Skip to main content

Advertisement

Log in

Evaluation of the Protective Potential of Brain Microvascular Endothelial Cell Autophagy on Blood–Brain Barrier Integrity During Experimental Cerebral Ischemia–Reperfusion Injury

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Brain microvascular endothelial cell (BMVEC) injury induced by ischemia–reperfusion (I/R) is the initial phase of blood–brain barrier (BBB) disruption, which results in a poor prognosis for ischemic stroke patients. Autophagy occurs in ischemic brain and has been shown to exhibit protective effects on endothelial cell against stress. However, the potential effects of BMVEC autophagy on BBB permeability during I/R and the mechanisms underlying these effects have yet to be elucidated. In the current study, we answered these questions by using chemical modulators of autophagy, including rapamycin and lithium carbonate acting, respectively, as mammalian target of rapamycin (mTOR)-dependent and mTOR-independent autophagy inducers and 3-methyladenine (3-MA) as an autophagy inhibitor. To mimic I/R injury, BMVECs were exposed to oxygen–glucose deprivation/reoxygenation (OGD/R), and a rat transient middle cerebral artery occlusion/reperfusion (MCAO/R) model was performed. All the drugs were given at 0.5 h before OGD/R or MCAO/R. First, enhancement of autophagy by rapamycin and lithium carbonate attenuated, whereas suppression of autophagy by 3-MA intensified BMVEC apoptosis and the high level of ROS induced by OGD/R. In addition, rapamycin and lithium carbonate pretreatments significantly reversed the decreased level of tight junction protein zonula occludens-1 (ZO-1) induced by OGD/R and promoted the distribution of ZO-1 on cell membranes. Finally, pretreatments with rapamycin and lithium carbonate reduced evans blue extravasation and brain water content in the ischemic hemisphere of the rat. In contrast, 3-MA pretreatment exerted opposite effects both in vitro and in vivo. These results may indicate a beneficial effect of BMVEC autophagy on BBB integrity during I/R injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Date I, Takagi N, Takagi K, Tanonaka K, Funakoshi H, Matsumoto K, et al. Hepatocyte growth factor attenuates cerebral ischemia-induced increase in permeability of the blood-brain barrier and decreases in expression of tight junctional proteins in cerebral vessels. Neurosci Lett. 2006;407(2):141–5. doi:10.1016/j.neulet.2006.08.050.

    Article  CAS  PubMed  Google Scholar 

  2. Chen Y, Tachibana O, Hasegawa M, Xu R, Hamada J, Yamashita J, et al. Absence of tight junctions between microvascular endothelial cells in human cerebellar hemangioblastomas. Neurosurgery. 2006;59(3):660–70. doi:10.1227/01.NEU.0000223372.18607.D7. discussion -70.

    Article  PubMed  Google Scholar 

  3. Nathanson D, Mischel PS. Charting the course across the blood-brain barrier. J Clin Invest. 2011;121(1):31–3. doi:10.1172/JCI45758.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Shuvaev VV, Muzykantov VR. Targeted modulation of reactive oxygen species in the vascular endothelium. J Control Release Off J Control Release Soc. 2011;153(1):56–63. doi:10.1016/j.jconrel.2011.03.022.

    Article  CAS  Google Scholar 

  5. Pun PB, Lu J, Moochhala S. Involvement of ROS in BBB dysfunction. Free Radic Res. 2009;43(4):348–64. doi:10.1080/10715760902751902.

    Article  CAS  PubMed  Google Scholar 

  6. Rizzo MT, Leaver HA. Brain endothelial cell death: modes, signaling pathways, and relevance to neural development, homeostasis, and disease. Mol Neurobiol. 2010;42(1):52–63. doi:10.1007/s12035-010-8132-6.

    Article  CAS  PubMed  Google Scholar 

  7. Liu X, Zhao J, Xu J, Zhao B, Zhang Y, Zhang S, et al. Protective effects of a benzoxazine derivative against oxidized LDL-induced apoptosis and the increases of integrin beta4, ROS, NF-kappaB and P53 in human umbilical vein endothelial cells. Bioorg Med Chem Lett. 2009;19(10):2896–900. doi:10.1016/j.bmcl.2009.03.070.

    Article  CAS  PubMed  Google Scholar 

  8. Xie Y, You SJ, Zhang YL, Han Q, Cao YJ, Xu XS, et al. Protective role of autophagy in AGE-induced early injury of human vascular endothelial cells. Mol Med Rep. 2011;4(3):459–64. doi:10.3892/mmr.2011.460.

    CAS  PubMed  Google Scholar 

  9. Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev. 2010;90(4):1383–435. doi:10.1152/physrev.00030.2009.

    Article  CAS  PubMed  Google Scholar 

  10. Renna M, Jimenez-Sanchez M, Sarkar S, Rubinsztein DC. Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. J Biol Chem. 2010;285(15):11061–7. doi:10.1074/jbc.R109.072181.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wang Z, Shi XY, Yin J, Zuo G, Zhang J, Chen G. Role of autophagy in early brain injury after experimental subarachnoid hemorrhage. J Mol Neurosci MN. 2012;46(1):192–202. doi:10.1007/s12031-011-9575-6.

    Article  CAS  Google Scholar 

  12. Zhao H, Ji Z, Tang D, Yan C, Zhao W, Gao C. Role of autophagy in early brain injury after subarachnoid hemorrhage in rats. Mol Biol Rep. 2013;40(2):819–27. doi:10.1007/s11033-012-2120-z.

    Article  CAS  PubMed  Google Scholar 

  13. Yu F, Wang Z, Tanaka M, Chiu CT, Leeds P, Zhang Y, et al. Posttrauma cotreatment with lithium and valproate: reduction of lesion volume, attenuation of blood-brain barrier disruption, and improvement in motor coordination in mice with traumatic brain injury. J Neurosurg. 2013;119(3):766–73. doi:10.3171/2013.6.JNS13135.

    Article  CAS  PubMed  Google Scholar 

  14. Yu F, Wang Z, Tchantchou F, Chiu CT, Zhang Y, Chuang DM. Lithium ameliorates neurodegeneration, suppresses neuroinflammation, and improves behavioral performance in a mouse model of traumatic brain injury. J Neurotrauma. 2012;29(2):362–74. doi:10.1089/neu.2011.1942.

    Article  PubMed Central  PubMed  Google Scholar 

  15. van Vliet EA, Forte G, Holtman L, den Burger JC, Sinjewel A, de Vries HE, et al. Inhibition of mammalian target of rapamycin reduces epileptogenesis and blood-brain barrier leakage but not microglia activation. Epilepsia. 2012;53(7):1254–63. doi:10.1111/j.1528-1167.2012.03513.x.

    Article  PubMed  Google Scholar 

  16. Li WL, Yu SP, Chen D, Yu SS, Jiang YJ, Genetta T, et al. The regulatory role of NF-kappaB in autophagy-like cell death after focal cerebral ischemia in mice. Neuroscience. 2013;244:16–30. doi:10.1016/j.neuroscience.2013.03.045.

    Article  CAS  PubMed  Google Scholar 

  17. Yin L, Ye S, Chen Z, Zeng Y. Rapamycin preconditioning attenuates transient focal cerebral ischemia/reperfusion injury in mice. Int J Neurosci. 2012;122(12):748–56. doi:10.3109/00207454.2012.721827.

    Article  CAS  PubMed  Google Scholar 

  18. Takahashi T, Steinberg GK, Zhao H. Lithium treatment reduces brain injury induced by focal ischemia with partial reperfusion and the protective mechanisms dispute the importance of akt activity. Aging Dis. 2012;3(3):226–33.

    PubMed Central  PubMed  Google Scholar 

  19. Hua Q, Qing X, Li P, Li W, Hou J, Hu J, et al. Brain microvascular endothelial cells mediate neuroprotective effects on ischemia/reperfusion neurons. J Ethnopharmacol. 2010;129(3):306–13. doi:10.1016/j.jep.2010.03.024.

    Article  PubMed  Google Scholar 

  20. Xie R, Li X, Ling Y, Shen C, Wu X, Xu W, et al. Alpha-lipoic acid pre- and post-treatments provide protection against in vitro ischemia-reperfusion injury in cerebral endothelial cells via Akt/mTOR signaling. Brain Res. 2012;1482:81–90. doi:10.1016/j.brainres.2012.09.009.

    Article  CAS  PubMed  Google Scholar 

  21. Wang L, Dong Z, Huang B, Zhao B, Wang H, Zhao J, et al. Distinct patterns of autophagy evoked by two benzoxazine derivatives in vascular endothelial cells. Autophagy. 2010;6(8):1115–24.

    Article  CAS  PubMed  Google Scholar 

  22. Kim EC, Meng H, Jun AS. Lithium treatment increases endothelial cell survival and autophagy in a mouse model of Fuchs endothelial corneal dystrophy. Br J Ophthalmol. 2013;97(8):1068–73. doi:10.1136/bjophthalmol-2012-302881.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Szliszka E, Czuba ZP, Bronikowska J, Mertas A, Paradysz A, Krol W. Ethanolic extract of propolis augments TRAIL-induced apoptotic death in prostate cancer cells. Evid Based Complement Alternat Med eCAM. 2011;2011:535172. doi:10.1093/ecam/nep180.

    Article  Google Scholar 

  24. Chauhan A, Sharma U, Jagannathan NR, Reeta KH, Gupta YK. Rapamycin protects against middle cerebral artery occlusion induced focal cerebral ischemia in rats. Behav Brain Res. 2011;225(2):603–9. doi:10.1016/j.bbr.2011.08.035.

    Article  CAS  PubMed  Google Scholar 

  25. Zakeri M, Afshari K, Gharedaghi MH, Shahsiah R, Rahimian R, Maleki F, et al. Lithium protects against spinal cord injury in rats: role of nitric oxide. J Neurol Surg Part A Central Eur Neurosurg. 2013. doi:10.1055/s-0033-1345098.

    Google Scholar 

  26. Liu JJ, Zhang Y, Guang WB, Yang HZ, Lin DJ, Xiao RZ. Ponicidin inhibits monocytic leukemia cell growth by induction of apoptosis. Int J Mol Sci. 2008;9(11):2265–77. doi:10.3390/ijms9112265.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Shen SL, Zhu J, Li M, Zhao BX, Miao JY. Synthesis of ferrocenyl pyrazole-containing chiral aminoethanol derivatives and their inhibition against A549 and H322 lung cancer cells. Eur J Med Chem. 2012;54:287–94. doi:10.1016/j.ejmech.2012.05.008.

    Article  CAS  PubMed  Google Scholar 

  28. Jiang S, Xia R, Jiang Y, Wang L, Gao F. Vascular endothelial growth factors enhance the permeability of the mouse blood-brain barrier. PLoS ONE. 2014;9(2):e86407. doi:10.1371/journal.pone.0086407.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Urbanek T, Kuczmik W, Basta-Kaim A, Gabryel B. Rapamycin induces of protective autophagy in vascular endothelial cells exposed to oxygen-glucose deprivation. Brain Res. 2014;1553:1–11. doi:10.1016/j.brainres.2014.01.017.

    Article  CAS  PubMed  Google Scholar 

  30. Lou JN, Mili N, Decrind C, Donati Y, Kossodo S, Spiliopoulos A, et al. An improved method for isolation of microvascular endothelial cells from normal and inflamed human lung. In Vitro Cell Dev Biol Anim. 1998;34(7):529–36. doi:10.1007/s11626-998-0112-z.

    Article  CAS  PubMed  Google Scholar 

  31. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19(21):5720–8. doi:10.1093/emboj/19.21.5720.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Li H, Huang S, Wang S, Zhao J, Su L, Zhao B, et al. Targeting annexin A7 by a small molecule suppressed the activity of phosphatidylcholine-specific phospholipase C in vascular endothelial cells and inhibited atherosclerosis in apolipoprotein E(-)/(-) ice. Cell Death Dis. 2013;4:e806. doi:10.1038/cddis.2013.317.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Zhang Q, Gould LJ. Hyperbaric oxygen reduces matrix metalloproteinases in ischemic wounds through a redox-dependent mechanism. J Invest Dermatol. 2014;134(1):237–46. doi:10.1038/jid.2013.301.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 81171105, 81271300, and 81371279), Jiangsu Province’s Outstanding Medical Academic Leader program (No. LJ201139), the National Key Technology R&D program for the 12th Five-year plan of the People’s Republic of China (2011BAI08B05, 2011BAI08B06, and 2014BAZ04810), and grants from Scientific Department of Jiangsu Province (No. BL2014045) and Suzhou Government (No. LCZX201301, SZS201413 and SYS201332).

Conflict of Interest

All the authors, including Haiying Li, Anju Gao, Dongxia Feng, Yang Wang, Li Zhang, Yonghua Cui, Bo Li, Zhong Wang, and Gang Chen, declare that they have no conflicts of interest in the research. All institutional and national guidelines for the care and use of laboratory animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong Wang or Gang Chen.

Additional information

Haiying Li and Anju Gao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Gao, A., Feng, D. et al. Evaluation of the Protective Potential of Brain Microvascular Endothelial Cell Autophagy on Blood–Brain Barrier Integrity During Experimental Cerebral Ischemia–Reperfusion Injury. Transl. Stroke Res. 5, 618–626 (2014). https://doi.org/10.1007/s12975-014-0354-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-014-0354-x

Keywords

Navigation