating cells: a predominant role in microglia/macrophages tropism to glioma. J Neuroimmunol 232:75–82

    Article  CAS  PubMed  Google Scholar 

  198. Yiannopoulou KG, Papageorgiou SG (2013) Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord 6:19–33. doi:10.1177/1756285612461679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  199. Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J (1999) A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA 96:13496–13500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  200. Zhang L, Alizadeh D, Van Handel M, Kortylewski M, Yu H, Badie B (2009) Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice. Glia 57:1458–1467. doi:10.1002/glia.20863

    Article  PubMed  Google Scholar 

  201. Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, Bruggen N, Chopp M (2000) VEGF enhances angiogenesis and promotes blood–brain barrier leakage in the ischemic brain. J Clin Investig 106:829–838. doi:10.1172/jci9369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  202. Zhu S, Stavrovskaya IG, Drozda M, Kim BY, Ona V, Li M, Sarang S, Liu AS, Hartley DM, Wu DC et al (2002) Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature 417:74–78. doi:10.1038/417074a

    Article  CAS  PubMed  Google Scholar 

  203. Zipp F, Gold R, Wiendl H (2013) Identification of inflammatory neuronal injury and prevention of neuronal damage in multiple sclerosis: hope for novel therapies? JAMA Neurol 70:1569–1574. doi:10.1001/jamaneurol.2013.4391

    PubMed  Google Scholar 

  204. Zlokovic BV (2008) The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201. doi:10.1016/j.neuron.2008.01.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Darragh O'Neill for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko H. H. Schmidt.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Funding

This work was supported by a grant of the German Academic Exchange Service (DAAD) to NDS, the German Research Foundation (DFG) via the collaborative research center 1080, projects A3 (MHHS) and B6 (FZ), the DFG Grant SCHM 2159/2-1 to MHHS and by a German Cancer Consortium (DKTK) grant to NDS and MHHS.

Additional information

N. Dudvarski Stankovic and M. Teodorczyk contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudvarski Stankovic, N., Teodorczyk, M., Ploen, R. et al. Microglia–blood vessel interactions: a double-edged sword in brain pathologies. Acta Neuropathol 131, 347–363 (2016). https://doi.org/10.1007/s00401-015-1524-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-015-1524-y

Keywords

Navigation