Skip to main content

Advertisement

Log in

Role of Glibenclamide in Brain Injury After Intracerebral Hemorrhage

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Brain edema following intracerebral hemorrhage (ICH) causes severe secondary brain injury, and no efficient pharmacological preventions are available. The present study was designed to demonstrate the neuroprotective effects of glibenclamide on brain edema and key factors of the blood–brain barrier (BBB). The study was divided into two parts. First, we utilized an autoblood-induced rat model to investigate the expression of sulfonylurea receptor 1 (Sur1). Second, rats were randomized into sham, vehicle, and glibenclamide groups. Neurological scores, brain water content, Evans blue extravasation, Morris water maze test, western blots, and immunofluorescence were used to study the effects of glibenclamide. The expression of the Sur1-Trpm4 channel but not the Sur1-KATP channel was increased in the perihematomal tissue following ICH. Glibenclamide administration significantly decreased the brain water content, restored the BBB, and reduced the expression of MMPs. In addition, glibenclamide improved long-term cognitive deficits following ICH. Glibenclamide protected BBB integrity and improved neurological outcomes after ICH by inhibiting the Sur1-Trpm4 channel, which reduces the expression of MMPs and thereby increases BBB tight-junction protein levels. Glibenclamide may have potential to protect the BBB after ICH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xi G, Keep RF, Hoff JT. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J Neurosurg. 1998;89(6):991–6. doi:10.3171/jns. 1998.89.6.0991.

    Article  CAS  PubMed  Google Scholar 

  2. Yang GY, Betz AL, Chenevert TL, Brunberg JA, Hoff JT. Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood-brain barrier permeability in rats. J Neurosurg. 1994;81(1):93–102. doi:10.3171/jns. 1994.81.1.0093.

    Article  CAS  PubMed  Google Scholar 

  3. Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. The Lancet Neurology. 2006;5(1):53–63. doi:10.1016/S1474-4422(05)70283-0.

    Article  PubMed  Google Scholar 

  4. Shi Y, Leak RK, Keep RF, Chen J. Translational stroke research on blood-brain barrier damage: challenges, perspectives, and goals. Translational stroke research. 2016;7(2):89–92. doi:10.1007/s12975-016-0447-9.

    Article  PubMed  Google Scholar 

  5. Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16(1):1–13. doi:10.1016/j.nbd. 2003.12.016.

    Article  CAS  PubMed  Google Scholar 

  6. Bodmer D, Vaughan KA, Zacharia BE, Hickman ZL, Connolly ES. The molecular mechanisms that promote edema after intracerebral hemorrhage. Translational Stroke Research. 2012;3(Suppl 1):52–61. doi:10.1007/s12975-012-0162-0.

    Article  CAS  PubMed  Google Scholar 

  7. Shin JW, Kang HC, Shim J, Sohn NW. Scutellaria baicalensis attenuates blood-brain barrier disruption after intracerebral hemorrhage in rats. The American Journal of Chinese Medicine. 2012;40(1):85–96. doi:10.1142/S0192415X12500073.

    Article  PubMed  Google Scholar 

  8. Marble A. Glibenclamide, a new sulphonylurea: whither oral hypoglycaemic agents? Drugs. 1971;1(2):109–15.

    Article  CAS  PubMed  Google Scholar 

  9. Chen M, Dong Y, Simard JM. Functional coupling between sulfonylurea receptor type 1 and a nonselective cation channel in reactive astrocytes from adult rat brain. J Neurosci Off J Soc Neurosci. 2003;23(24):8568–77.

    CAS  Google Scholar 

  10. Simard JM, Tsymbalyuk N, Tsymbalyuk O, Ivanova S, Yurovsky V, Gerzanich V. Glibenclamide is superior to decompressive craniectomy in a rat model of malignant stroke. Stroke; a journal of cerebral circulation. 2010;41(3):531–7. doi:10.1161/STROKEAHA.109.572644.

    Article  CAS  PubMed Central  Google Scholar 

  11. Simard JM, Tsymbalyuk O, Ivanov A, Ivanova S, Bhatta S, Geng Z, et al. Endothelial sulfonylurea receptor 1-regulated NC Ca-ATP channels mediate progressive hemorrhagic necrosis following spinal cord injury. J Clin Invest. 2007;117(8):2105–13. doi:10.1172/JCI32041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thompson EM, Pishko GL, Muldoon LL, Neuwelt EA. Inhibition of SUR1 decreases the vascular permeability of cerebral metastases. Neoplasia. 2013;15(5):535–43. doi:10.1593/neo.13164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Simard JM, Woo SK, Bhatta S, Gerzanich V. Drugs acting on SUR1 to treat CNS ischemia and trauma. Curr Opin Pharmacol. 2008;8(1):42–9. doi:10.1016/j.coph. 2007.10.004.

    Article  CAS  PubMed  Google Scholar 

  14. Simard JM, Geng Z, Woo SK, Ivanova S, Tosun C, Melnichenko L, et al. Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism. 2009;29(2):317–30. doi:10.1038/jcbfm. 2008.120.

    Article  CAS  Google Scholar 

  15. Sheth KN. Novel approaches to the primary prevention of edema after ischemia. Stroke; a journal of cerebral circulation. 2013;44(6 Suppl 1):S136. doi:10.1161/STROKEAHA.113.001821.

    Article  Google Scholar 

  16. Simard JM, Geng Z, Silver FL, Sheth KN, Kimberly WT, Stern BJ, et al. Does inhibiting Sur1 complement rt-PA in cerebral ischemia? Ann N Y Acad Sci. 2012;1268:95–107. doi:10.1111/j.1749-6632. 2012.06705.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tan Q, Chen Q, Niu Y, Feng Z, Li L, Tao Y, et al. Urokinase, a promising candidate for fibrinolytic therapy for intracerebral hemorrhage. J Neurosurg. 2016:1–10. doi:10.3171/2016.1.JNS152287.

  18. Schlunk F, Greenberg SM. The pathophysiology of intracerebral hemorrhage formation and expansion. Translational stroke research. 2015;6(4):257–63. doi:10.1007/s12975-015-0410-1.

    Article  CAS  PubMed  Google Scholar 

  19. Simard JM, Woo SK, Tsymbalyuk N, Voloshyn O, Yurovsky V, Ivanova S, et al. Glibenclamide-10-h treatment window in a clinically relevant model of stroke. Translational stroke research. 2012;3(2):286–95. doi:10.1007/s12975-012-0149-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li L, Tao Y, Tang J, Chen Q, Yang Y, Feng Z, et al. A cannabinoid receptor 2 agonist prevents thrombin-induced blood-brain barrier damage via the inhibition of microglial activation and matrix metalloproteinase expression in rats. Translational stroke research. 2015;6(6):467–77. doi:10.1007/s12975-015-0425-7.

    Article  CAS  PubMed  Google Scholar 

  21. Tang J, Chen Q, Guo J, Yang L, Tao Y, Li L, et al. Minocycline attenuates neonatal germinal-matrix-hemorrhage-induced neuroinflammation and brain edema by activating cannabinoid receptor 2. Mol Neurobiol. 2015; doi:10.1007/s12035-015-9154-x.

    Google Scholar 

  22. Chen Q, Zhang J, Guo J, Tang J, Tao Y, Li L, et al. Chronic hydrocephalus and perihematomal tissue injury developed in a rat model of intracerebral hemorrhage with ventricular extension. Translational stroke research. 2015;6(2):125–32. doi:10.1007/s12975-014-0367-5.

    Article  CAS  PubMed  Google Scholar 

  23. Chen Y, Zhang Y, Tang J, Liu F, Hu Q, Luo C, et al. Norrin protected blood-brain barrier via frizzled-4/beta-catenin pathway after subarachnoid hemorrhage in rats. Stroke; a journal of cerebral circulation. 2015;46(2):529–36. doi:10.1161/STROKEAHA.114.007265.

    Article  CAS  Google Scholar 

  24. Tang J, Tao Y, Jiang B, Chen Q, Hua F, Zhang J, et al. Pharmacological preventions of brain injury following experimental germinal matrix hemorrhage: an up-to-date review. Translational stroke research. 2016;7(1):20–32. doi:10.1007/s12975-015-0432-8.

    Article  CAS  PubMed  Google Scholar 

  25. Zarruk JG, Fernandez-Lopez D, Garcia-Yebenes I, Garcia-Gutierrez MS, Vivancos J, Nombela F, et al. Cannabinoid type 2 receptor activation downregulates stroke-induced classic and alternative brain macrophage/microglial activation concomitant to neuroprotection. Stroke; a journal of cerebral circulation. 2012;43(1):211–9. doi:10.1161/STROKEAHA.111.631044.

    Article  CAS  Google Scholar 

  26. Tao Y, Tang J, Chen Q, Guo J, Li L, Yang L, et al. Cannabinoid CB2 receptor stimulation attenuates brain edema and neurological deficits in a germinal matrix hemorrhage rat model. Brain Res. 2015;1602:127–35. doi:10.1016/j.brainres. 2015.01.025.

    Article  CAS  PubMed  Google Scholar 

  27. Chen Z, Gao C, Hua Y, Keep RF, Muraszko K, Xi G. Role of iron in brain injury after intraventricular hemorrhage. Stroke; a journal of cerebral circulation. 2011;42(2):465–70. doi:10.1161/STROKEAHA.110.602755.

    Article  Google Scholar 

  28. Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006;1(2):848–58. doi:10.1038/nprot. 2006.116.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shohami E, Novikov M, Bass R. Long-term effect of HU-211, a novel non-competitive NMDA antagonist, on motor and memory functions after closed head injury in the rat. Brain Res. 1995;674(1):55–62.

    Article  CAS  PubMed  Google Scholar 

  30. Simard JM, Yurovsky V, Tsymbalyuk N, Melnichenko L, Ivanova S, Gerzanich V. Protective effect of delayed treatment with low-dose glibenclamide in three models of ischemic stroke. Stroke; a journal of cerebral circulation. 2009;40(2):604–9. doi:10.1161/STROKEAHA.108.522409.

    Article  CAS  Google Scholar 

  31. Wass CT, Lanier WL. Glucose modulation of ischemic brain injury: review and clinical recommendations. Mayo Clin Proc. 1996;71(8):801–12. doi:10.1016/S0025-6196(11)64847-7.

    Article  CAS  PubMed  Google Scholar 

  32. Zhou Y, Fathali N, Lekic T, Tang J, Zhang JH. Glibenclamide improves neurological function in neonatal hypoxia-ischemia in rats. Brain Res. 2009;1270:131–9. doi:10.1016/j.brainres. 2009.03.010.

    Article  CAS  PubMed  Google Scholar 

  33. Simard JM, Woo SK, Norenberg MD, Tosun C, Chen Z, Ivanova S, et al. Brief suppression of Abcc 8 prevents autodestruction of spinal cord after trauma. Sci Transl Med. 2010;2(28):28ra9. doi:10.1126/scitranslmed.3000522.

    Article  Google Scholar 

  34. Simard JM, Chen M, Tarasov KV, Bhatta S, Ivanova S, Melnitchenko L, et al. Newly expressed SUR1-regulated NC (Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat Med. 2006;12(4):433–40. doi:10.1038/nm 1390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tosun C, Kurland DB, Mehta R, Castellani RJ, deJong JL, Kwon MS, et al. Inhibition of the Sur1-Trpm 4 channel reduces neuroinflammation and cognitive impairment in subarachnoid hemorrhage. Stroke; a journal of cerebral circulation. 2013;44(12):3522–8. doi:10.1161/STROKEAHA.113.002904.

    Article  CAS  PubMed Central  Google Scholar 

  36. Simard JM, Sheth KN, Kimberly WT, Stern BJ, del Zoppo GJ, Jacobson S, et al. Glibenclamide in cerebral ischemia and stroke. Neurocrit Care. 2014;20(2):319–33. doi:10.1007/s12028-013-9923-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Woo SK, Kwon MS, Ivanov A, Gerzanich V, Simard JM. The sulfonylurea receptor 1 (Sur1)-transient receptor potential melastatin 4 (Trpm 4) channel. J Biol Chem. 2013;288(5):3655–67. doi:10.1074/jbc.M112.428219.

    Article  CAS  PubMed  Google Scholar 

  38. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37(1):13–25. doi:10.1016/j.nbd. 2009.07.030.

    Article  CAS  PubMed  Google Scholar 

  39. Chen M, Li X, Zhang X, He X, Lai L, Liu Y, et al. The inhibitory effect of mesenchymal stem cell on blood-brain barrier disruption following intracerebral hemorrhage in rats: contribution of TSG-6. J Neuroinflammation. 2015;12:61. doi:10.1186/s12974-015-0284-x.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Romanic AM, Madri JA. Extracellular matrix-degrading proteinases in the nervous system. Brain Pathol. 1994;4(2):145–56.

    Article  CAS  PubMed  Google Scholar 

  41. Yong VW, Power C, Forsyth P, Edwards DR. Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci. 2001;2(7):502–11. doi:10.1038/35081571.

    Article  CAS  PubMed  Google Scholar 

  42. Florczak-Rzepka M, Grond-Ginsbach C, Montaner J, Steiner T. Matrix metalloproteinases in human spontaneous intracerebral hemorrhage: an update. Cerebrovasc Dis 2012; 34(4):249–262. doi:10.1159/000341686.

  43. Chen S, Yang Q, Chen G, Zhang JH. An update on inflammation in the acute phase of intracerebral hemorrhage. Translational stroke research. 2015;6(1):4–8. doi:10.1007/s12975-014-0384-4.

    Article  CAS  PubMed  Google Scholar 

  44. Ortega FJ, Jolkkonen J, Mahy N, Rodriguez MJ. Glibenclamide enhances neurogenesis and improves long-term functional recovery after transient focal cerebral ischemia. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism. 2013;33(3):356–64. doi:10.1038/jcbfm. 2012.166.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Tang or Gang Zhu.

Ethics declarations

All institutional and national guidelines for the care and use of laboratory animals were followed.

Sources of Funding

This work was supported by the National Natural Science Foundation of China (grant no. 81571130; no. 81571116; no. 81601356) and the National ‘973’ Project of China (no. 2014CB541605).

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, B., Li, L., Chen, Q. et al. Role of Glibenclamide in Brain Injury After Intracerebral Hemorrhage. Transl. Stroke Res. 8, 183–193 (2017). https://doi.org/10.1007/s12975-016-0506-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-016-0506-2

Keywords

Navigation