Skip to main content

Advertisement

Log in

miRNA signatures in childhood sarcomas and their clinical implications

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Progresses in multimodal treatments have significantly improved the outcomes for childhood cancer. Nonetheless, for about one-third of patients with Ewing sarcoma, rhabdomyosarcoma, or osteosarcoma steady remission has remained intangible. Thus, new biomarkers to improve early diagnosis and the development of precision-targeted medicine remain imperative. Over the last decade, remarkable progress has been made in the basic understanding of miRNAs function and in interpreting the contribution of their dysregulation to cancer development and progression. On this basis, this review focuses on what has been learned about the pivotal roles of miRNAs in the regulation of key genes implicated in childhood sarcomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97. https://doi.org/10.1016/S0092-8674(04)00045-5.

    Article  CAS  PubMed  Google Scholar 

  2. Romaine SPR, Tomaszewski M, Condorelli G, Samani NJ. MicroRNAs in cardiovascular disease: an introduction for clinicians. Heart. 2015;101:921–8. https://doi.org/10.1136/heartjnl-2013-305402.

    Article  CAS  PubMed  Google Scholar 

  3. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54. https://doi.org/10.1016/0092-8674(93)90529-Y.

    Article  CAS  PubMed  Google Scholar 

  4. Friedman RC, Farh KK-H, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105. https://doi.org/10.1101/gr.082701.108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kozomara A, Griffiths-Jones S. MiRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:68–73. https://doi.org/10.1093/nar/gkt1181.

    Article  CAS  Google Scholar 

  6. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP. Vertebrate MicroRNA genes. Science (80-). 2003;299:1540. https://doi.org/10.1126/science.1080372.

    Article  CAS  Google Scholar 

  7. Tüfekci KU, Meuwissen RLJ, Genç Ş. The role of MicroRNAs in biological processes. Methods molecular biology. Totowa: Humana; 2014. p. 15–31.

    Google Scholar 

  8. Meunier J, Lemoine F, Soumillon M, Liechti A, Weier M, Guschanski K, Hu H, Khaitovich P, Kaessmann H. Birth and expression evolution of mammalian microRNA genes. Genome Res. 2013;23:34–45. https://doi.org/10.1101/gr.140269.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tanzer A, Stadler PF. Molecular evolution of a microRNA cluster. J Mol Biol. 2004;339:327–35. https://doi.org/10.1016/j.jmb.2004.03.065.

    Article  CAS  PubMed  Google Scholar 

  10. Kim Y-K, Kim VN. Processing of intronic microRNAs. EMBO J. 2007;26:775–83. https://doi.org/10.1038/sj.emboj.7601512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. de Rie D, Abugessaisa I, Alam T, Arner E, Arner P, Ashoor H, Åström G, Babina M, Bertin N, Burroughs AM, Carlisle AJ, Daub CO, Detmar M, Deviatiiarov R, Fort A, Gebhard C, Goldowitz D, Guhl S, Ha TJ, Harshbarger J, Hasegawa A, Hashimoto K, Herlyn M, Heutink P, Hitchens KJ, Hon CC, Huang E, Ishizu Y, Kai C, Kasukawa T, Klinken P, Lassmann T, Lecellier C-H, Lee W, Lizio M, Makeev V, Mathelier A, Medvedeva YA, Mejhert N, Mungall CJ, Noma S, Ohshima M, Okada-Hatakeyama M, Persson H, Rizzu P, Roudnicky F, Sætrom P, Sato H, Severin J, Shin JW, Swoboda RK, Tarui H, Toyoda H, Vitting-Seerup K, Winteringham L, Yamaguchi Y, Yasuzawa K, Yoneda M, Yumoto N, Zabierowski S, Zhang PG, Wells CA, Summers KM, Kawaji H, Sandelin A, Rehli M, Hayashizaki Y, Carninci P, Forrest ARR, de Hoon MJL, de Hoon MJL. An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol. 2017;35:872–8. https://doi.org/10.1038/nbt.3947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Denli AM, Tops BBJ, Plasterk RHA, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004;432:231–5. https://doi.org/10.1038/nature03049.

    Article  CAS  PubMed  Google Scholar 

  13. Han J, Lee Y, Yeom K-H, Kim Y-K, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18:3016–27. https://doi.org/10.1101/gad.1262504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Okada C, Yamashita E, Lee SJ, Shibata S, Katahira J, Nakagawa A, Yoneda Y, Tsukihara T. A high-resolution structure of the pre-microRNA nuclear export machinery. Science. 2009;326:1275–9. https://doi.org/10.1126/science.1178705.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W. Single processing center models for human Dicer and bacterial RNase III. Cell. 2004;118:57–68. https://doi.org/10.1016/j.cell.2004.06.017.

    Article  CAS  PubMed  Google Scholar 

  16. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597–610. https://doi.org/10.1038/nrg2843.

    Article  CAS  PubMed  Google Scholar 

  17. Kobayashi H, Tomari Y. RISC assembly: coordination between small RNAs and Argonaute proteins. Biochim Biophys Acta. 2016;1859:71–81. https://doi.org/10.1016/j.bbagrm.2015.08.007.

    Article  CAS  PubMed  Google Scholar 

  18. Ipsaro JJ, Joshua-Tor L. From guide to target: molecular insights into eukaryotic RNA-interference machinery. Nat Struct Mol Biol. 2015;22:20–8. https://doi.org/10.1038/nsmb.2931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liou Y-F, Charoenkwan P, Srinivasulu Y, Vasylenko T, Lai S-C, Lee H-C, Chen Y-H, Huang H-L, Ho S-Y. SCMHBP: prediction and analysis of heme binding proteins using propensity scores of dipeptides. BMC Bioinform. 2014;15(Suppl 16):S4. https://doi.org/10.1186/1471-2105-15-S16-S4.

    Article  Google Scholar 

  20. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33. https://doi.org/10.1016/j.cell.2009.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature. 2008;455:64–71. https://doi.org/10.1038/nature07242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gangaraju VK, Lin H. MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol. 2009;10:116–25. https://doi.org/10.1038/nrm2621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205. https://doi.org/10.1146/annurev.cellbio.23.090506.123406.

    Article  CAS  PubMed  Google Scholar 

  24. Mansoori B, Mohammadi A, Shirjang S, Baradaran B. MicroRNAs in the diagnosis and treatment of cancer. Immunol Invest. 2017;46:880–97. https://doi.org/10.1080/08820139.2017.1377407.

    Article  CAS  PubMed  Google Scholar 

  25. Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, Cui Q. An analysis of human MicroRNA and disease associations. PLoS One. 2008;3:e3420. https://doi.org/10.1371/journal.pone.0003420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kloosterman WP, Plasterk RHA. The diverse functions of microRNAs in animal development and disease. Dev Cell. 2006;11:441–50. https://doi.org/10.1016/j.devcel.2006.09.009.

    Article  CAS  PubMed  Google Scholar 

  27. Chen C-Z. MicroRNAs as oncogenes and tumor suppressors. N Engl J Med. 2005;353:1768–71. https://doi.org/10.1056/NEJMp058190.

    Article  CAS  PubMed  Google Scholar 

  28. Wang LQ, Chim CS. DNA methylation of tumor-suppressor miRNA genes in chronic lymphocytic leukemia. Epigenomics. 2015;7:461–73. https://doi.org/10.2217/epi.15.6.

    Article  CAS  PubMed  Google Scholar 

  29. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16:203–22. https://doi.org/10.1038/nrd.2016.246.

    Article  CAS  PubMed  Google Scholar 

  30. Calin GA, Liu C-G, Sevignani C, Ferracin M, Felli N, Dumitru CD, Shimizu M, Cimmino A, Zupo S, Dono M, Dell’Aquila ML, Alder H, Rassenti L, Kipps TJ, Bullrich F, Negrini M, Croce CM. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA. 2004;101:11755–60. https://doi.org/10.1073/pnas.0404432101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kwok GT, Zhao JT, Weiss J, Mugridge N, Brahmbhatt H, MacDiarmid JA, Robinson BG, Sidhu SB. Translational applications of microRNAs in cancer, and therapeutic implications. Non-coding RNA Res. 2017;2:143–50. https://doi.org/10.1016/j.ncrna.2017.12.002.

    Article  Google Scholar 

  32. Williams RF, Fernandez-Pineda I, Gosain A. Pediatric sarcomas. Surg Clin North Am. 2016;96:1107–25. https://doi.org/10.1016/j.suc.2016.05.012.

    Article  PubMed  Google Scholar 

  33. Kobayashi E, Hornicek FJ, Duan Z. MicroRNA involvement in osteosarcoma. Sarcoma. 2012;2012:1–8. https://doi.org/10.1155/2012/359739.

    Article  CAS  Google Scholar 

  34. Zhang Y, Yang J, Zhao N, Wang C, Kamar S, Zhou Y, He Z, Yang J, Sun B, Shi X, Han L, Yang Z. Progress in the chemotherapeutic treatment of osteosarcoma (Review). Oncol Lett. 2018;16:6228–37. https://doi.org/10.3892/ol.2018.9434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu H, Zhu X, Bao H, Wh Shek T, Huang Z, Wang Y, Wu X, Wu Y, Chang Z, Wu S, Tang Q, Zhang H, Han A, Mc Cheung K, Zou C, Yau R, Ho W-Y, Huang G, Batalha S, Lu J, Song G, Kang Y, Shao YW, Lam YL, Shen J, Wang J. Genetic and clonal dissection of osteosarcoma progression and lung metastasis. Int J Cancer. 2018;143:1134–42. https://doi.org/10.1002/ijc.31389.

    Article  CAS  PubMed  Google Scholar 

  36. Grilli A, Sciandra M, Terracciano M, Picci P, Scotlandi K. Integrated approaches to miRNAs target definition: time-series analysis in an osteosarcoma differentiative model. BMC Med Genom. 2015;8:34. https://doi.org/10.1186/s12920-015-0106-0.

    Article  CAS  Google Scholar 

  37. Gindin Y, Jiang Y, Francis P, Walker RL, Abaan OD, Zhu YJ, Meltzer PS. miR-23a impairs bone differentiation in osteosarcoma via down-regulation of GJA1. Front Genet. 2015. https://doi.org/10.3389/fgene.2015.00233.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu K, Sun X, Zhang Y, Liu L, Yuan Q. MiR-598: a tumor suppressor with biomarker significance in osteosarcoma. Life Sci. 2017;188:141–8. https://doi.org/10.1016/j.lfs.2017.09.003.

    Article  CAS  PubMed  Google Scholar 

  39. Han K, Zhao T, Chen X, Bian N, Yang T, Ma Q, Cai C, Fan Q, Zhou Y, Ma B. microRNA-194 suppresses osteosarcoma cell proliferation and metastasis in vitro and in vivo by targeting CDH2 and IGF1R. Int J Oncol. 2014;45:1437–49. https://doi.org/10.3892/ijo.2014.2571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sanchez-Diaz PC, Hsiao T-H, Zou Y, Sugalski AJ, Heim-Hall J, Chen Y, Langevin A-M, Hung JY. In silico functional analyses and discovery of survival-associated microRNA signatures in pediatric osteosarcoma. Oncoscience. 2014;1:599–608. https://doi.org/10.18632/oncoscience.85.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cheng D, Qiu X, Zhuang M, Zhu C, Zou H, Liu Z. MicroRNAs with prognostic significance in osteosarcoma: a systemic review and meta-analysis. Oncotarget. 2017;8:81062–74. https://doi.org/10.18632/oncotarget.19009.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang Y, Jia L-S, Yuan W, Wu Z, Wang H-B, Xu T, Sun J-C, Cheng K-F, Shi J-G. Low miR-34a and miR-192 are associated with unfavorable prognosis in patients suffering from osteosarcoma. Am J Transl Res. 2015;7:111–9.

    PubMed  PubMed Central  Google Scholar 

  43. Sun X, Geng X, Zhang J, Zhao H, Liu Y. miR-155 promotes the growth of osteosarcoma in a HBP1-dependent mechanism. Mol Cell Biochem. 2015;403:139–47. https://doi.org/10.1007/s11010-015-2344-z.

    Article  CAS  PubMed  Google Scholar 

  44. Wang G, Shen N, Cheng L, Lin J, Li K. Downregulation of miR-22 acts as an unfavorable prognostic biomarker in osteosarcoma. Tumour Biol. 2015;36:7891–5. https://doi.org/10.1007/s13277-015-3379-1.

    Article  CAS  PubMed  Google Scholar 

  45. Sun B, Yang M, Li M, Wang F. The microRNA-217 functions as a tumor suppressor and is frequently downregulated in human osteosarcoma. Biomed Pharmacother. 2015;71:58–63. https://doi.org/10.1016/j.biopha.2015.02.014.

    Article  CAS  PubMed  Google Scholar 

  46. Liu W, Zhao Z, Shi L, Yuan W. Tissue microRNA-126 expression level predicts outcome in human osteosarcoma. Diagn Pathol. 2015;10:116. https://doi.org/10.1186/s13000-015-0329-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yu L-D, Jin R-L, Gu P-C, Ling Z-H, Lin X-J, Du J-Y. Clinical significance of microRNA-130b in osteosarcoma and in cell growth and invasion. Asian Pac J Trop Med. 2015. https://doi.org/10.1016/j.apjtm.2015.07.026.

    Article  PubMed  Google Scholar 

  48. Zhang J-J, Wang C-Y, Hua L, Yao K-H, Chen J-T, Hu J-H. miR-107 promotes hepatocellular carcinoma cell proliferation by targeting Axin2. Int J Clin Exp Pathol. 2015;8:5168–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zeng H, Zhang Z, Dai X, Chen Y, Ye J, Jin Z. Increased expression of microRNA-199b-5p associates with poor prognosis through promoting cell proliferation, invasion and migration abilities of human osteosarcoma. Pathol Oncol Res. 2016;22:253–60. https://doi.org/10.1007/s12253-015-9901-3.

    Article  CAS  PubMed  Google Scholar 

  50. Cheng D, Yu T, Hu T, Yao M, Fan C, Yang Q. MiR-542-5p is a negative prognostic factor and promotes osteosarcoma tumorigenesis by targeting HUWE1. Oncotarget. 2015;6:42761–72. https://doi.org/10.18632/oncotarget.6199.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chen J, Zhou J, Chen X, Yang B, Wang D, Yang P, He X, Li H. miRNA-449a is downregulated in osteosarcoma and promotes cell apoptosis by targeting BCL2. Tumour Biol. 2015;36:8221–9. https://doi.org/10.1007/s13277-015-3568-y.

    Article  CAS  PubMed  Google Scholar 

  52. Gu R, Sun Y-F, Wu M-F, Liu J-B, Jiang J-L, Wang S-H, Wang X-L, Guo Q. Biological roles of microRNA-140 in tumor growth, migration, and metastasis of osteosarcoma in vivo and in vitro. Tumour Biol. 2016;37:353–60. https://doi.org/10.1007/s13277-015-3801-8.

    Article  CAS  PubMed  Google Scholar 

  53. Chen J, Yan D, Wu W, Zhu J, Ye W, Shu Q. MicroRNA-130a promotes the metastasis and epithelial-mesenchymal transition of osteosarcoma by targeting PTEN. Oncol Rep. 2016;35:3285–92. https://doi.org/10.3892/or.2016.4719.

    Article  CAS  PubMed  Google Scholar 

  54. Wang K, Liang Q, Wei L, Zhang W, Zhu P. MicroRNA-608 acts as a prognostic marker and inhibits the cell proliferation in hepatocellular carcinoma by macrophage migration inhibitory factor. Tumour Biol. 2016;37:3823–30. https://doi.org/10.1007/s13277-015-4213-5.

    Article  CAS  PubMed  Google Scholar 

  55. Ren X, Shen Y, Zheng S, Liu J, Jiang X. miR-21 predicts poor prognosis in patients with osteosarcoma. Br J Biomed Sci. 2016;73:158–62. https://doi.org/10.1080/09674845.2016.1220710.

    Article  PubMed  Google Scholar 

  56. Li BH, Zhou JS, Ye F, Cheng XD, Zhou CY, Lu WG, Xie X. Reduced miR-100 expression in cervical cancer and precursors and its carcinogenic effect through targeting PLK1 protein. Eur J Cancer. 2011;47:2166–74. https://doi.org/10.1016/j.ejca.2011.04.037.

    Article  CAS  PubMed  Google Scholar 

  57. Ying S, Jianjun H, Xue Y, Shuwei Y, Liyuan Z, Jie W, Lixian C. MicroRNA-133b inhibits cell proliferation and invasion in osteosarcoma by targeting Sirt1. Oncol Res. 2017;25:1421–30. https://doi.org/10.3727/096504016X14826089198805.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Liu H, Su P, Zhi L, Zhao K. miR-34c-3p acts as a tumor suppressor gene in osteosarcoma by targeting MARCKS. Mol Med Rep. 2017;15:1204–10. https://doi.org/10.3892/mmr.2017.6108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang G, Fu Y, Zhang L, Lu X, Li Q. miR106b regulates retinoblastoma Y79 cells through Runx3. Oncol Rep. 2017;38:3039–43. https://doi.org/10.3892/or.2017.5931.

    Article  CAS  PubMed  Google Scholar 

  60. Tang B, Liu C, Zhang Q-M, Ni M. Decreased expression of miR-490-3p in osteosarcoma and its clinical significance. Eur Rev Med Pharmacol Sci. 2017;21:246–51.

    CAS  PubMed  Google Scholar 

  61. Zou P, Ding J, Fu S. Elevated expression of microRNA-19a predicts a poor prognosis in patients with osteosarcoma. Pathol Res Pract. 2017;213:194–8. https://doi.org/10.1016/j.prp.2016.12.020.

    Article  CAS  PubMed  Google Scholar 

  62. Xiao J, Yu W, Hu K, Li M, Chen J, Li Z. miR-92a promotes tumor growth of osteosarcoma by targeting PTEN/AKT signaling pathway. Oncol Rep. 2017;37:2513–21. https://doi.org/10.3892/or.2017.5484.

    Article  CAS  PubMed  Google Scholar 

  63. Xiao Q, Yang Y, An Q, Qi Y. MicroRNA-100 suppresses human osteosarcoma cell proliferation and chemo-resistance via ZNRF2. Oncotarget. 2017;8:34678–86. https://doi.org/10.18632/oncotarget.16149.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Li Y, Zhao C, Yu Z, Chen J, She X, Li P, Liu C, Zhang Y, Feng J, Fu H, Wang B, Kuang L, Li L, Lv G, Wu M. Low expression of miR-381 is a favorite prognosis factor and enhances the chemosensitivity of osteosarcoma. Oncotarget. 2016;7:68585–96. https://doi.org/10.18632/oncotarget.11861.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wang Y, Wang N, Zeng X, Sun J, Wang G, Xu H, Zhao W. MicroRNA-335 and its target Rock1 synergistically influence tumor progression and prognosis in osteosarcoma. Oncol Lett. 2017;13:3057–65. https://doi.org/10.3892/ol.2017.5818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shi J, Fu Q, Yang P, Liu H, Ji L, Wang K. Downregulation of microRNA-15a-3p is correlated with clinical outcome and negatively regulates cancer proliferation and migration in human osteosarcoma. J Cell Biochem. 2018;119:1215–22. https://doi.org/10.1002/jcb.26294.

    Article  CAS  PubMed  Google Scholar 

  67. Gao F, Xu F. Reduced expression of miR-564 is associated with worse prognosis in patients with osteosarcoma. Eur Rev Med Pharmacol Sci. 2018;22:5851–6. https://doi.org/10.26355/eurrev_201809_15912.

    Article  CAS  PubMed  Google Scholar 

  68. Tao T, Shen Q, Luo J, Xu Y, Liang W. MicroRNA-125a regulates cell proliferation via directly targeting E2F2 in osteosarcoma. Cell Physiol Biochem. 2017;43:768–74. https://doi.org/10.1159/000481560.

    Article  CAS  PubMed  Google Scholar 

  69. Wu D, Nie X, Ma C, Liu X, Liang X, An Y, Zhao B, Wu X. RSF1 functions as an oncogene in osteosarcoma and is regulated by XIST/miR-193a-3p axis. Biomed Pharmacother. 2017;95:207–14. https://doi.org/10.1016/j.biopha.2017.08.068.

    Article  CAS  PubMed  Google Scholar 

  70. Cai W, Jiang H, Yu Y, Xu Y, Zuo W, Wang S, Su Z. mi R-367 regulation of DOC-2/DAB2 interactive protein promotes proliferation, migration and invasion of osteosarcoma cells. Biomed Pharmacother. 2017;95:120–8. https://doi.org/10.1016/j.biopha.2017.07.158.

    Article  CAS  PubMed  Google Scholar 

  71. Zhao Y, Xu K, Liu P. Post-transcriptional control of angiotensin II type 1 receptor regulates osteosarcoma cell death. Cell Physiol Biochem. 2018;45:1581–9. https://doi.org/10.1159/000487719.

    Article  CAS  PubMed  Google Scholar 

  72. Zheng Z, Bao F, Chen X, Huang H, Zhang X. MicroRNA-330-3p expression indicates good prognosis and suppresses cell proliferation by targeting Bmi-1 in osteosarcoma. Cell Physiol Biochem. 2018;46:442–50. https://doi.org/10.1159/000488612.

    Article  CAS  PubMed  Google Scholar 

  73. Xu Y, Chu H, Zhou Y, Wang J, Dong C, Yin R. miR-365 functions as a tumor suppressor by directly targeting CYR61 in osteosarcoma. Biomed Pharmacother. 2018;98:531–7. https://doi.org/10.1016/j.biopha.2017.12.086.

    Article  CAS  PubMed  Google Scholar 

  74. Wang L, Hu K, Chao Y. MicroRNA-1301 inhibits migration and invasion of osteosarcoma cells by targeting BCL9. Gene. 2018;679:100–7. https://doi.org/10.1016/j.gene.2018.08.078.

    Article  CAS  PubMed  Google Scholar 

  75. Shi Z-W, Wang J-L, Zhao N, Guan Y, He W. Single nucleotide polymorphism of hsa-miR-124a affects risk and prognosis of osteosarcoma. Cancer Biomark. 2016;17:249–57. https://doi.org/10.3233/CBM-160637.

    Article  CAS  PubMed  Google Scholar 

  76. Mori F, Sacconi A, Canu V, Ganci F, Novello M, Anelli V, Covello R, Ferraresi V, Muti P, Biagini R, Blandino G, Strano S. miR-181c associates with tumor relapse of high grade osteosarcoma. Oncotarget. 2015;6:13946–61. https://doi.org/10.18632/oncotarget.3539.

    Article  PubMed  Google Scholar 

  77. Poos K, Smida J, Nathrath M, Maugg D, Baumhoer D, Korsching E. How MicroRNA and transcription factor co-regulatory networks affect osteosarcoma cell proliferation. PLoS Comput Biol. 2013;9:e1003210. https://doi.org/10.1371/journal.pcbi.1003210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. He C, Gao H, Fan X, Wang M, Liu W, Huang W, Yang Y. Identification of a novel miRNA-target gene regulatory network in osteosarcoma by integrating transcriptome analysis. Int J Clin Exp Pathol. 2015;8:8348–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang H, Tang M, Ou L, Hou M, Feng T, Huang Y-E, Jin Y, Zhang H, Zuo G. Biological analysis of cancer specific microRNAs on function modeling in osteosarcoma. Sci Rep. 2017;7:5382. https://doi.org/10.1038/s41598-017-05819-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Namløs HM, Meza-Zepeda LA, Barøy T, Østensen IHG, Kresse SH, Kuijjer ML, Serra M, Bürger H, Cleton-Jansen A-M, Myklebost O. Modulation of the osteosarcoma expression phenotype by microRNAs. PLoS One. 2012;7:e48086. https://doi.org/10.1371/journal.pone.0048086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li Q, Li H, Zhao X, Wang B, Zhang L, Zhang C, Zhang F. DNA methylation mediated downregulation of miR-449c controls osteosarcoma cell cycle progression by directly targeting oncogene c-Myc. Int J Biol Sci. 2017;13:1038–50. https://doi.org/10.7150/ijbs.19476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang W, Duan N, Zhang Q, Song T, Li Z, Zhang C, Chen X, Wang K. DNA methylation mediated down-regulation of miR-370 regulates cell growth through activation of the Wnt/β-catenin signaling pathway in human osteosarcoma cells. Int J Biol Sci. 2017;13:561–73. https://doi.org/10.7150/ijbs.19032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ding M, Hu J, Ni J, Zheng Z, Song D, Wang J. Demethylation of microRNA-142 induced by demethylation agents plays a suppressive role in osteosarcoma cells. Oncol Lett. 2015;9:2261–7. https://doi.org/10.3892/ol.2015.3036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pu Y, Zhao F, Cai W, Meng X, Li Y, Cai S. MiR-193a-3p and miR-193a-5p suppress the metastasis of human osteosarcoma cells by down-regulating Rab27B and SRR, respectively. Clin Exp Metastasis. 2016;33:359–72. https://doi.org/10.1007/s10585-016-9783-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Long XH, Zhou YF, Peng AF, Zhang ZH, Chen XY, Chen WZ, Liu JM, Huang SH, Liu ZL. Demethylation-mediated miR-129-5p up-regulation inhibits malignant phenotype of osteogenic osteosarcoma by targeting Homo sapiens valosin-containing protein (VCP). Tumour Biol. 2015;36:3799–806. https://doi.org/10.1007/s13277-014-3021-7.

    Article  CAS  PubMed  Google Scholar 

  86. Wang C, Ba X, Guo Y, Sun D, Jiang H, Li W, Huang Z, Zhou G, Wu S, Zhang J, Chen J. MicroRNA-199a-5p promotes tumour growth by dual-targeting PIAS3 and p27 in human osteosarcoma. Sci Rep. 2017;7:41456. https://doi.org/10.1038/srep41456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li Y, Jiang W, Hu Y, Da Z, Zeng C, Tu M, Deng Z, Xiao W. MicroRNA-199a-5p inhibits cisplatin-induced drug resistance via inhibition of autophagy in osteosarcoma cells. Oncol Lett. 2016;12:4203–8. https://doi.org/10.3892/ol.2016.5172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jiang R, Zhang C, Liu G, Gu R, Wu H. MicroRNA-107 promotes proliferation, migration, and invasion of osteosarcoma cells by targeting tropomyosin 1. Oncol Res. 2017;25:1409–19. https://doi.org/10.3727/096504017X14882829077237.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Zhang Z-C, Liu J-X, Shao Z-W, Pu F-F, Wang B-C, Wu Q, Zhang Y-K, Zeng X-L, Guo X-D, Yang S-H, He T-C. In vitro effect of microRNA-107 targeting Dkk-1 by regulation of Wnt/β-catenin signaling pathway in osteosarcoma. Medicine (Baltimore). 2017;96:e7245. https://doi.org/10.1097/MD.0000000000007245.

    Article  CAS  Google Scholar 

  90. Yuan G, Zhao Y, Wu D, Gao C, Jiao Z. miRNA-20a upregulates TAK1 and increases proliferation in osteosarcoma cells. Futur Oncol. 2018;14:461–9. https://doi.org/10.2217/fon-2017-0490.

    Article  CAS  Google Scholar 

  91. Zhuo W, Ge W, Meng G, Jia S, Zhou X, Liu J. MicroRNA-20a promotes the proliferation and cell cycle of human osteosarcoma cells by suppressing early growth response 2 expression. Mol Med Rep. 2015;12:4989–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kelly AD, Haibe-Kains B, Janeway KA, Hill KE, Howe E, Goldsmith J, Kurek K, Perez-Atayde AR, Francoeur N, Fan J-B, April C, Schneider H, Gebhardt MC, Culhane A, Quackenbush J, Spentzos D. MicroRNA paraffin-based studies in osteosarcoma reveal reproducible independent prognostic profiles at 14q32. Genome Med. 2013;5:2. https://doi.org/10.1186/gm406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sarver AL, Thayanithy V, Scott MC, Cleton-Jansen A-M, Hogendoorn PC, Modiano JF, Subramanian S. MicroRNAs at the human 14q32 locus have prognostic significance in osteosarcoma. Orphanet J Rare Dis. 2013;8:7. https://doi.org/10.1186/1750-1172-8-7.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Thayanithy V, Sarver AL, Kartha RV, Li L, Angstadt AY, Breen M, Steer CJ, Modiano JF, Subramanian S. Perturbation of 14q32 miRNAs-cMYC gene network in osteosarcoma. Bone. 2012;50:171–81. https://doi.org/10.1016/j.bone.2011.10.012.

    Article  CAS  PubMed  Google Scholar 

  95. Li H, Liu H, Pei J, Wang H, Lv H. miR-542-3p overexpression is associated with enhanced osteosarcoma cell proliferation and migration ability by targeting Van Gogh-like 2. Mol Med Rep. 2015;11:851–6. https://doi.org/10.3892/mmr.2014.2777.

    Article  CAS  PubMed  Google Scholar 

  96. Duan Z, Choy E, Harmon D, Liu X, Susa M, Mankin H, Hornicek F. MicroRNA-199a-3p is downregulated in human osteosarcoma and regulates cell proliferation and migration. Mol Cancer Ther. 2011;10:1337–45. https://doi.org/10.1158/1535-7163.MCT-11-0096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Won KY, Kim YW, Kim H-S, Lee SK, Jung W-W, Park Y-K. MicroRNA-199b-5p is involved in the Notch signaling pathway in osteosarcoma. Hum Pathol. 2013;44:1648–55. https://doi.org/10.1016/j.humpath.2013.01.016.

    Article  CAS  PubMed  Google Scholar 

  98. Wang Q, Cai J, Wang J, Xiong C, Zhao J. MiR-143 inhibits EGFR-signaling-dependent osteosarcoma invasion. Tumour Biol. 2014;35:12743–8. https://doi.org/10.1007/s13277-014-2600-y.

    Article  CAS  PubMed  Google Scholar 

  99. Zhang H, Cai X, Wang Y, Tang H, Tong D, Ji F. microRNA-143, down-regulated in osteosarcoma, promotes apoptosis and suppresses tumorigenicity by targeting Bcl-2. Oncol Rep. 2010;24:1363–9.

    CAS  PubMed  Google Scholar 

  100. Sun X, Dai G, Yu L, Hu Q, Chen J, Guo W. miR-143-3p inhibits the proliferation, migration and invasion in osteosarcoma by targeting FOSL2. Sci Rep. 2018;8:606. https://doi.org/10.1038/s41598-017-18739-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Li W-H, Wu H-J, Li Y-X, Pan H-G, Meng T, Wang X. MicroRNA-143 promotes apoptosis of osteosarcoma cells by caspase-3 activation via targeting Bcl-2. Biomed Pharmacother. 2016;80:8–15. https://doi.org/10.1016/j.biopha.2016.03.001.

    Article  CAS  PubMed  Google Scholar 

  102. Liu HHH, Wang H, Liu HHH, Chen Y. Effect of miR-143 on the apoptosis of osteosarcoma cells. Int J Clin Exp Pathol. 2015;8:14241–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhou J, Wu S, Chen Y, Zhao J, Zhang K, Wang J, Chen S. microRNA-143 is associated with the survival of ALDH1 + CD133 + osteosarcoma cells and the chemoresistance of osteosarcoma. Exp Biol Med (Maywood). 2015;240:867–75. https://doi.org/10.1177/1535370214563893.

    Article  CAS  Google Scholar 

  104. Mu Y, Zhang H, Che L, Li K. Clinical significance of microRNA-183/Ezrin axis in judging the prognosis of patients with osteosarcoma. Med Oncol. 2014;31:821. https://doi.org/10.1007/s12032-013-0821-3.

    Article  CAS  PubMed  Google Scholar 

  105. Zhu J, Feng Y, Ke Z, Yang Z, Zhou J, Huang X, Wang L. Down-regulation of miR-183 promotes migration and invasion of osteosarcoma by targeting ezrin. Am J Pathol. 2012;180:2440–51. https://doi.org/10.1016/j.ajpath.2012.02.023.

    Article  CAS  PubMed  Google Scholar 

  106. Zhao H, Guo M, Zhao G, Ma Q, Ma B, Qiu X, Fan Q. miR-183 inhibits the metastasis of osteosarcoma via downregulation of the expression of Ezrin in F5M2 cells. Int J Mol Med. 2012;30:1013–20. https://doi.org/10.3892/ijmm.2012.1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Xu J-Q, Liu P, Si M-J, Ding X-Y. MicroRNA-126 inhibits osteosarcoma cells proliferation by targeting Sirt1. Tumour Biol. 2013;34:3871–7. https://doi.org/10.1007/s13277-013-0974-x.

    Article  CAS  PubMed  Google Scholar 

  108. Yang C, Hou C, Zhang H, Wang D, Ma Y, Zhang Y, Xu X, Bi Z, Geng S. miR-126 functions as a tumor suppressor in osteosarcoma by targeting Sox2. Int J Mol Sci. 2013;15:423–37. https://doi.org/10.3390/ijms15010423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wu X, Zhong D, Gao Q, Zhai W, Ding Z, Wu J. MicroRNA-34a inhibits human osteosarcoma proliferation by downregulating ether à go-go 1 expression. Int J Med Sci. 2013;10:676–82. https://doi.org/10.7150/ijms.5528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jiang L, He A, Zhang Q, Tao C. miR-126 inhibits cell growth, invasion, and migration of osteosarcoma cells by downregulating ADAM-9. Tumour Biol. 2014;35:12645–54. https://doi.org/10.1007/s13277-014-2588-3.

    Article  CAS  PubMed  Google Scholar 

  111. Yan K, Gao J, Yang T, Ma Q, Qiu X, Fan Q, Ma B. MicroRNA-34a inhibits the proliferation and metastasis of osteosarcoma cells both in vitro and in vivo. PLoS One. 2012;7:e33778. https://doi.org/10.1371/journal.pone.0033778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhao H, Ma B, Wang Y, Han T, Zheng L, Sun C, Liu T, Zhang Y, Qiu X, Fan Q. miR-34a inhibits the metastasis of osteosarcoma cells by repressing the expression of CD44. Oncol Rep. 2013;29:1027–36. https://doi.org/10.3892/or.2013.2234.

    Article  CAS  PubMed  Google Scholar 

  113. Li Y, Zhang J, Zhang L, Si M, Yin H, Li J. Diallyl trisulfide inhibits proliferation, invasion and angiogenesis of osteosarcoma cells by switching on suppressor microRNAs and inactivating of Notch-1 signaling. Carcinogenesis. 2013;34:1601–10. https://doi.org/10.1093/carcin/bgt065.

    Article  CAS  PubMed  Google Scholar 

  114. Wen J, Zhao Y-K, Liu Y, Zhao J-F. MicroRNA-34a inhibits tumor invasion and metastasis in osteosarcoma partly by effecting C-IAP2 and Bcl-2. Tumour Biol. 2017;39:1010428317705761. https://doi.org/10.1177/1010428317705761.

    Article  CAS  PubMed  Google Scholar 

  115. Lv H, Pei J, Liu H, Wang H, Liu J. A polymorphism site in the pre-miR-34a coding region reduces miR-34a expression and promotes osteosarcoma cell proliferation and migration. Mol Med Rep. 2014;10:2912–6. https://doi.org/10.3892/mmr.2014.2582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rodriguez Calleja L, Jacques C, Lamoureux F, Baud’huin M, Tellez Gabriel M, Quillard T, Sahay D, Perrot P, Amiaud J, Charrier C, Brion R, Lecanda F, Verrecchia F, Heymann D, Ellisen LW, Ory B. ΔNp63α silences a miRNA program to aberrantly initiate a wound-healing program that promotes TGFβ-induced metastasis. Cancer Res. 2016;76:3236–51. https://doi.org/10.1158/0008-5472.can-15-2317.

    Article  CAS  PubMed  Google Scholar 

  117. Chen B, Huang Z, Zhang Y, Chen Y, Li Z. MicroRNA-145 suppresses osteosarcoma metastasis via targeting MMP16. Cell Physiol Biochem. 2015;37:2183–93. https://doi.org/10.1159/000438575.

    Article  CAS  PubMed  Google Scholar 

  118. Zhang Z, Zhang M, Chen Q, Zhang Q. Downregulation of microRNA-145 promotes epithelial-mesenchymal transition via regulating Snail in osteosarcoma. Cancer Gene Ther. 2017;24:83–8. https://doi.org/10.1038/cgt.2017.1.

    Article  CAS  PubMed  Google Scholar 

  119. Li Y, Liu J, Liu Z-Z, Wei W-B. MicroRNA-145 inhibits tumour growth and metastasis in osteosarcoma by targeting cyclin-dependent kinase, CDK6. Eur Rev Med Pharmacol Sci. 2016;20:5117–25.

    CAS  PubMed  Google Scholar 

  120. Di Fiore R, Drago-Ferrante R, Pentimalli F, Di Marzo D, Forte IM, Carlisi D, De Blasio A, Tesoriere G, Giordano A, Vento R. Let-7d miRNA shows both antioncogenic and oncogenic functions in osteosarcoma-derived 3AB-OS cancer stem cells. J Cell Physiol. 2016;231:1832–41. https://doi.org/10.1002/jcp.25291.

    Article  CAS  PubMed  Google Scholar 

  121. Zhang GM, Long XH, Liu JM, Zhu LB, Chen XY, Huang SH, Zhang ZH, Liu ZL. Let-7i inhibits the malignant phenotype of osteosarcoma cells by targeting Aurora-B. Mol Med Rep. 2015;12:3543–8. https://doi.org/10.3892/mmr.2015.3798.

    Article  CAS  PubMed  Google Scholar 

  122. Shen H, Wang W, Ni B, Zou Q, Lu H, Wang Z. Exploring the molecular mechanisms of osteosarcoma by the integrated analysis of mRNAs and miRNA microarrays. 2018;42:21–30. https://doi.org/10.3892/ijmm.2018.3594.

    Article  CAS  Google Scholar 

  123. Zhu S-W, Li J-P, Ma X-L, Ma J-X, Yang Y, Chen Y, Liu W. miR-9 modulates osteosarcoma cell growth by targeting the GCIP tumor suppressor. Asian Pac J Cancer Prev. 2015;16:4509–13.

    PubMed  Google Scholar 

  124. Wang J, Wang B, Chen L-Q, Yang J, Gong Z-Q, Zhao X-L, Zhang C-Q, Du K-L. miR-10b promotes invasion by targeting KLF4 in osteosarcoma cells. Biomed Pharmacother. 2016;84:947–53. https://doi.org/10.1016/j.biopha.2016.09.108.

    Article  CAS  PubMed  Google Scholar 

  125. Cai C-K, Zhao G-Y, Tian L-Y, Liu L, Yan K, Ma Y-L, Ji Z-W, Li X-X, Han K, Gao J, Qiu X-C, Fan Q-Y, Yang T-T, Ma B-A. miR-15a and miR-16-1 downregulate CCND1 and induce apoptosis and cell cycle arrest in osteosarcoma. Oncol Rep. 2012;28:1764–70. https://doi.org/10.3892/or.2012.1995.

    Article  CAS  PubMed  Google Scholar 

  126. Leng J, Song Q, Zhao Y, Wang Z. miR-15a represses cancer cell migration and invasion under conditions of hypoxia by targeting and downregulating Bcl-2 expression in human osteosarcoma cells. Int J Oncol. 2018;52:1095–104. https://doi.org/10.3892/ijo.2018.4285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tian X, Zhang J, Yan L, Dong J-M, Guo Q. MiRNA-15a inhibits proliferation, migration and invasion by targeting TNFAIP1 in human osteosarcoma cells. Int J Clin Exp Pathol. 2015;8:6442–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Chen L, Wang Q, Wang G, Wang H, Huang Y, Liu X, Cai X. miR-16 inhibits cell proliferation by targeting IGF1R and the Raf1-MEK1/2-ERK1/2 pathway in osteosarcoma. FEBS Lett. 2013;587:1366–72. https://doi.org/10.1016/j.febslet.2013.03.007.

    Article  CAS  PubMed  Google Scholar 

  129. Dong J, Bi B, Zhang L, Gao K. GLIPR1 inhibits the proliferation and induces the differentiation of cancer-initiating cells by regulating miR-16 in osteosarcoma. Oncol Rep. 2016;36:1585–91. https://doi.org/10.3892/or.2016.4949.

    Article  CAS  PubMed  Google Scholar 

  130. Gao Y, Luo L, Li S, Yang C. miR-17 inhibitor suppressed osteosarcoma tumor growth and metastasis via increasing PTEN expression. Biochem Biophys Res Commun. 2014;444:230–4. https://doi.org/10.1016/j.bbrc.2014.01.061.

    Article  CAS  PubMed  Google Scholar 

  131. Wang W, Zhang L, Zheng K, Zhang X. miR-17-5p promotes the growth of osteosarcoma in a BRCC2-dependent mechanism. Oncol Rep. 2016;35:1473–82. https://doi.org/10.3892/or.2016.4542.

    Article  CAS  PubMed  Google Scholar 

  132. Ding J, Sha L, Shen P, Huang M, Cai Q, Li J. MicroRNA-18a inhibits cell growth and induces apoptosis in osteosarcoma by targeting MED27. Int J Oncol. 2018;53:329–38. https://doi.org/10.3892/ijo.2018.4374.

    Article  CAS  PubMed  Google Scholar 

  133. Meng Q, Dai M, Nie X, Zhang W, Xu X, Li J, Mu H, Liu X, Qin L, Zhu X, Yan J, Zheng M. MicroRNA-19 contributes to the malignant phenotypes of osteosarcoma in vitro by targeting Pax6. Tumour Biol. 2018;40:1010428317744704. https://doi.org/10.1177/1010428317744704.

    Article  CAS  PubMed  Google Scholar 

  134. Sun Z, Liu Q, Hong H, Zhang H, Zhang T. miR-19 promotes osteosarcoma progression by targeting SOCS6. Biochem Biophys Res Commun. 2018;495:1363–9. https://doi.org/10.1016/j.bbrc.2017.10.002.

    Article  CAS  PubMed  Google Scholar 

  135. Liu M, Wang D, Li N. MicroRNA-20b downregulates HIF-1α and inhibits the proliferation and invasion of osteosarcoma cells. Oncol Res. 2016;23:257–66. https://doi.org/10.3727/096504016X14562725373752.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Lv C, Hao Y, Tu G. MicroRNA-21 promotes proliferation, invasion and suppresses apoptosis in human osteosarcoma line MG63 through PTEN/Akt pathway. Tumor Biol. 2016. https://doi.org/10.1007/s13277-016-4807-6.

    Article  Google Scholar 

  137. Xu B, Xia H, Cao J, Wang Z, Yang Y, Lin Y. MicroRNA-21 inhibits the apoptosis of osteosarcoma cell line SAOS-2 via targeting caspase 8. Oncol Res. 2017;25:1161–8. https://doi.org/10.3727/096504017X14841698396829.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Vanas V, Haigl B, Stockhammer V, Sutterlüty-Fall H. MicroRNA-21 increases proliferation and cisplatin sensitivity of osteosarcoma-derived cells. PLoS One. 2016;11:e0161023. https://doi.org/10.1371/journal.pone.0161023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Guo S, Bai R, Liu W, Zhao A, Zhao Z, Wang YY, Wang YY, Zhao W, Wang W. miR-22 inhibits osteosarcoma cell proliferation and migration by targeting HMGB1 and inhibiting HMGB1-mediated autophagy. Tumour Biol. 2014;35:7025–34. https://doi.org/10.1007/s13277-014-1965-2.

    Article  CAS  PubMed  Google Scholar 

  140. Xin M, Qiao Z, Li J, Liu J, Song S, Zhao X, Miao P, Tang T, Wang L, Liu W, Yang X, Dai K, Huang G. miR-22 inhibits tumor growth and metastasis by targeting ATP citrate lyase: evidence in osteosarcoma, prostate cancer, cervical cancer and lung cancer. Oncotarget. 2016;7:44252–65. https://doi.org/10.18632/oncotarget.10020.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Gai P, Sun H, Wang G, Xu Q, Qi X, Zhang Z, Jiang L. miR-22 promotes apoptosis of osteosarcoma cells via inducing cell cycle arrest. Oncol Lett. 2017;13:2354–8. https://doi.org/10.3892/ol.2017.5674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhou X, Natino D, Zhai X, Gao Z, He X. MicroRNA-22 inhibits the proliferation and migration, and increases the cisplatin sensitivity, of osteosarcoma cells. Mol Med Rep. 2018;17:7209–17. https://doi.org/10.3892/mmr.2018.8790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tian K, Di R, Wang L. MicroRNA-23a enhances migration and invasion through PTEN in osteosarcoma. Cancer Gene Ther. 2015;22:351–9. https://doi.org/10.1038/cgt.2015.27.

    Article  CAS  PubMed  Google Scholar 

  144. Wang G, Li B, Fu Y, He M, Wang J, Shen P, Bai L. miR-23a suppresses proliferation of osteosarcoma cells by targeting SATB1. Tumour Biol. 2015;36:4715–21. https://doi.org/10.1007/s13277-015-3120-0.

    Article  CAS  PubMed  Google Scholar 

  145. Song L, Yang J, Duan P, Xu J, Luo X, Luo F, Zhang Z, Hou T, Liu B, Zhou Q. MicroRNA-24 inhibits osteosarcoma cell proliferation both in vitro and in vivo by targeting LPAATβ. Arch Biochem Biophys. 2013;535:128–35. https://doi.org/10.1016/j.abb.2013.04.001.

    Article  CAS  PubMed  Google Scholar 

  146. Chen B, Liu J, Qu J, Song Y, Li Y, Pan S. MicroRNA-25 suppresses proliferation, migration, and invasion of osteosarcoma by targeting SOX4. Tumour Biol. 2017;39:1010428317703841. https://doi.org/10.1177/1010428317703841.

    Article  CAS  PubMed  Google Scholar 

  147. Wu X, Zhou H, Yue B, Li M, Liu F, Qiu C, Chen B, Ma X. Upregulation of microRNA-25-3p inhibits proliferation, migration and invasion of osteosarcoma cells in vitro by directly targeting SOX4. Mol Med Rep. 2017;16:4293–300. https://doi.org/10.3892/mmr.2017.7103.

    Article  CAS  PubMed  Google Scholar 

  148. Tan X, Fan S, Wu W, Zhang Y. MicroRNA-26a inhibits osteosarcoma cell proliferation by targeting IGF-1. Bone Res. 2015;3:15033. https://doi.org/10.1038/boneres.2015.33.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Lu J, Song G, Tang Q, Yin J, Zou C, Zhao Z, Xie X, Xu H, Huang G, Wang J, Lee D-F, Khokha R, Yang H, Shen J. MiR-26a inhibits stem cell-like phenotype and tumor growth of osteosarcoma by targeting Jagged1. Oncogene. 2017;36:231–41. https://doi.org/10.1038/onc.2016.194.

    Article  CAS  PubMed  Google Scholar 

  150. Du J-Y, Wang L-F, Wang Q, Yu L-D. miR-26b inhibits proliferation, migration, invasion and apoptosis induction via the downregulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 driven glycolysis in osteosarcoma cells. Oncol Rep. 2015;33:1890–8. https://doi.org/10.3892/or.2015.3797.

    Article  CAS  PubMed  Google Scholar 

  151. Zheng WD, Zhou FL, Lin N. MicroRNA-26b inhibits osteosarcoma cell migration and invasion by down-regulating PFKFB3 expression. Genet Mol Res. 2015;14:16872–9. https://doi.org/10.4238/2015.December.14.14.

    Article  CAS  PubMed  Google Scholar 

  152. Ye P, Ke X, Zang X, Sun H, Dong Z, Lin J, Wang L, Liu W, Miao G, Tan Y, Tong W, Xiao H, Gao L. Up-regulated MiR-27-3p promotes the G1-S phase transition by targeting inhibitor of growth family member 5 in osteosarcoma. Biomed Pharmacother. 2018;101:219–27. https://doi.org/10.1016/j.biopha.2018.02.066.

    Article  CAS  PubMed  Google Scholar 

  153. Liu J, Li M, Liu X, Liu F, Zhu J. miR-27a-3p promotes the malignant phenotypes of osteosarcoma by targeting ten-eleven translocation 1. Int J Oncol. 2018;52:1295–304. https://doi.org/10.3892/ijo.2018.4275.

    Article  CAS  PubMed  Google Scholar 

  154. Wang C-Y, Ren J-B, Liu M, Yu L. Targeting miR-29 induces apoptosis of osteosarcoma MG-63 cells via regulation of TGF-β1/PUMA signal. Eur Rev Med Pharmacol Sci. 2016;20:3552–60.

    PubMed  Google Scholar 

  155. Zhang K, Zhang C, Liu L, Zhou J. A key role of microRNA-29b in suppression of osteosarcoma cell proliferation and migration via modulation of VEGF. Int J Clin Exp Pathol. 2014;7:5701–8.

    PubMed  PubMed Central  Google Scholar 

  156. Zhu K, Liu L, Zhang J, Wang Y, Liang H, Fan G, Jiang Z, Zhang C-Y, Chen X, Zhou G. MiR-29b suppresses the proliferation and migration of osteosarcoma cells by targeting CDK6. Protein Cell. 2016;7:434–44. https://doi.org/10.1007/s13238-016-0277-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhang R, Yan S, Wang J, Deng F, Guo Y, Li Y, Fan M, Song Q, Liu H, Weng Y, Shi Q. MiR-30a regulates the proliferation, migration, and invasion of human osteosarcoma by targeting Runx2. Tumour Biol. 2016;37:3479–88. https://doi.org/10.1007/s13277-015-4086-7.

    Article  CAS  PubMed  Google Scholar 

  158. Zhong B, Guo S, Zhang W, Zhang CC, Wang Y, Zhang CC. Bioinformatics prediction of miR-30a targets and its inhibition of cell proliferation of osteosarcoma by up-regulating the expression of PTEN. BMC Med Genomics. 2017;10:64. https://doi.org/10.1186/s12920-017-0300-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Xu J-Q, Zhang W-B, Wan R, Yang Y-Q. MicroRNA-32 inhibits osteosarcoma cell proliferation and invasion by targeting Sox9. Tumour Biol. 2014;35:9847–53. https://doi.org/10.1007/s13277-014-2229-x.

    Article  CAS  PubMed  Google Scholar 

  160. Zhang J, Wang D, Xiong J, Chen L, Huang J. MicroRNA-33a-5p suppresses growth of osteosarcoma cells and is downregulated in human osteosarcoma. Oncol Lett. 2015;10:2135–41. https://doi.org/10.3892/ol.2015.3503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zhou Y, Yang C, Wang K, Liu X, Liu Q. MicroRNA-33b inhibits the proliferation and migration of osteosarcoma cells via targeting hypoxia-inducible factor-1α. Oncol Res. 2017;25:397–405. https://doi.org/10.3727/096504016X14743337535446.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Vetter NS, Kolb EA, Mills CC, Sampson VB. The microtubule network and cell death are regulated by an miR-34a/Stathmin 1/βIII-tubulin axis. Mol Cancer Res. 2017;15:953–64. https://doi.org/10.1158/1541-7786.MCR-16-0372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Li Q-C, Xu H, Wang X, Wang T, Wu J. miR-34a increases cisplatin sensitivity of osteosarcoma cells in vitro through up-regulation of c-Myc and Bim signal. Cancer Biomark. 2017;21:135–44. https://doi.org/10.3233/CBM-170452.

    Article  CAS  PubMed  Google Scholar 

  164. Zang X, Li Q, Wang W, Zhou Y, Chen S, Xiao T. miR-181a promotes the proliferation and metastasis of osteosarcoma cells by targeting RASSF1A. Zhong nan da xue xue bao Yi xue ban J Cent South Univ Med Sci. 2016;41:789–95. https://doi.org/10.11817/j.issn.1672-7347.2016.08.003.

    Article  Google Scholar 

  165. Jiang X, Li X, Wu F, Gao H, Wang G, Zheng H, Wang H, Li J, Chen C. Overexpression of miR-92a promotes the tumor growth of osteosarcoma by suppressing F-box and WD repeat-containing protein 7. Gene. 2017;606:10–6. https://doi.org/10.1016/j.gene.2017.01.002.

    Article  CAS  PubMed  Google Scholar 

  166. Zhou Z, Wang Z, Wei H, Wu S, Wang X, Xiao J. Promotion of tumour proliferation, migration and invasion by miR-92b in targeting RECK in osteosarcoma. Clin Sci (Lond). 2016;130:921–30. https://doi.org/10.1042/CS20150509.

    Article  CAS  Google Scholar 

  167. Kawano M, Tanaka K, Itonaga I, Ikeda S, Iwasaki T, Tsumura H. microRNA-93 promotes cell proliferation via targeting of PTEN in Osteosarcoma cells. J Exp Clin Cancer Res. 2015;34:76. https://doi.org/10.1186/s13046-015-0192-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. He Y, Yu B. MicroRNA-93 promotes cell proliferation by directly targeting P21 in osteosarcoma cells. Exp Ther Med. 2017;13:2003–11. https://doi.org/10.3892/etm.2017.4204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wang RJ, Shi KR, Zhang J, Zhang J, Gao RR, Zhu SC. Effects of miR-93 on proliferation and apoptosis of osteosarcoma cells. Zhonghua Bing Li Xue Za Zhi. 2016;45:866–70. https://doi.org/10.3760/cma.j.issn.0529-5807.2016.12.010.

    Article  CAS  PubMed  Google Scholar 

  170. Zhao X, Yang Y, Xu J, Luo Y, Xin Y, Wang Y. Downregulation of microRNA-95-3p suppresses cell growth of osteosarcoma via CDKN1A/p21 expression. Oncol Rep. 2018;39:289–97. https://doi.org/10.3892/or.2017.6065.

    Article  CAS  PubMed  Google Scholar 

  171. Yao Q, Pei Y, Zhang X, Xie B. microRNA-96 acts as a tumor suppressor gene in human osteosarcoma via target regulation of EZRIN. Life Sci. 2018;203:1–11. https://doi.org/10.1016/j.lfs.2018.04.012.

    Article  CAS  PubMed  Google Scholar 

  172. Xing B, Ren C. Tumor-suppressive miR-99a inhibits cell proliferation via targeting of TNFAIP8 in osteosarcoma cells. Am J Transl Res. 2016;8:1082–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Huang J, Gao K, Lin J, Wang Q. MicroRNA-100 inhibits osteosarcoma cell proliferation by targeting Cyr61. Tumor Biol. 2014;35:1095–100. https://doi.org/10.1007/s13277-013-1146-8.

    Article  CAS  Google Scholar 

  174. Bi Y, Jing Y, Cao Y. Overexpression of miR-100 inhibits growth of osteosarcoma through FGFR3. Tumour Biol. 2015;36:8405–11. https://doi.org/10.1007/s13277-015-3581-1.

    Article  CAS  PubMed  Google Scholar 

  175. Liu Y, Zhu S-T, Wang X, Deng J, Li W-H, Zhang P, Liu B-S. MiR-100 inhibits osteosarcoma cell proliferation, migration, and invasion and enhances chemosensitivity by targeting IGFIR. Technol Cancer Res Treat. 2016. https://doi.org/10.1177/1533034615601281.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Lin S, Shao N-N, Fan L, Ma X-C, Pu F-F, Shao Z-W. Effect of microRNA-101 on proliferation and apoptosis of human osteosarcoma cells by targeting mTOR. J Huazhong Univ Sci Technol Med Sci. 2014;34:889–95. https://doi.org/10.1007/s11596-014-1369-y.

    Article  CAS  Google Scholar 

  177. Wang Z, He R, Xia H, Wei YU, Wu S. MicroRNA-101 has a suppressive role in osteosarcoma cells through the targeting of c-FOS. Exp Ther Med. 2016;11:1293–9. https://doi.org/10.3892/etm.2016.3085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Jiang R, Zhang C, Liu G, Gu R, Wu H. MicroRNA-101 inhibits proliferation, migration and invasion in osteosarcoma cells by targeting ROCK1. Am J Cancer Res. 2017;7:88–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Chen Y, Huang T, Yang X, Liu C, Li P, Wang Z, Zhi S. MicroRNA-106a regulates the proliferation and invasion of human osteosarcoma cells by targeting VNN2. Oncol Rep. 2018;40:2251–9. https://doi.org/10.3892/or.2018.6601.

    Article  CAS  PubMed  Google Scholar 

  180. He Q-Y, Wang G-C, Zhang H, Tong D-K, Ding C, Liu K, Ji F, Zhu X, Yang S. miR-106a-5p suppresses the proliferation, migration, and invasion of osteosarcoma cells by targeting HMGA2. DNA Cell Biol. 2016;35:506–20. https://doi.org/10.1089/dna.2015.3121.

    Article  CAS  PubMed  Google Scholar 

  181. Xu M, Zhang Y-Y, Wang H-F, Yang G-S. The expression and function of miRNA-106 in pediatric osteosarcoma. Eur Rev Med Pharmacol Sci. 2017;21:715–22.

    CAS  PubMed  Google Scholar 

  182. Yu M, Guo D, Cao Z, Xiao L, Wang G. Inhibitory effect of MicroRNA-107 on osteosarcoma malignancy through regulation of Wnt/β-catenin signaling in vitro. Cancer Invest. 2018;36:175–84. https://doi.org/10.1080/07357907.2018.1439055.

    Article  CAS  PubMed  Google Scholar 

  183. Wang L, Kang F, Sun N, Wang J, Chen W, Li D, Shan B. The tumor suppressor miR-124 inhibits cell proliferation and invasion by targeting B7-H3 in osteosarcoma. Tumour Biol. 2016;37:14939–47. https://doi.org/10.1007/s13277-016-5386-2.

    Article  CAS  PubMed  Google Scholar 

  184. Zhou Y, Han Y, Zhang Z, Shi Z, Zhou L, Liu X, Jia X. MicroRNA-124 upregulation inhibits proliferation and invasion of osteosarcoma cells by targeting sphingosine kinase 1. Hum Cell. 2017;30:30–40. https://doi.org/10.1007/s13577-016-0148-4.

    Article  CAS  PubMed  Google Scholar 

  185. Yu B, Jiang K, Zhang J. MicroRNA-124 suppresses growth and aggressiveness of osteosarcoma and inhibits TGF-β-mediated AKT/GSK-3β/SNAIL-1 signaling. Mol Med Rep. 2018;17:6736–44. https://doi.org/10.3892/mmr.2018.8637.

    Article  CAS  PubMed  Google Scholar 

  186. Meng Q, Zhang W, Xu X, Li J, Mu H, Liu X, Qin L, Zhu X, Zheng M. The effects of TRAF6 on proliferation, apoptosis and invasion in osteosarcoma are regulated by miR-124. Int J Mol Med. 2018;41:2968–76. https://doi.org/10.3892/ijmm.2018.3458.

    Article  CAS  PubMed  Google Scholar 

  187. Waresijiang N, Sun J, Abuduaini R, Jiang T, Zhou W, Yuan H. The downregulation of miR-125a-5p functions as a tumor suppressor by directly targeting MMP-11 in osteosarcoma. Mol Med Rep. 2016;13:4859–64. https://doi.org/10.3892/mmr.2016.5141.

    Article  CAS  PubMed  Google Scholar 

  188. Liu L, Li H, Li J, Zhong H, Zhang H, Chen J, Xiao T. miR-125b suppresses the proliferation and migration of osteosarcoma cells through down-regulation of STAT3. Biochem Biophys Res Commun. 2011;416:31–8. https://doi.org/10.1016/j.bbrc.2011.10.117.

    Article  CAS  PubMed  Google Scholar 

  189. Wang F, Yu D, Liu Z, Wang R, Xu Y, Cui H, Zhao T. MiR-125b functions as a tumor suppressor and enhances chemosensitivity to cisplatin in osteosarcoma. Technol Cancer Res Treat. 2016;15:NP105–12. https://doi.org/10.1177/1533034615618849.

    Article  CAS  PubMed  Google Scholar 

  190. Jiang R, Zhang C, Liu G, Gu R, Wu H. MicroRNA-126 inhibits proliferation, migration, invasion, and EMT in osteosarcoma by targeting ZEB1. J Cell Biochem. 2017;118:3765–74. https://doi.org/10.1002/jcb.26024.

    Article  CAS  PubMed  Google Scholar 

  191. Wang S, Wang X, Guo Q, Wang G, Han X, Li X, Shi Z-W, He W. MicroRNA-126 overexpression inhibits proliferation and invasion in osteosarcoma cells. Technol Cancer Res Treat. 2016;15:NP49–59. https://doi.org/10.1177/1533034615601563.

    Article  CAS  PubMed  Google Scholar 

  192. Zhang J, Hou W, Chai M, Zhao H, Jia J, Sun X, Zhao B, Wang R. MicroRNA-127-3p inhibits proliferation and invasion by targeting SETD8 in human osteosarcoma cells. Biochem Biophys Res Commun. 2016;469:1006–11. https://doi.org/10.1016/j.bbrc.2015.12.067.

    Article  CAS  PubMed  Google Scholar 

  193. Han C, Wang W. MicroRNA-129-5p suppresses cell proliferation, migration and invasion via targeting ROCK1 in osteosarcoma. Mol Med Rep. 2018;17:4777–84. https://doi.org/10.3892/mmr.2018.8374.

    Article  CAS  PubMed  Google Scholar 

  194. Yi L, Liu M, Tang Z. MicroRNA-130a inhibits growth and metastasis of osteosarcoma cells by directly targeting ZEB1. Mol Med Rep. 2017;16:3606–12. https://doi.org/10.3892/mmr.2017.6968.

    Article  CAS  PubMed  Google Scholar 

  195. Li Z, Li Y, Wang N, Yang L, Zhao W, Zeng X. miR-130b targets NKD2 and regulates the Wnt signaling to promote proliferation and inhibit apoptosis in osteosarcoma cells. Biochem Biophys Res Commun. 2016;471:479–85. https://doi.org/10.1016/j.bbrc.2016.02.050.

    Article  CAS  PubMed  Google Scholar 

  196. Ni Z, Shang XF, Wang YF, Sun YJ, Fu DJ. Upregulated microRNA-301a in osteosarcoma promotes tumor progression by targeting CDC14A. Genet Mol Res. 2016. https://doi.org/10.4238/gmr.15027807.

    Article  PubMed  Google Scholar 

  197. Wang Z, Cai HH, Lin L, Tang M, Cai HH. Upregulated expression of microRNA-214 is linked to tumor progression and adverse prognosis in pediatric osteosarcoma. Pediatr Blood Cancer. 2014;61:206–10. https://doi.org/10.1002/pbc.24763.

    Article  PubMed  Google Scholar 

  198. Liu Y, Li Y, Liu J, Wu Y, Zhu Q. MicroRNA-132 inhibits cell growth and metastasis in osteosarcoma cell lines possibly by targeting Sox4. Int J Oncol. 2015;47:1672–84. https://doi.org/10.3892/ijo.2015.3147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Chen G, Fang T, Huang Z, Qi Y, Du S, Di T, Lei Z, Zhang X, Yan W. MicroRNA-133a inhibits osteosarcoma cells proliferation and invasion via targeting IGF-1R. Cell Physiol Biochem. 2016;38:598–608. https://doi.org/10.1159/000438653.

    Article  CAS  PubMed  Google Scholar 

  200. Liu Z, Zhang G, Li J, Liu J, Lv P. The tumor-suppressive MicroRNA-135b targets c-Myc in osteoscarcoma. PloS One. 2014;9:e102621. https://doi.org/10.1371/journal.pone.0102621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Guo T, Pan G. MicroRNA-136 functions as a tumor suppressor in osteosarcoma via regulating metadherin. Cancer Biomark. 2018;22:79–87. https://doi.org/10.3233/CBM-170970.

    Article  CAS  PubMed  Google Scholar 

  202. Li Z-M, Zhang H-Y, Wang Y-X, Wang W-B. MicroRNA-137 is downregulated in human osteosarcoma and regulates cell proliferation and migration through targeting FXYD6. J Drug Target. 2016;24:102–10. https://doi.org/10.3109/1061186X.2015.1057149.

    Article  CAS  PubMed  Google Scholar 

  203. Feng Q, Wu Q, Liu X, Xiong Y, Li H. MicroRNA-137 acts as a tumor suppressor in osteosarcoma by targeting enhancer of zeste homolog 2. Exp Ther Med. 2017;13:3167–74. https://doi.org/10.3892/etm.2017.4435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Li R, Wang L. Fibulin-4 is a novel Wnt/β-Catenin pathway activator in human osteosarcoma. Biochem Biophys Res Commun. 2016;474:730–5. https://doi.org/10.1016/j.bbrc.2016.05.018.

    Article  CAS  PubMed  Google Scholar 

  205. Roberto GM, Lira RC, Delsin LE, Vieira GM, Silva MO, Hakime RG, Yamashita ME, Engel EE, Scrideli CA, Tone LG, Brassesco MS. microRNA-138-5p as a worse prognosis biomarker in pediatric, adolescent, and young adult osteosarcoma. Pathol Oncol Res. 2019. https://doi.org/10.1007/s12253-019-00633-0.

    Article  PubMed  Google Scholar 

  206. Zhu Z, Tang J, Wang J, Duan G, Zhou L, Zhou X. MiR-138 acts as a tumor suppressor by targeting EZH2 and enhances cisplatin-induced apoptosis in osteosarcoma cells. PLoS One. 2016;11:e0150026. https://doi.org/10.1371/journal.pone.0150026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Jiang B, Mu W, Wang J, Lu J, Jiang S, Li L, Xu H, Tian H. MicroRNA-138 functions as a tumor suppressor in osteosarcoma by targeting differentiated embryonic chondrocyte gene 2. J Exp Clin Cancer Res. 2016;35:69. https://doi.org/10.1186/s13046-016-0348-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Yuan Z, Mo H, Mo L, He J, Wu Z, Lin X. Suppressive effect of microRNA-138 on the proliferation and invasion of osteosarcoma cells via targeting SIRT1. Exp Ther Med. 2017;13:3417–23. https://doi.org/10.3892/etm.2017.4426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Zhong C, Liu J, Zhang Y, Luo J, Zheng J. MicroRNA-139 inhibits the proliferation and migration of osteosarcoma cells via targeting forkhead-box P2. Life Sci. 2017;191:68–73. https://doi.org/10.1016/j.lfs.2017.10.010.

    Article  CAS  PubMed  Google Scholar 

  210. Su S, Nie X. MiR-139 prompts the development of osteosarcomas mainly through targeting ROCK1. Pharmazie. 2017;72:759–63. https://doi.org/10.1691/ph.2017.7439.

    Article  CAS  PubMed  Google Scholar 

  211. Xiao Q, Huang L, Zhang Z, Chen X, Luo J, Zhang Z, Chen S, Shu Y, Han Z, Cao K. Overexpression of miR-140 inhibits proliferation of osteosarcoma cells via suppression of histone deacetylase 4. Oncol Res. 2017;25:267–75. https://doi.org/10.3727/096504016X14732510786564.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Xu H, Mei Q, Xiong C, Zhao J. Tumor-suppressing effects of miR-141 in human osteosarcoma. Cell Biochem Biophys. 2014;69:319–25. https://doi.org/10.1007/s12013-013-9801-7.

    Article  CAS  PubMed  Google Scholar 

  213. Wang N, Li P, Liu W, Wang N, Lu Z, Feng J, Zeng X, Yang J, Wang Y, Zhao W. miR-141-3p suppresses proliferation and promotes apoptosis by targeting GLI2 in osteosarcoma cells. Oncol Rep. 2018;39:747–54. https://doi.org/10.3892/or.2017.6150.

    Article  CAS  PubMed  Google Scholar 

  214. Xu G, Wang J, Jia Y, Shen F, Han W, Kang Y. MiR-142-3p functions as a potential tumor suppressor in human osteosarcoma by targeting HMGA1. Cell Physiol Biochem. 2014;33:1329–39. https://doi.org/10.1159/000358700.

    Article  CAS  PubMed  Google Scholar 

  215. Yang Y-Q, Qi J, Xu J-Q, Hao P. MicroRNA-142-3p, a novel target of tumor suppressor menin, inhibits osteosarcoma cell proliferation by down-regulation of FASN. Tumour Biol. 2014;35:10287–93. https://doi.org/10.1007/s13277-014-2316-z.

    Article  CAS  PubMed  Google Scholar 

  216. Osaki M, Takeshita F, Sugimoto Y, Kosaka N, Yamamoto Y, Yoshioka Y, Kobayashi E, Yamada T, Kawai A, Inoue T, Ito H, Oshimura M, Ochiya T. MicroRNA-143 regulates human osteosarcoma metastasis by regulating matrix metalloprotease-13 expression. Mol Ther. 2011;19:1123–30. https://doi.org/10.1038/mt.2011.53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Hirahata M, Osaki M, Kanda Y, Sugimoto Y, Yoshioka Y, Kosaka N, Takeshita F, Fujiwara T, Kawai A, Ito H, Ochiya T, Okada F. PAI-1, a target gene of miR-143, regulates invasion and metastasis by upregulating MMP-13 expression of human osteosarcoma. Cancer Med. 2016;5:892–902. https://doi.org/10.1002/cam4.651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Dong X, Lv B, Li Y, Cheng Q, Su C, Yin G. MiR-143 regulates the proliferation and migration of osteosarcoma cells through targeting MAPK7. Arch Biochem Biophys. 2017;630:47–53. https://doi.org/10.1016/j.abb.2017.07.011.

    Article  CAS  PubMed  Google Scholar 

  219. Cui S-Q, Wang H. MicroRNA-144 inhibits the proliferation, apoptosis, invasion, and migration of osteosarcoma cell line F5M2. Tumour Biol. 2015;36:6949–58. https://doi.org/10.1007/s13277-015-3396-0.

    Article  CAS  PubMed  Google Scholar 

  220. Wang W, Zhou X, Wei M. MicroRNA-144 suppresses osteosarcoma growth and metastasis by targeting ROCK1 and ROCK2. Oncotarget. 2015;6:10297–308. https://doi.org/10.18632/oncotarget.3305.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Li E, Zhang J, Yuan T, Ma B. MiR-145 inhibits osteosarcoma cells proliferation and invasion by targeting ROCK1. Tumour Biol. 2014;35:7645–50. https://doi.org/10.1007/s13277-014-2031-9.

    Article  CAS  PubMed  Google Scholar 

  222. Wu P, Liang J, Yu F, Zhou Z, Tang J, Li K. miR-145 promotes osteosarcoma growth by reducing expression of the transcription factor friend leukemia virus integration 1. Oncotarget. 2016;7:42241–51. https://doi.org/10.18632/oncotarget.9948.

    Article  PubMed  PubMed Central  Google Scholar 

  223. Bhattacharya S, Chalk AM, Ng AJM, Martin TJ, Zannettino AC, Purton LE, Lu J, Baker EK, Walkley CR. Increased miR-155-5p and reduced miR-148a-3p contribute to the suppression of osteosarcoma cell death. Oncogene. 2016;35:5282–94. https://doi.org/10.1038/onc.2016.68.

    Article  CAS  PubMed  Google Scholar 

  224. Yang H, Peng Z, Da Z, Li XX, Cheng Y, Tan B, Xiang X, Zheng H, Li Y, Chen L, Mo N, Yan X, Li XX, Hu X. MicroRNA-148a acts as a tumor suppressor in osteosarcoma via targeting rho-associated coiled-coil kinase. Oncol Res Feature Preclin Clin Cancer Ther. 2017;25:1231–43. https://doi.org/10.3727/096504017X14850134190255.

    Article  Google Scholar 

  225. Xie Z, Xu J, Peng L, Gao Y, Zhao H, Qu Y. miR-149 promotes human osteocarcinoma progression via targeting bone morphogenetic protein 9 (BMP9). Biotechnol Lett. 2018;40:47–55. https://doi.org/10.1007/s10529-017-2445-8.

    Article  CAS  PubMed  Google Scholar 

  226. Li X, Chen L, Wang W, Meng F-B, Zhao R-T, Chen Y. MicroRNA-150 inhibits cell invasion and migration and is downregulated in human osteosarcoma. Cytogenet Genome Res. 2015;146:124–35. https://doi.org/10.1159/000437379.

    Article  CAS  PubMed  Google Scholar 

  227. Qu Y, Pan S, Kang M, Dong R, Zhao J. MicroRNA-150 functions as a tumor suppressor in osteosarcoma by targeting IGF2BP1. Tumor Biol. 2016;37:5275–84. https://doi.org/10.1007/s13277-015-4389-8.

    Article  CAS  Google Scholar 

  228. Zhan C, Li C, Zhang H, Tang H, Ji F, Qiao S-C, Xu W-D, Wang Z-W. MicroRNA-150 upregulation reduces osteosarcoma cell invasion and metastasis by downregulating Ezrin. Oncol Lett. 2016;12:3457–62. https://doi.org/10.3892/ol.2016.5046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Wang L, Wang W, Li J, Chen S, Zhan R. MicroRNA-150 inhibits osteosarcoma cell proliferation by targeting RUNX2 gene. Zhong nan da xue xue bao Yi xue ban J Cent South Univ Med Sci. 2016;41:1285–90. https://doi.org/10.11817/j.issn.1672-7347.2016.12.006.

    Article  Google Scholar 

  230. Li C-H, Yu T-B, Qiu H-W, Zhao X, Zhou C-L, Qi C. miR-150 is downregulated in osteosarcoma and suppresses cell proliferation, migration and invasion by targeting ROCK1. Oncol Lett. 2017;13:2191–7. https://doi.org/10.3892/ol.2017.5709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Yuan G, Zhao Y, Wu D, Gao C. Mir-150 up-regulates Glut1 and increases glycolysis in osteosarcoma cells. Asian Pac J Cancer Prev. 2017;18:1127–31. https://doi.org/10.22034/APJCP.2017.18.4.1127.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Zhao X, Sun S, Xu J, Luo Y, Xin Y, Wang Y. MicroRNA-152 inhibits cell proliferation of osteosarcoma by directly targeting Wnt/β-catenin signaling pathway in a DKK1-dependent manner. Oncol Rep. 2018;40:767–74. https://doi.org/10.3892/or.2018.6456.

    Article  CAS  PubMed  Google Scholar 

  233. Ma C, Han J, Dong D, Wang N. MicroRNA-152 suppresses human osteosarcoma cell proliferation and invasion by targeting E2F transcription factor 3. Oncol Res. 2018;26:765–73. https://doi.org/10.3727/096504017X15021536183535.

    Article  PubMed  PubMed Central  Google Scholar 

  234. Niu G, Li B, Sun L, An C. MicroRNA-153 inhibits osteosarcoma cells proliferation and invasion by targeting TGF-β2. PLoS One. 2015;10:e0119225. https://doi.org/10.1371/journal.pone.0119225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Wang H, Yu Y, Fan S, Luo L. Knockdown of long noncoding RNA TUG1 inhibits the proliferation and cellular invasion of osteosarcoma cells by sponging miR-153. Oncol Res Feature Preclin Clin Cancer Ther. 2018;26:665–73. https://doi.org/10.3727/096504017X14908298412505.

    Article  Google Scholar 

  236. Zhou H, Zhang M, Yuan H, Zheng W, Meng C, Zhao D. MicroRNA-154 functions as a tumor suppressor in osteosarcoma by targeting Wnt5a. Oncol Rep. 2016;35:1851–8. https://doi.org/10.3892/or.2015.4495.

    Article  CAS  PubMed  Google Scholar 

  237. Lv H, Guo J, Li S, Jiang D. miR-155 inhibitor reduces the proliferation and migration in osteosarcoma MG-63 cells. Exp Ther Med. 2014;8:1575–80. https://doi.org/10.3892/etm.2014.1942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Wang C, Zhang X, Zhang C, Zhai F, Li Y, Huang Z. MicroRNA-155 targets MAP3K10 and regulates osteosarcoma cell growth. Pathol Res Pract. 2017;213:389–93. https://doi.org/10.1016/j.prp.2016.12.028.

    Article  CAS  PubMed  Google Scholar 

  239. Zhu Z-J, Huang P, Chong Y-X, Kang L-X, Huang X, Zhu Z-X, Nie L. MicroRNA-181a promotes proliferation and inhibits apoptosis by suppressing CFIm25 in osteosarcoma. Mol Med Rep. 2016;14:4271–8. https://doi.org/10.3892/mmr.2016.5741.

    Article  CAS  PubMed  Google Scholar 

  240. Hu J, Lv G, Zhou S, Zhou Y, Nie B, Duan H, Zhang Y, Yuan X. The downregulation of MiR-182 is associated with the growth and invasion of osteosarcoma cells through the regulation of TIAM1 expression. PLoS One. 2015;10:e0121175. https://doi.org/10.1371/journal.pone.0121175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Yang X, Wang L, Wang Q, Li L, Fu Y, Sun J. MiR-183 inhibits osteosarcoma cell growth and invasion by regulating LRP6-Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun. 2018;496:1197–203. https://doi.org/10.1016/j.bbrc.2018.01.170.

    Article  CAS  PubMed  Google Scholar 

  242. Yin GR, Wang Q, Zhang XB, Wang SJ. Regulatory role of microRNA184 in osteosarcoma cells. Genet Mol Res. 2015;14:14246–52. https://doi.org/10.4238/2015.November.13.8.

    Article  CAS  PubMed  Google Scholar 

  243. Du Z, Li F, Wang L, Huang H, Xu S. Regulatory effects of microRNA-184 on osteosarcoma via the Wnt/β-catenin signaling pathway. Mol Med Rep. 2018;18:1917–24. https://doi.org/10.3892/mmr.2018.9184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Xiao Q, Wei Z, Li Y, Zhou X, Chen J, Wang T, Shao G, Zhang M, Zhang Z. miR-186 functions as a tumor suppressor in osteosarcoma cells by suppressing the malignant phenotype and aerobic glycolysis. Oncol Rep. 2018;39:2703–10. https://doi.org/10.3892/or.2018.6394.

    Article  CAS  PubMed  Google Scholar 

  245. Xiao Y, Zhao Q, Du B, Chen H-Y, Zhou D-Z. MicroRNA-187 inhibits growth and metastasis of osteosarcoma by downregulating S100A4. Cancer Invest. 2018;36:1–9. https://doi.org/10.1080/07357907.2017.1415348.

    Article  CAS  PubMed  Google Scholar 

  246. Fei D, Zhao K, Yuan H, Xing J, Zhao D. MicroRNA-187 exerts tumor-suppressing functions in osteosarcoma by targeting ZEB2. Am J Cancer Res. 2016;6:2859–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Pan L, Meng L, Liang F, Cao L. miR-188 suppresses tumor progression by targeting SOX4 in pediatric osteosarcoma. Mol Med Rep. 2018;18:441–6. https://doi.org/10.3892/mmr.2018.8997.

    Article  CAS  PubMed  Google Scholar 

  248. Kang M, Xia P, Hou T, Qi Z, Liao S, Yang X. MicroRNA-190b inhibits tumor cell proliferation and induces apoptosis by regulating Bcl-2 in U2OS osteosarcoma cells. Pharmazie. 2017;72:279–82. https://doi.org/10.1691/ph.2017.6921.

    Article  CAS  PubMed  Google Scholar 

  249. Huang Y-Z, Zhang J, Shao H-Y, Chen J-P, Zhao H-Y. MicroRNA-191 promotes osteosarcoma cells proliferation by targeting checkpoint kinase 2. Tumour Biol. 2015;36:6095–101. https://doi.org/10.1007/s13277-015-3290-9.

    Article  CAS  PubMed  Google Scholar 

  250. Wang Y, Zhang S, Xu Y, Zhang Y, Guan H, Li X, Li Y, Wang Y. Upregulation of miR-192 inhibits cell growth and invasion and induces cell apoptosis by targeting TCF7 in human osteosarcoma. Tumour Biol. 2016;37:15211–20. https://doi.org/10.1007/s13277-016-5417-z.

    Article  CAS  PubMed  Google Scholar 

  251. Miao J, Wang W, Wu S, Zang X, Li Y, Wang J, Zhan R, Gao M, Hu M, Li J, Chen S. miR-194 suppresses proliferation and migration and promotes apoptosis of osteosarcoma cells by targeting CDH2. Cell Physiol Biochem. 2018;45:1966–74. https://doi.org/10.1159/000487973.

    Article  CAS  PubMed  Google Scholar 

  252. Qu Q, Chu X, Wang P. MicroRNA-195-5p suppresses osteosarcoma cell proliferation and invasion by suppressing naked cuticle homolog 1. Cell Biol Int. 2017;41:287–95. https://doi.org/10.1002/cbin.10723.

    Article  CAS  PubMed  Google Scholar 

  253. Shang Y, Wang L-Q, Guo Q-Y, Shi T-L. MicroRNA-196a overexpression promotes cell proliferation and inhibits cell apoptosis through PTEN/Akt/FOXO1 pathway. Int J Clin Exp Pathol. 2015;8:2461–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Zhang S, Zhao Y, Wang L. MicroRNA-198 inhibited tumorous behaviors of human osteosarcoma through directly targeting ROCK1. Biochem Biophys Res Commun. 2016. https://doi.org/10.1016/j.bbrc.2016.03.040.

    Article  PubMed  PubMed Central  Google Scholar 

  255. Li Y, Zeng C, Tu M, Jiang W, Dai Z, Hu Y, Deng Z, Xiao W. MicroRNA-200b acts as a tumor suppressor in osteosarcoma via targeting ZEB1. Onco Targ Ther. 2016;9:3101–11. https://doi.org/10.2147/OTT.S96561.

    Article  CAS  Google Scholar 

  256. Li X, Jiang H, Xiao L, Wang S, Zheng J. miR-200bc/429 inhibits osteosarcoma cell proliferation and invasion by targeting PMP22. Med Sci Monit. 2017;23:1001–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Sun Z, Zhang T, Hong H, Liu Q, Zhang H. miR-202 suppresses proliferation and induces apoptosis of osteosarcoma cells by downregulating Gli2. Mol Cell Biochem. 2014;397:277–83. https://doi.org/10.1007/s11010-014-2195-z.

    Article  CAS  PubMed  Google Scholar 

  258. Yang D, Liu G, Wang K. miR-203 acts as a tumor suppressor gene in osteosarcoma by regulating RAB22A. PLoS One. 2015;10:e0132225. https://doi.org/10.1371/journal.pone.0132225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Liu S, Feng P. MiR-203 determines poor outcome and suppresses tumor growth by targeting TBK1 in osteosarcoma. Cell Physiol Biochem. 2015;37:1956–66. https://doi.org/10.1159/000438556.

    Article  CAS  PubMed  Google Scholar 

  260. Lin W, Zhu X, Yang S, Chen X, Wang L, Huang Z, Ding Y, Huang L, Lv C. MicroRNA-203 inhibits proliferation and invasion, and promotes apoptosis of osteosarcoma cells by targeting Runt-related transcription factor 2. Biomed Pharmacother. 2017;91:1075–84. https://doi.org/10.1016/j.biopha.2017.05.034.

    Article  CAS  PubMed  Google Scholar 

  261. Shi Y, Huang J, Zhou J, Liu Y, Fu X, Li Y, Yin G, Wen J. MicroRNA-204 inhibits proliferation, migration, invasion and epithelial-mesenchymal transition in osteosarcoma cells via targeting Sirtuin 1. Oncol Rep. 2015;34:399–406. https://doi.org/10.3892/or.2015.3986.

    Article  CAS  PubMed  Google Scholar 

  262. Zhao R, He H, Zhu Y, Wan J, Li Y, Gao S, Zhang C. MiR-204/14-3-3ζ axis regulates osteosarcoma cell proliferation through SATA3 pathway. Pharmazie. 2017;72:593–8. https://doi.org/10.1692/ph.2017.7574.

    Article  CAS  PubMed  Google Scholar 

  263. Wang L, Shan M, Liu Y, Yang F, Qi H, Zhou L, Qiu L, Li Y. miR-205 suppresses the proliferative and migratory capacity of human osteosarcoma Mg-63 cells by targeting VEGFA. Onco Targ Ther. 2015;8:2635–42. https://doi.org/10.2147/OTT.S80088.

    Article  CAS  Google Scholar 

  264. Yang G, Zhang P, Lv A, Liu Y, Wang G. MiR-205 functions as a tumor suppressor via targeting TGF-α in osteosarcoma. Exp Mol Pathol. 2016;100:160–6. https://doi.org/10.1016/j.yexmp.2015.12.010.

    Article  CAS  PubMed  Google Scholar 

  265. Zhang C, Long F, Wan J, Hu Y, He H. MicroRNA-205 acts as a tumor suppressor in osteosarcoma via targeting RUNX2. Oncol Rep. 2016;35:3275–84. https://doi.org/10.3892/or.2016.4700.

    Article  CAS  PubMed  Google Scholar 

  266. Bao Y-P, Yi Y, Peng L-L, Fang J, Liu K-B, Li W-Z, Luo H-S. Roles of microRNA-206 in osteosarcoma pathogenesis and progression. Asian Pac J Cancer Prev. 2013;14:3751–5.

    PubMed  Google Scholar 

  267. Pan B-L, Tong Z-W, Wu L, Pan L, Li J-E, Huang Y-G, Li S-D, Du S-X, Li X-D. Effects of MicroRNA-206 on osteosarcoma cell proliferation, apoptosis, migration and invasion by targeting ANXA2 through the AKT signaling pathway. Cell Physiol Biochem. 2018;45:1410–22. https://doi.org/10.1159/000487567.

    Article  CAS  PubMed  Google Scholar 

  268. Jiang Z, Jiang C, Yu C, Fang J. MicroRNA-208b inhibits human osteosarcoma progression by targeting ROR2. Tumour Biol. 2017;39:1010428317705751. https://doi.org/10.1177/1010428317705751.

    Article  CAS  PubMed  Google Scholar 

  269. Liu C, Tang X. Downregulation of microRNA-210 inhibits osteosarcoma growth in vitro and in vivo. Mol Med Rep. 2015;12:3674–80. https://doi.org/10.3892/mmr.2015.3880.

    Article  CAS  PubMed  Google Scholar 

  270. Luo X-J, Tang D-G, Gao T-L, Zhang Y-L, Wang M, Quan Z-X, Chen J. MicroRNA-212 inhibits osteosarcoma cells proliferation and invasion by down-regulation of Sox4. Cell Physiol Biochem. 2014;34:2180–8. https://doi.org/10.1159/000369661.

    Article  CAS  PubMed  Google Scholar 

  271. Liu J, Chen B, Yue B, Yang J. MicroRNA-212 suppresses the proliferation and migration of osteosarcoma cells by targeting forkhead box protein A1. Exp Ther Med. 2016;12:4135–41. https://doi.org/10.3892/etm.2016.3880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Gao K, Yin J, Dong J. Deregulated WWOX is involved in a negative feedback loop with microRNA-214-3p in osteosarcoma. Int J Mol Med. 2016;38:1850–6. https://doi.org/10.3892/ijmm.2016.2800.

    Article  CAS  PubMed  Google Scholar 

  273. Xu Z, Wang T. miR-214 promotes the proliferation and invasion of osteosarcoma cells through direct suppression of LZTS1. Biochem Biophys Res Commun. 2014;449:190–5. https://doi.org/10.1016/j.bbrc.2014.04.140.

    Article  CAS  PubMed  Google Scholar 

  274. Zhu X-B, Zhang Z-C, Han G-S, Han J-Z, Qiu D-P. Overexpression of miR-214 promotes the progression of human osteosarcoma by regulating the Wnt/β-catenin signaling pathway. Mol Med Rep. 2017;15:1884–92. https://doi.org/10.3892/mmr.2017.6203.

    Article  CAS  PubMed  Google Scholar 

  275. Liu C-J, Yu K-L, Liu G-L, Tian D-H. MiR-214 promotes osteosarcoma tumor growth and metastasis by decreasing the expression of PTEN. Mol Med Rep. 2015;12:6261–6. https://doi.org/10.3892/mmr.2015.4197.

    Article  CAS  PubMed  Google Scholar 

  276. Zhang M, Wang D, Zhu T, Yin R. miR-214-5p targets ROCK1 and suppresses proliferation and invasion of human osteosarcoma cells. Oncol Res. 2017;25:75–81. https://doi.org/10.3727/096504016X14719078133401.

    Article  PubMed  PubMed Central  Google Scholar 

  277. Ji Q, Xu X, Li L, Goodman SB, Bi W, Xu M, Xu Y, Fan Z, Maloney WJ, Ye Q, Wang Y. miR-216a inhibits osteosarcoma cell proliferation, invasion and metastasis by targeting CDK14. Cell Death Dis. 2017;8:e3103. https://doi.org/10.1038/cddis.2017.499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Wei R, Deng Z, Su J. miR-217 targeting Wnt5a in osteosarcoma functions as a potential tumor suppressor. Biomed Pharmacother. 2015;72:158–64. https://doi.org/10.1016/j.biopha.2015.04.012.

    Article  CAS  PubMed  Google Scholar 

  279. Zhu J, Liu F, Wu Q, Liu X. MiR-221 increases osteosarcoma cell proliferation, invasion and migration partly through the downregulation of PTEN. Int J Mol Med. 2015;36:1377–83. https://doi.org/10.3892/ijmm.2015.2352.

    Article  CAS  PubMed  Google Scholar 

  280. Li G, Cai M, Fu D, Chen K, Sun M, Cai Z, Cheng B. Heat shock protein 90B1 plays an oncogenic role and is a target of microRNA-223 in human osteosarcoma. Cell Physiol Biochem. 2012;30:1481–90. https://doi.org/10.1159/000343336.

    Article  CAS  PubMed  Google Scholar 

  281. Xu J, Yao Q, Hou Y, Xu M, Liu S, Yang L, Zhang L, Xu H. MiR-223/Ect2/p21 signaling regulates osteosarcoma cell cycle progression and proliferation. Biomed Pharmacother. 2013;67:381–6. https://doi.org/10.1016/j.biopha.2013.03.013.

    Article  CAS  PubMed  Google Scholar 

  282. Zhang H, Yin Z, Ning K, Wang L, Guo R, Ji Z. Prognostic value of microRNA-223/epithelial cell transforming sequence 2 signaling in patients with osteosarcoma. Hum Pathol. 2014;45:1430–6. https://doi.org/10.1016/j.humpath.2014.02.018.

    Article  CAS  PubMed  Google Scholar 

  283. Geng S, Gu L, Ju F, Zhang H, Wang Y, Tang H, Bi Z, Yang C. MicroRNA-224 promotes the sensitivity of osteosarcoma cells to cisplatin by targeting Rac1. J Cell Mol Med. 2016;20:1611–9. https://doi.org/10.1111/jcmm.12852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Xue Z, Zhao J, Niu L, An G, Guo Y, Ni L. Up-regulation of MiR-300 promotes proliferation and invasion of osteosarcoma by targeting BRD7. PLoS One. 2015;10:e0127682. https://doi.org/10.1371/journal.pone.0127682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Jia J, Yin P, Han G, Xu M, Wang W, Bi W. MicroRNA-300 decreases cell viability, inhibits migration and promotes apoptosis of osteosarcoma cells via downregulation of Twist1. Mol Med Rep. 2017;16:3613–8. https://doi.org/10.3892/mmr.2017.7023.

    Article  CAS  PubMed  Google Scholar 

  286. Yang X, Cui Y, Yang F, Sun C, Gao X. MicroRNA-302a suppresses cell proliferation, migration and invasion in osteosarcoma by targeting ADAM9. Mol Med Rep. 2017;16:3565–72. https://doi.org/10.3892/mmr.2017.6975.

    Article  CAS  PubMed  Google Scholar 

  287. Wu H, Li W, Zhang M, Zhu S, Zhang D, Wang X. Inhibitory roles of miR-320 in osteosarcoma via regulating E2F1. J Cancer Res Ther. 2016;12:68–71. https://doi.org/10.4103/0973-1482.191635.

    Article  CAS  PubMed  Google Scholar 

  288. Chen H, Gao S, Cheng C. MiR-323a-3p suppressed the glycolysis of osteosarcoma via targeting LDHA. Hum Cell. 2018;31:300–9. https://doi.org/10.1007/s13577-018-0215-0.

    Article  PubMed  Google Scholar 

  289. Cao L, Wang J, Wang PQ. MiR-326 is a diagnostic biomarker and regulates cell survival and apoptosis by targeting Bcl-2 in osteosarcoma. Biomed Pharmacother. 2016;84:828–35. https://doi.org/10.1016/j.biopha.2016.10.008.

    Article  CAS  PubMed  Google Scholar 

  290. Jiang W, Liu J, Xu T, Yu X. MiR-329 suppresses osteosarcoma development by downregulating Rab10. FEBS Lett. 2016;590:2973–81. https://doi.org/10.1002/1873-3468.12337.

    Article  CAS  PubMed  Google Scholar 

  291. Liu Z-F, Liang Z-Q, Li L, Zhou Y-B, Wang Z-B, Gu W-F, Tu L-Y, Zhao J. MiR-335 functions as a tumor suppressor and regulates survivin expression in osteosarcoma. Eur Rev Med Pharmacol Sci. 2016;20:1251–7.

    PubMed  Google Scholar 

  292. Cao Y, Wu T, Li D, Hu J, Lu H. MicroRNA-336 directly targets Sox-2 in osteosarcoma to inhibit tumorigenesis. Mol Med Rep. 2017;15:4217–24. https://doi.org/10.3892/mmr.2017.6493.

    Article  CAS  PubMed  Google Scholar 

  293. Zhang S, Liu L, Lv Z, Li Q, Gong W, Wu H. MicroRNA-342-3p inhibits the proliferation, migration, and invasion of osteosarcoma cells by targeting astrocyte-elevated gene-1 (AEG-1). Oncol Res. 2017;25:1505–15. https://doi.org/10.3727/096504017X14886485417426.

    Article  PubMed  PubMed Central  Google Scholar 

  294. Gao J, Zhao P, Chen X, Wang W, Li Y, Xi W, Zhang W, Hu P, Wang T, Shan L. miR-365 inhibits proliferation and promotes apoptosis of SOSP9607 osteosarcoma cells. Xi bao yu fen zi mian yi xue za zhi Chin J Cell Mol Immunol. 2016;32:44–8.

    Google Scholar 

  295. Duan N, Hu X, Yang X, Cheng H, Zhang W. MicroRNA-370 directly targets FOXM1 to inhibit cell growth and metastasis in osteosarcoma cells. Int J Clin Exp Pathol. 2015;8:10250–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  296. He W, Feng L, Xia D, Han N. MiR-374a promotes the proliferation of human osteosarcoma by downregulating FOXO1 expression. Int J Clin Exp Med. 2015;8:3482–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  297. Lu T, Zhang C, Chai M-X, An Y-B, Jia J-L. MiR-374a promotes the proliferation of osteosarcoma cell proliferation by targeting Axin2. Int J Clin Exp Pathol. 2015;8:10776–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  298. Shi Z, Chu X, Wu Y, Wu J, Lu C, Lü R, Ding M, Mao N. MicroRNA-375 functions as a tumor suppressor in osteosarcoma by targeting PIK3CA. Tumour Biol. 2015;36:8579–84. https://doi.org/10.1007/s13277-015-3614-9.

    Article  CAS  PubMed  Google Scholar 

  299. Jin Y, Peng D, Shen Y, Xu M, Liang Y, Xiao B, Lu J. MicroRNA-376c inhibits cell proliferation and invasion in osteosarcoma by targeting to transforming growth factor-alpha. DNA Cell Biol. 2013;32:302–9. https://doi.org/10.1089/dna.2013.1977.

    Article  CAS  PubMed  Google Scholar 

  300. Zhou G, Jiang H, Ma L. MicroRNA-376a inhibits cell proliferation and invasion in osteosarcoma via directly targeting SATB1. Mol Med Rep. 2018;18:3521–8. https://doi.org/10.3892/mmr.2018.9344.

    Article  CAS  PubMed  Google Scholar 

  301. Wang L, Shao J, Zhang X, Xu M, Zhao J. microRNA-377 suppresses the proliferation of human osteosarcoma MG-63 cells by targeting CDK6. Tumour Biol. 2015;36:3911–7. https://doi.org/10.1007/s13277-014-3034-2.

    Article  CAS  PubMed  Google Scholar 

  302. Peng N, Miao Z, Wang L, Liu B, Wang G, Guo X. MiR-378 promotes the cell proliferation of osteosarcoma through down-regulating the expression of Kruppel-like factor 9. Biochem Cell Biol. 2018;96:515–21. https://doi.org/10.1139/bcb-2017-0186.

    Article  CAS  PubMed  Google Scholar 

  303. Li Z, Shen J, Chan MTV, Wu WKK. MicroRNA-379 suppresses osteosarcoma progression by targeting PDK1. J Cell Mol Med. 2017;21:315–23. https://doi.org/10.1111/jcmm.12966.

    Article  CAS  PubMed  Google Scholar 

  304. Xie X, Li Y-S, Xiao W-F, Deng Z-H, He H-B, Liu Q, Luo W. MicroRNA-379 inhibits the proliferation, migration and invasion of human osteosarcoma cells by targetting EIF4G2. Biosci Rep. 2017;37:BSR20160542. https://doi.org/10.1042/bsr20160542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Wang Y, Sun S, Xu J, Luo Y, Xin Y, Zhao X. MicroRNA-381 suppresses the proliferation of osteosarcoma cells through LRH-1/Wnt/β-catenin signaling pathway. Oncol Rep. 2018;39:589–96. https://doi.org/10.3892/or.2017.6129.

    Article  CAS  PubMed  Google Scholar 

  306. Zhang J, Hou W, Jia J, Zhao Y, Zhao B. MiR-409-3p regulates cell proliferation and tumor growth by targeting E74-like factor 2 in osteosarcoma. FEBS Open Bio. 2017;7:348–57. https://doi.org/10.1002/2211-5463.12177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Zhao D, Jia P, Wang W, Zhang G. VEGF-mediated suppression of cell proliferation and invasion by miR-410 in osteosarcoma. Mol Cell Biochem. 2015;400:87–95. https://doi.org/10.1007/s11010-014-2265-2.

    Article  CAS  PubMed  Google Scholar 

  308. Xu N, Yang W, Liu Y, Yan F, Yu Z. MicroRNA-411 promoted the osteosarcoma progression by suppressing MTSS1 expression. Environ Sci Pollut Res Int. 2018;25:12064–71. https://doi.org/10.1007/s11356-018-1331-9.

    Article  CAS  PubMed  Google Scholar 

  309. Zhou S, Wang B, Hu J, Zhou Y, Jiang M, Wu M, Qin L, Yang X. miR-421 is a diagnostic and prognostic marker in patients with osteosarcoma. Tumour Biol. 2016;37:9001–7. https://doi.org/10.1007/s13277-015-4578-5.

    Article  CAS  PubMed  Google Scholar 

  310. Liu M, Xiusheng H, Xiao X, Wang Y. Overexpression of miR-422a inhibits cell proliferation and invasion, and enhances chemosensitivity in osteosarcoma cells. Oncol Rep. 2016;36:3371–8. https://doi.org/10.3892/or.2016.5182.

    Article  CAS  PubMed  Google Scholar 

  311. Deng Y, Luan F, Zeng L, Zhang Y, Ma K. MiR-429 suppresses the progression and metastasis of osteosarcoma by targeting ZEB1. EXCLI J. 2017;16:618–27. https://doi.org/10.17179/excli2017-258.

    Article  PubMed  PubMed Central  Google Scholar 

  312. Wu X, Yan L, Liu Y, Xian W, Wang L, Ding X. MicroRNA-448 suppresses osteosarcoma cell proliferation and invasion through targeting EPHA7. PLoS One. 2017;12:e0175553. https://doi.org/10.1371/journal.pone.0175553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Jiang W, Wang S, Sun Y, Jiang Y, Yu T, Wang J. Overexpression of microRNA-448 inhibits osteosarcoma cell proliferation and invasion through targeting of astrocyte elevated gene-1. Mol Med Rep. 2017;16:5713–21. https://doi.org/10.3892/mmr.2017.7249.

    Article  CAS  PubMed  Google Scholar 

  314. Li Z, Wu S, Lv S, Wang H, Wang Y, Guo Q. Suppression of liver receptor homolog-1 by microRNA-451 represses the proliferation of osteosarcoma cells. Biochem Biophys Res Commun. 2015;461:450–5. https://doi.org/10.1016/j.bbrc.2015.04.013.

    Article  CAS  PubMed  Google Scholar 

  315. Liu W, Liu S-Y, He Y-B, Huang R-L, Deng S-Y, Ni G-X, Yu B. MiR-451 suppresses proliferation, migration and promotes apoptosis of the human osteosarcoma by targeting macrophage migration inhibitory factor. Biomed Pharmacother. 2017;87:621–7. https://doi.org/10.1016/j.biopha.2016.12.121.

    Article  CAS  PubMed  Google Scholar 

  316. Li R, Wang L. Decreased microRNA-452 expression and its prognostic significance in human osteosarcoma. World J Surg Oncol. 2016;14:150. https://doi.org/10.1186/s12957-016-0900-y.

    Article  PubMed  PubMed Central  Google Scholar 

  317. Niu G, Li B, Sun J, Sun L. miR-454 is down-regulated in osteosarcomas and suppresses cell proliferation and invasion by directly targeting c-Met. Cell Prolif. 2015;48:348–55. https://doi.org/10.1111/cpr.12187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. He M, Wang G, Jiang L, Qiu C, Li B, Wang J, Fu Y. miR-486 suppresses the development of osteosarcoma by regulating PKC-δ pathway. Int J Oncol. 2017;50:1590–600. https://doi.org/10.3892/ijo.2017.3928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Zhou C, Tan W, Lv H, Gao F, Sun J. Hypoxia-inducible microRNA-488 regulates apoptosis by targeting Bim in osteosarcoma. Cell Oncol (Dordr). 2016;39:463–71. https://doi.org/10.1007/s13402-016-0288-2.

    Article  CAS  Google Scholar 

  320. Liu W, Xu G, Liu H, Li T. MicroRNA-490-3p regulates cell proliferation and apoptosis by targeting HMGA2 in osteosarcoma. FEBS Lett. 2015;589:3148–53. https://doi.org/10.1016/j.febslet.2015.08.034.

    Article  CAS  PubMed  Google Scholar 

  321. Duan J, Liu J, Liu Y, Huang B, Rao L. miR-491-3p suppresses the growth and invasion of osteosarcoma cells by targeting TSPAN1. Mol Med Rep. 2017;16:5568–74. https://doi.org/10.3892/mmr.2017.7256.

    Article  CAS  PubMed  Google Scholar 

  322. Yin Z, Ding H, He E, Chen J, Li M. Up-regulation of microRNA-491-5p suppresses cell proliferation and promotes apoptosis by targeting FOXP4 in human osteosarcoma. Cell Prolif. 2017;50:e12308. https://doi.org/10.1111/cpr.12308.

    Article  CAS  Google Scholar 

  323. Song X, Xie Y, Liu Y, Shao M, Yang W. MicroRNA-492 overexpression exerts suppressive effects on the progression of osteosarcoma by targeting PAK7. Int J Mol Med. 2017;40:891–7. https://doi.org/10.3892/ijmm.2017.3046.

    Article  CAS  PubMed  Google Scholar 

  324. Zhi X, Wu K, Yu D, Wang Y, Yu Y, Yan P, Lv G. MicroRNA-494 inhibits proliferation and metastasis of osteosarcoma through repressing insulin receptor substrate-1. Am J Transl Res. 2016;8:3439–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  325. Yuan W, Wang D, Liu Y, Tian D, Wang Y, Zhang R, Yin L, Deng Z. miR-494 inhibits cell proliferation and metastasis via targeting of CDK6 in osteosarcoma. Mol Med Rep. 2017;16:8627–34. https://doi.org/10.3892/mmr.2017.7709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Jiang W, Zheng J, Yu T, Wang J. Overexpression of microRNA-495 suppresses the proliferation and invasion and induces the apoptosis of osteosarcoma cells by targeting high-mobility group nucleosome-binding domain 5. Oncol Rep. 2017;38:1099–107. https://doi.org/10.3892/or.2017.5715.

    Article  CAS  PubMed  Google Scholar 

  327. Shao X, Miao M, Xue JJ, Xue JJ, Ji X, Zhu H. The down-regulation of MicroRNA-497 contributes to cell growth and cisplatin resistance through PI3K/Akt pathway in osteosarcoma. Cell Physiol Biochem. 2015;36:2051–62. https://doi.org/10.1159/000430172.

    Article  CAS  PubMed  Google Scholar 

  328. Ruan W, Wang P, Feng S, Xue Y, Zhang B. MicroRNA-497 inhibits cell proliferation, migration, and invasion by targeting AMOT in human osteosarcoma cells. Oncol Targ Ther. 2016;9:303. https://doi.org/10.2147/OTT.S95204.

    Article  CAS  Google Scholar 

  329. Ge L, Zheng B, Li M, Niu L, Li Z. MicroRNA-497 suppresses osteosarcoma tumor growth in vitro and in vivo. Oncol Lett. 2016;11:2207–12. https://doi.org/10.3892/ol.2016.4162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Gui ZL, Wu TL, Zhao GC, Lin ZX, Xu HG. MicroRNA-497 suppress osteosarcoma by targeting MAPK/Erk pathway. Bratisl Lek Listy. 2017;118:449–52. https://doi.org/10.4149/BLL_2017_087.

    Article  CAS  PubMed  Google Scholar 

  331. Liu Q, Wang H, Singh A, Shou F. Expression and function of microRNA-497 in human osteosarcoma. Mol Med Rep. 2016;14:439–45. https://doi.org/10.3892/mmr.2016.5256.

    Article  CAS  PubMed  Google Scholar 

  332. Sun Z, Li A, Yu Z, Li X, Guo X, Chen R. MicroRNA-497-5p suppresses tumor cell growth of osteosarcoma by targeting ADP ribosylation factor-like protein 2. Cancer Biother Radiopharm. 2017;32:371–8. https://doi.org/10.1089/cbr.2017.2268.

    Article  CAS  PubMed  Google Scholar 

  333. Chong Y, Zhang J, Guo X, Li G, Zhang S, Li C, Jiao Z, Shao M. MicroRNA-503 acts as a tumor suppressor in osteosarcoma by targeting L1CAM. PLoS One. 2014;9:e114585. https://doi.org/10.1371/journal.pone.0114585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Wu B, Bi W. Role of microRNA-503 in the suppression of osteosarcoma cell proliferation and migration via modulation of fibroblast growth factor 2. Mol Med Rep. 2015;12:7433–8. https://doi.org/10.3892/mmr.2015.4399.

    Article  CAS  PubMed  Google Scholar 

  335. Cai Q, Zeng S, Dai X, Wu J, Ma W. miR-504 promotes tumour growth and metastasis in human osteosarcoma by targeting TP53INP1. Oncol Rep. 2017;38:2993–3000. https://doi.org/10.3892/or.2017.5983.

    Article  CAS  PubMed  Google Scholar 

  336. Liu Y-J, Li W, Chang F, Liu J-N, Lin J-X, Chen D-X. MicroRNA-505 is downregulated in human osteosarcoma and regulates cell proliferation, migration and invasion. Oncol Rep. 2018;39:491–500. https://doi.org/10.3892/or.2017.6142.

    Article  CAS  PubMed  Google Scholar 

  337. Yao J, Qin L, Miao S, Wang X, Wu X. Overexpression of miR-506 suppresses proliferation and promotes apoptosis of osteosarcoma cells by targeting astrocyte elevated gene-1. Oncol Lett. 2016;12:1840–8. https://doi.org/10.3892/ol.2016.4827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Hu M, Yuan X, Liu Y, Tang S, Miao J, Zhou Q, Chen S. IL-1β-induced NF-κB activation down-regulates miR-506 expression to promotes osteosarcoma cell growth through JAG1. Biomed Pharmacother. 2017;95:1147–55. https://doi.org/10.1016/j.biopha.2017.08.120.

    Article  CAS  PubMed  Google Scholar 

  339. Wang X, Xu Y, Chen X, Xiao J. Dexmedetomidine inhibits osteosarcoma cell proliferation and migration, and promotes apoptosis by regulating miR-520a-3p. Oncol Res Featur Preclin Clin Cancer Ther. 2018;26:495–502. https://doi.org/10.3727/096504017x14982578608217.

    Article  Google Scholar 

  340. Jin H, Wang W. MicroRNA-539 suppresses osteosarcoma cell invasion and migration in vitro and targeting Matrix metallopeptidase-8. Int J Clin Exp Pathol. 2015;8:8075–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  341. Luo Z, Li D, Luo X, Li L, Gu S, Yu L, Ma Y. Decreased expression of miR-548c-3p in osteosarcoma contributes to cell proliferation via targeting ITGAV. Cancer Biother Radiopharm. 2016;31:153–8. https://doi.org/10.1089/cbr.2016.1995.

    Article  CAS  PubMed  Google Scholar 

  342. Ru N, Zhang F, Liang J, Du Y, Wu W, Wang F, Liu X. MiR-564 is down-regulated in osteosarcoma and inhibits the proliferation of osteosarcoma cells via targeting Akt. Gene. 2018;645:163–9. https://doi.org/10.1016/j.gene.2017.12.028.

    Article  CAS  PubMed  Google Scholar 

  343. Yang L, Liu Z-M, Rao Y-W, Cui S-Q, Wang H, Jia X-J. Downregulation of microRNA-586 inhibits proliferation, invasion and metastasis and promotes apoptosis in human osteosarcoma U2-OS cell line. Cytogenet Genome Res. 2015;146:268–78. https://doi.org/10.1159/000441073.

    Article  CAS  PubMed  Google Scholar 

  344. Cai W, Xu Y, Yin J, Zuo W, Su Z. miR-590-5p suppresses osteosarcoma cell proliferation and invasion via targeting KLF5. Mol Med Rep. 2018;18:2328–34. https://doi.org/10.3892/mmr.2018.9173.

    Article  CAS  PubMed  Google Scholar 

  345. Ma C, Zhan C, Yuan H, Cui Y, Zhang Z. MicroRNA-603 functions as an oncogene by suppressing BRCC2 protein translation in osteosarcoma. Oncol Rep. 2016;35:3257–64. https://doi.org/10.3892/or.2016.4718.

    Article  CAS  PubMed  Google Scholar 

  346. Li X, Sun X, Wu J, Li Z. MicroRNA-613 suppresses proliferation, migration and invasion of osteosarcoma by targeting c-MET. Am J Cancer Res. 2016;6:2869–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  347. Luo Z, Wu G, Zhang D, Liu J, Ran R. microRNA-625 targets Yes-associated protein 1 to suppress cell proliferation and invasion of osteosarcoma. Mol Med Rep. 2017;17:2005–11. https://doi.org/10.3892/mmr.2017.8079.

    Article  CAS  PubMed  Google Scholar 

  348. Tian L, Guo Z, Wang H, Liu X. MicroRNA-635 inhibits the malignancy of osteosarcoma by inducing apoptosis. Mol Med Rep. 2017;16:4829–34. https://doi.org/10.3892/mmr.2017.7127.

    Article  CAS  PubMed  Google Scholar 

  349. Wang X-X, Liu J, Tang Y-M, Hong L, Zeng Z, Tan G-H. MicroRNA-638 inhibits cell proliferation by targeting suppress PIM1 expression in human osteosarcoma. Tumour Biol. 2017;37:16367–75. https://doi.org/10.1007/s13277-016-5379-1.

    Article  CAS  Google Scholar 

  350. Wang H, Xing D, Ren D, Feng W, Chen Y, Zhao Z, Xiao Z, Peng Z. MicroRNA-643 regulates the expression of ZEB1 and inhibits tumorigenesis in osteosarcoma. Mol Med Rep. 2017;16:5157–64. https://doi.org/10.3892/mmr.2017.7273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Zhang P, Gao H, Li Q, Chen X, Wu X. Downregulation of microRNA-660 inhibits cell proliferation and invasion in osteosarcoma by directly targeting forkhead box O1. Mol Med Rep. 2018;18:2433–40. https://doi.org/10.3892/mmr.2018.9165.

    Article  CAS  PubMed  Google Scholar 

  352. Fan L, Zhu C, Qiu R, Zan P, Zheng Z, Xu T, Li G. MicroRNA-661 enhances TRAIL or STS induced osteosarcoma cell apoptosis by modulating the expression of cytochrome c1. Cell Physiol Biochem. 2017;41:1935–46. https://doi.org/10.1159/000472380.

    Article  CAS  PubMed  Google Scholar 

  353. Chen B, Bao Y, Chen X, Yi J, Liu S, Fang Z, Zheng S, Chen J. Mir-664 promotes osteosarcoma cells proliferation via downregulating of FOXO4. Biomed Pharmacother. 2015;75:1–7. https://doi.org/10.1016/j.biopha.2015.08.012.

    Article  CAS  PubMed  Google Scholar 

  354. Dong C, Du Q, Wang Z, Wang Y, Wu S, Wang A. MicroRNA-665 suppressed the invasion and metastasis of osteosarcoma by directly inhibiting RAB23. Am J Transl Res. 2016;8:4975–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  355. Ghosh T, Varshney A, Kumar P, Kaur M, Kumar V, Shekhar R, Devi R, Priyanka P, Khan MM, Saxena S. MicroRNA-874-mediated inhibition of the major G1/S phase cyclin, CCNE1, is lost in osteosarcomas. J Biol Chem. 2017;292:21264–81. https://doi.org/10.1074/jbc.M117.808287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Dong D, Gong Y, Zhang D, Bao H, Gu G. miR-874 suppresses the proliferation and metastasis of osteosarcoma by targeting E2F3. Tumour Biol. 2016;37:6447–55. https://doi.org/10.1007/s13277-015-4527-3.

    Article  CAS  PubMed  Google Scholar 

  357. Zhao F, Lv J, Gan H, Li Y, Wang R, Zhang H, Wu Q, Chen Y. MiRNA profile of osteosarcoma with CD117 and stro-1 expression: miR-1247 functions as an onco-miRNA by targeting MAP3 K9. Int J Clin Exp Pathol. 2015;8:1451–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  358. Yuan H, Gao Y. MicroRNA-1908 is upregulated in human osteosarcoma and regulates cell proliferation and migration by repressing PTEN expression. Oncol Rep. 2015. https://doi.org/10.3892/or.2015.4242.

    Article  PubMed  PubMed Central  Google Scholar 

  359. Kim HR, Shin CH, Lee H, Choi KH, Nam D-H, Ohn T, Kim HH. MicroRNA-1908-5p contributes to the oncogenic function of the splicing factor SRSF3. Oncotarget. 2017;8:8342–55. https://doi.org/10.18632/oncotarget.14184.

    Article  PubMed  Google Scholar 

  360. Xu H, Liu X, Zhao J. Down-regulation of miR-3928 promoted osteosarcoma growth. Cell Physiol Biochem. 2014;33:1547–56. https://doi.org/10.1159/000358718.

    Article  CAS  PubMed  Google Scholar 

  361. Galtsidis S, Logotheti S, Pavlopoulou A, Zampetidis CP, Papachristopoulou G, Scorilas A, Vojtesek B, Gorgoulis V, Zoumpourlis V. Unravelling a p73-regulated network: the role of a novel p73-dependent target, MIR3158, in cancer cell migration and invasiveness. Cancer Lett. 2017;388:96–106. https://doi.org/10.1016/j.canlet.2016.11.036.

    Article  CAS  PubMed  Google Scholar 

  362. Shu Y, Ye W, Gu YL, Sun P. Blockade of miR-663b inhibits cell proliferation and induces apoptosis in osteosarcoma via regulating TP73 expression. Bratisl Lek Listy. 2018;119:41–6. https://doi.org/10.4149/BLL_2018_009.

    Article  CAS  PubMed  Google Scholar 

  363. Shen S, Huang K, Wu Y, Ma Y, Wang J, Qin F, Ma J. A miR-135b-TAZ positive feedback loop promotes epithelial-mesenchymal transition (EMT) and tumorigenesis in osteosarcoma. Cancer Lett. 2017;407:32–44. https://doi.org/10.1016/j.canlet.2017.08.005.

    Article  CAS  PubMed  Google Scholar 

  364. Guo X, Zhang J, Pang J, He S, Li G, Chong Y, Li C, Jiao Z, Zhang S, Shao M. MicroRNA-503 represses epithelial-mesenchymal transition and inhibits metastasis of osteosarcoma by targeting c-myb. Tumour Biol. 2016;37:9181–7. https://doi.org/10.1007/s13277-016-4797-4.

    Article  CAS  PubMed  Google Scholar 

  365. Huang J, Zhao X. Efficacy of three prognostic scoring systems on evaluating the prognosis for patients with chronic myeloid leukemia. Zhong nan da xue xue bao Yi xue ban J Cent South Univ Med Sci. 2016;41:809–14. https://doi.org/10.11817/j.issn.1672-7347.2016.08.006.

    Article  Google Scholar 

  366. Duan G, Ren C, Zhang Y, Feng S. MicroRNA-26b inhibits metastasis of osteosarcoma via targeting CTGF and Smad1. Tumour Biol. 2015;36:6201–9. https://doi.org/10.1007/s13277-015-3305-6.

    Article  CAS  PubMed  Google Scholar 

  367. Wu Y, He H, Wu B, Wen J, Guo Z, Luo Y, Cao G. miR-125b suppresses the aerobic glycolysis of osteosarcoma HOS cells by downregulating the expression of hexokinase-2. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2017;33:1365–70.

    PubMed  Google Scholar 

  368. Zhang H, Guo X, Feng X, Wang T, Hu Z, Que X, Tian Q, Zhu T, Guo G, Huang W, Li X. MiRNA-543 promotes osteosarcoma cell proliferation and glycolysis by partially suppressing PRMT9 and stabilizing HIF-1α protein. Oncotarget. 2017;8:2342–55. https://doi.org/10.18632/oncotarget.13672.

    Article  PubMed  Google Scholar 

  369. Song YD, Li DD, Guan Y, Wang YL, Zheng J. miR-214 modulates cisplatin sensitivity of osteosarcoma cells through regulation of anaerobic glycolysis. Cell Mol Biol. 2017;63:75–9. https://doi.org/10.14715/cmb/2017.63.9.14.

    Article  PubMed  Google Scholar 

  370. Zhou Y, Huang Z, Wu S, Zang X, Liu M, Shi J. miR-33a is up-regulated in chemoresistant osteosarcoma and promotes osteosarcoma cell resistance to cisplatin by down-regulating TWIST. J Exp Clin Cancer Res. 2014;33:12. https://doi.org/10.1186/1756-9966-33-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. He H, Ni J, Huang J. Molecular mechanisms of chemoresistance in osteosarcoma (Review). Oncol Lett. 2014;7:1352–62. https://doi.org/10.3892/ol.2014.1935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Duan Z, Gao Y, Shen J, Choy E, Cote G, Harmon D, Bernstein K, Lozano-Calderon S, Mankin H, Hornicek FJ. miR-15b modulates multidrug resistance in human osteosarcoma in vitro and in vivo. Mol Oncol. 2017;11:151–66. https://doi.org/10.1002/1878-0261.12015.

    Article  CAS  PubMed  Google Scholar 

  373. Xie B, Li Y, Zhao R, Xu Y, Wu Y, Wang J, Xia D, Han W, Chen D. Identification of key genes and miRNAs in osteosarcoma patients with chemoresistance by bioinformatics analysis. Biomed Res Int. 2018;2018:4761064. https://doi.org/10.1155/2018/4761064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  374. Song B, Wang Y, Xi Y, Kudo K, Bruheim S, Botchkina GI, Gavin E, Wan Y, Formentini A, Kornmann M, Fodstad O, Ju J. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene. 2009;28:4065–74. https://doi.org/10.1038/onc.2009.274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Chen S-M, Chou W-C, Hu L-Y, Hsiung C-N, Chu H-W, Huang Y-L, Hsu H-M, Yu J-C, Shen C-Y. The effect of MicroRNA-124 overexpression on anti-tumor drug sensitivity. PLoS One. 2015;10:e0128472. https://doi.org/10.1371/journal.pone.0128472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Meng Y, Gao R, Ma J, Zhao J, Xu E, Wang C, Zhou X. MicroRNA-140-5p regulates osteosarcoma chemoresistance by targeting HMGN5 and autophagy. Sci Rep. 2017;7:416. https://doi.org/10.1038/s41598-017-00405-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Xu E, Zhao J, Ma J, Wang C, Zhang C, Jiang H, Cheng J, Gao R, Zhou X. miR-146b-5p promotes invasion and metastasis contributing to chemoresistance in osteosarcoma by targeting zinc and ring finger 3. Oncol Rep. 2016;35:275–83. https://doi.org/10.3892/or.2015.4393.

    Article  CAS  PubMed  Google Scholar 

  378. Pu Y, Zhao F, Li Y, Cui M, Wang H, Meng X, Cai S. The miR-34a-5p promotes the multi-chemoresistance of osteosarcoma via repression of the AGTR1 gene. BMC Cancer. 2017;17:45. https://doi.org/10.1186/s12885-016-3002-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  379. Pu Y, Zhao F, Wang H, Cai S. MiR-34a-5p promotes multi-chemoresistance of osteosarcoma through down-regulation of the DLL1 gene. Sci Rep. 2017;7:44218. https://doi.org/10.1038/srep44218.

    Article  PubMed  PubMed Central  Google Scholar 

  380. Pu Y, Yi Q, Zhao F, Wang H, Cai W, Cai S. MiR-20a-5p represses multi-drug resistance in osteosarcoma by targeting the KIF26B gene. Cancer Cell Int. 2016;16:64. https://doi.org/10.1186/s12935-016-0340-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Yuan J, Chen L, Chen X, Sun W, Zhou X. Identification of serum microRNA-21 as a biomarker for chemosensitivity and prognosis in human osteosarcoma. J Int Med Res. 2012;40:2090–7. https://doi.org/10.1177/030006051204000606.

    Article  CAS  PubMed  Google Scholar 

  382. Zhao G, Cai C, Yang T, Qiu X, Liao B, Li W, Ji Z, Zhao J, Zhao H, Guo M, Ma Q, Xiao C, Fan Q, Ma B. MicroRNA-221 induces cell survival and cisplatin resistance through PI3K/Akt pathway in human osteosarcoma. PLoS One. 2013;8:e53906. https://doi.org/10.1371/journal.pone.0053906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Jacques C, Calleja LR, Baud’huin M, Quillard T, Heymann D, Lamoureux F, Ory B. miRNA-193a-5p repression of p73 controls Cisplatin chemoresistance in primary bone tumors. Oncotarget. 2016;7:54503–14. https://doi.org/10.18632/oncotarget.10950.

    Article  PubMed  PubMed Central  Google Scholar 

  384. Song B, Wang Y, Titmus MA, Botchkina G, Formentini A, Kornmann M, Ju J. Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells. Mol Cancer. 2010;9:96. https://doi.org/10.1186/1476-4598-9-96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  385. Zhang Y, Hu H, Song L, Cai L, Wei R, Jin W. Epirubicin-mediated expression of miR-302b is involved in osteosarcoma apoptosis and cell cycle regulation. Toxicol Lett. 2013;222:1–9. https://doi.org/10.1016/j.toxlet.2013.06.242.

    Article  CAS  PubMed  Google Scholar 

  386. Yang S-F, Lee W-J, Tan P, Tang C-H, Hsiao M, Hsieh F-K, Chien M-H. Upregulation of miR-328 and inhibition of CREB-DNA-binding activity are critical for resveratrol-mediated suppression of matrix metalloproteinase-2 and subsequent metastatic ability in human osteosarcomas. Oncotarget. 2015;6:2736–53. https://doi.org/10.18632/oncotarget.3088.

    Article  PubMed  Google Scholar 

  387. Pu Y, Zhao F, Wang H, Cai W, Gao J, Li Y, Cai S. MiR-34a-5p promotes the multi-drug resistance of osteosarcoma by targeting the CD117 gene. Oncotarget. 2016;7:28420–34. https://doi.org/10.18632/oncotarget.8546.

    Article  PubMed  PubMed Central  Google Scholar 

  388. Cai HH, Lin L, Cai HH, Tang M, Wang Z. Prognostic evaluation of microRNA-210 expression in pediatric osteosarcoma. Med Oncol. 2013;30:499. https://doi.org/10.1007/s12032-013-0499-6.

    Article  CAS  PubMed  Google Scholar 

  389. Gao Y, Feng Y, Shen JK, Lin M, Choy E, Cote GM, Harmon DC, Mankin HJ, Hornicek FJ, Duan Z. CD44 is a direct target of miR-199a-3p and contributes to aggressive progression in osteosarcoma. Sci Rep. 2015;5:11365. https://doi.org/10.1038/srep11365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  390. Zhang Y, Duan G, Feng S. MicroRNA-301a modulates doxorubicin resistance in osteosarcoma cells by targeting AMP-activated protein kinase alpha 1. Biochem Biophys Res Commun. 2015;459:367–73. https://doi.org/10.1016/j.bbrc.2015.02.101.

    Article  CAS  PubMed  Google Scholar 

  391. Zhao Y, Tu M-J, Yu Y-F, Wang W-P, Chen Q-X, Qiu J-X, Yu A-MA-X, Yu A-MA-X. Combination therapy with bioengineered miR-34a prodrug and doxorubicin synergistically suppresses osteosarcoma growth. Biochem Pharmacol. 2015;98:602–13. https://doi.org/10.1016/j.bcp.2015.10.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  392. Lin Z, Song D, Wei H, Yang X, Liu T, Yan W, Xiao J. TGF-β1-induced miR-202 mediates drug resistance by inhibiting apoptosis in human osteosarcoma. J Cancer Res Clin Oncol. 2016. https://doi.org/10.1007/s00432-015-2028-9.

    Article  PubMed  PubMed Central  Google Scholar 

  393. Sun Y, He N, Dong Y, Jiang C. MiR-24-BIM-Smac/DIABLO axis controls the sensitivity to doxorubicin treatment in osteosarcoma. Sci Rep. 2016;6:34238. https://doi.org/10.1038/srep34238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  394. Chen R, Li X, He B, Hu W. MicroRNA-410 regulates autophagy-related gene ATG16L1 expression and enhances chemosensitivity via autophagy inhibition in osteosarcoma. Mol Med Rep. 2017;15:1326–34. https://doi.org/10.3892/mmr.2017.6149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  395. Chen L, Jiang K, Jiang H, Wei P. miR-155 mediates drug resistance in osteosarcoma cells via inducing autophagy. Exp Ther Med. 2014;8:527–32. https://doi.org/10.3892/etm.2014.1752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  396. Wang L, Tang B, Han H, Mao D, Chen J, Zeng Y, Xiong M. miR-155 affects osteosarcoma MG-63 cell autophagy induced by adriamycin through regulating PTEN-PI3K/AKT/mTOR signaling pathway. Cancer Biother Radiopharm. 2018;33:32–8. https://doi.org/10.1089/cbr.2017.2306.

    Article  CAS  PubMed  Google Scholar 

  397. Ziyan W, Yang L. MicroRNA-21 regulates the sensitivity to cisplatin in a human osteosarcoma cell line. Irish J Med Sci (1971-). 2016;185:85–91. https://doi.org/10.1007/s11845-014-1225-x.

    Article  CAS  Google Scholar 

  398. Li X, Wang S, Chen Y, Liu G, Yang X. miR-22 targets the 3′ UTR of HMGB1 and inhibits the HMGB1-associated autophagy in osteosarcoma cells during chemotherapy. Tumour Biol. 2014;35:6021–8. https://doi.org/10.1007/s13277-014-1797-0.

    Article  CAS  PubMed  Google Scholar 

  399. Yoshida A, Fujiwara T, Uotani K, Morita T, Kiyono M, Yokoo S, Hasei J, Nakata E, Kunisada T, Ozaki T. Clinical and functional significance of intracellular and extracellular microRNA-25-3p in osteosarcoma. Acta Med Okayama. 2018;72:165–74. https://doi.org/10.18926/AMO/55857.

    Article  CAS  PubMed  Google Scholar 

  400. Osaki S, Tazawa H, Hasei J, Yamakawa Y, Omori T, Sugiu K, Komatsubara T, Fujiwara T, Sasaki T, Kunisada T, Yoshida A, Urata Y, Kagawa S, Ozaki T, Fujiwara T. Ablation of MCL1 expression by virally induced microRNA-29 reverses chemoresistance in human osteosarcomas. Sci Rep. 2016;6:28953. https://doi.org/10.1038/srep28953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  401. Xu R, Liu S, Chen H, Lao L. MicroRNA-30a downregulation contributes to chemoresistance of osteosarcoma cells through activating Beclin-1-mediated autophagy. Oncol Rep. 2016;35:1757–63. https://doi.org/10.3892/or.2015.4497.

    Article  CAS  PubMed  Google Scholar 

  402. Chen X, Peng D, Shen Y, Liu B, Zhou H, Tao H, Huang J. The potential combinational effect of miR-34a with celecoxib in osteosarcoma. Anticancer Drugs. 2017;28:888–97. https://doi.org/10.1097/CAD.0000000000000530.

    Article  CAS  PubMed  Google Scholar 

  403. Kubota D, Kosaka N, Fujiwara T, Yoshida A, Arai Y, Qiao Z, Takeshita F, Ochiya T, Kawai A, Kondo T. miR-125b and miR-100 are predictive biomarkers of response to induction chemotherapy in osteosarcoma. Sarcoma. 2016;2016:1390571. https://doi.org/10.1155/2016/1390571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  404. Jiang L, He A, He X, Tao C. MicroRNA-126 enhances the sensitivity of osteosarcoma cells to cisplatin and methotrexate. Oncol Lett. 2015;10:3769–78. https://doi.org/10.3892/ol.2015.3790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  405. Wei R, Cao G, Deng Z, Su J, Cai L. miR-140-5p attenuates chemotherapeutic drug-induced cell death by regulating autophagy through inositol 1,4,5-trisphosphate kinase 2 (IP3k2) in human osteosarcoma cells. Biosci Rep. 2016;36:e00392. https://doi.org/10.1042/bsr20160238.

    Article  PubMed  PubMed Central  Google Scholar 

  406. Lin B-C, Huang D, Yu C-Q, Mou Y, Liu Y-H, Zhang D-W, Shi F-J. MicroRNA-184 modulates doxorubicin resistance in osteosarcoma cells by targeting BCL2L1. Med Sci Monit. 2016;22:1761–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  407. Keremu A, Aini A, Maimaitirexiati Y, Liang Z, Aila P, Xierela P, Tusun A, Moming H, Yusufu A. Overcoming cisplatin resistance in osteosarcoma through the miR-199a-modulated inhibition of HIF-1α. Biosci Rep. 2017. https://doi.org/10.1042/bsr20170080.

    Article  Google Scholar 

  408. Tang Q, Yuan Q, Li H, Wang W, Xie G, Zhu K, Li D. miR-223/Hsp70/JNK/JUN/miR-223 feedback loop modulates the chemoresistance of osteosarcoma to cisplatin. Biochem Biophys Res Commun. 2018;497:827–34. https://doi.org/10.1016/j.bbrc.2018.02.091.

    Article  CAS  PubMed  Google Scholar 

  409. Guo X, Yu L, Zhang Z, Dai G, Gao T, Guo W. miR-335 negatively regulates osteosarcoma stem cell-like properties by targeting POU5F1. Cancer Cell Int. 2017;17:29. https://doi.org/10.1186/s12935-017-0398-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  410. Song L, Duan P, Gan Y, Li P, Zhao C, Xu J, Zhang Z, Zhou Q. MicroRNA-340-5p modulates cisplatin resistance by targeting LPAATβ in osteosarcoma. Braz J Med Biol Res. 2017;22:22. https://doi.org/10.1590/1414-431x20176359.

    Article  CAS  Google Scholar 

  411. Wang G-C, He Q-Y, Tong D-K, Wang C-F, Liu K, Ding C, Ji F, Zhang H. MiR-367 negatively regulates apoptosis induced by adriamycin in osteosarcoma cells by targeting KLF4. J bone Oncol. 2016;5:51–6. https://doi.org/10.1016/j.jbo.2016.02.002.

    Article  PubMed  PubMed Central  Google Scholar 

  412. Wang S-N, Luo S, Liu C, Piao Z, Gou W, Wang YY, Guan W, Li Q, Zou H, Yang Z-Z, Wang D, Wang YY, Xu M, Jin H, Xu C-X. miR-491 inhibits osteosarcoma lung metastasis and chemoresistance by targeting αB-crystallin. Mol Ther. 2017;25:2140–9. https://doi.org/10.1016/j.ymthe.2017.05.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  413. Iida K, Fukushi J-I, Matsumoto Y, Oda Y, Takahashi Y, Fujiwara T, Fujiwara-Okada Y, Hatano M, Nabashima A, Kamura S, Iwamoto Y. miR-125b develops chemoresistance in Ewing sarcoma/primitive neuroectodermal tumor. Cancer Cell Int. 2013;13:21. https://doi.org/10.1186/1475-2867-13-21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  414. Robin TP, Smith A, McKinsey E, Reaves L, Jedlicka P, Ford HL. EWS/FLI1 regulates EYA3 in Ewing sarcoma via modulation of miRNA-708, resulting in increased cell survival and chemoresistance. Mol Cancer Res. 2012;10:1098–108. https://doi.org/10.1158/1541-7786.MCR-12-0086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  415. Bharathy N, Berlow NE, Wang E, Abraham J, Settelmeyer TP, Hooper JE, Svalina MN, Ishikawa Y, Zientek K, Bajwa Z, Goros MW, Hernandez BS, Wolff JE, Rudek MA, Xu L, Anders NM, Pal R, Harrold AP, Davies AM, Ashok A, Bushby D, Mancini M, Noakes C, Goodwin NC, Ordentlich P, Keck J, Hawkins DS, Rudzinski ER, Chatterjee B, Bächinger HP, Barr FG, Liddle J, Garcia BA, Mansoor A, Perkins TJ, Vakoc CR, Michalek JE, Keller C. The HDAC3–SMARCA4–miR-27a axis promotes expression of the PAX3:FOXO1 fusion oncogene in rhabdomyosarcoma. Sci Signal. 2018;11:eaau7632. https://doi.org/10.1126/scisignal.aau7632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  416. Beccafico S, Morozzi G, Marchetti MC, Riccardi C, Sidoni A, Donato R, Sorci G. Artesunate induces ROS- and p38 MAPK-mediated apoptosis and counteracts tumor growth in vivo in embryonal rhabdomyosarcoma cells. Carcinogenesis. 2015;36:1071–83. https://doi.org/10.1093/carcin/bgv098.

    Article  CAS  PubMed  Google Scholar 

  417. Zhu K, Wang W. Green tea polyphenol EGCG suppresses osteosarcoma cell growth through upregulating miR-1. Tumour Biol. 2016;37:4373–82. https://doi.org/10.1007/s13277-015-4187-3.

    Article  CAS  PubMed  Google Scholar 

  418. Ying B, Huang H, Li H, Song M, Wu S, Ying H. Procaine inhibits proliferation and migration and promotes cell apoptosis in osteosarcoma cells by upregulation of MicroRNA-133b. Oncol Res. 2017;25:1463–70. https://doi.org/10.3727/096504017X14878518291077.

    Article  PubMed  PubMed Central  Google Scholar 

  419. Chang Y, Zhao Y, Gu W, Cao Y, Wang S, Pang J, Shi Y. Bufalin inhibits the differentiation and proliferation of cancer stem cells derived from primary osteosarcoma cells through Mir-148a. Cell Physiol Biochem. 2015;36:1186–96. https://doi.org/10.1159/000430289.

    Article  CAS  PubMed  Google Scholar 

  420. Yu D, An F, He X, Cao X. Curcumin inhibits the proliferation and invasion of human osteosarcoma cell line MG-63 by regulating miR-138. Int J Clin Exp Pathol. 2015;8:14946–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  421. Chen P, Wang H, Yang F, Chen H, He W, Wang J. Curcumin promotes osteosarcoma cell death by activating miR-125a/ERRα signal pathway. J Cell Biochem. 2017;118:74–81. https://doi.org/10.1002/jcb.25612.

    Article  CAS  PubMed  Google Scholar 

  422. Zhou Y, Zhao R, Tseng K, Li K, Lu Z, Liu Y, Han K, Gan Z, Lin S, Hu H, Min D. Sirolimus induces apoptosis and reverses multidrug resistance in human osteosarcoma cells in vitro via increasing microRNA-34b expression. Acta Pharmacol Sin. 2016;37:519–29. https://doi.org/10.1038/aps.2015.153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  423. Zhang J, Yang W, Zhou Y-B, Xiang Y-X, Wang L-S, Hu W-K, Wang W-J. Baicalein inhibits osteosarcoma cell proliferation and invasion through the miR-183/Ezrin pathway. Mol Med Rep. 2018;18:1104–12. https://doi.org/10.3892/mmr.2018.9036.

    Article  CAS  PubMed  Google Scholar 

  424. Sun T, Cheung KSC, Liu Z-L, Leung F, Lu WW. Matrix metallopeptidase 9 targeted by hsa-miR-494 promotes silybin-inhibited osteosarcoma. Mol Carcinog. 2018;57:262–71. https://doi.org/10.1002/mc.22753.

    Article  CAS  PubMed  Google Scholar 

  425. Yang J, Zou Y, Jiang D. Honokiol suppresses proliferation and induces apoptosis via regulation of the miR-21/PTEN/PI3K/AKT signaling pathway in human osteosarcoma cells. Int J Mol Med. 2018;41:1845–54. https://doi.org/10.3892/ijmm.2018.3433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  426. Jiang C, Fang X, Zhang H, Wang X, Li M, Jiang W, Tian F, Zhu L, Bian Z. Triptolide inhibits the growth of osteosarcoma by regulating microRNA-181a via targeting PTEN gene in vivo and vitro. Tumour Biol. 2017;39:1010428317697556. https://doi.org/10.1177/1010428317697556.

    Article  CAS  PubMed  Google Scholar 

  427. Zhang J, Sha J, Zhou Y, Han K, Wang Y, Su Y, Yin X, Hu H, Yao Y. Bufalin inhibits proliferation and induces apoptosis in osteosarcoma cells by downregulating MicroRNA-221. Evid Based Compl Alternat Med. 2016;2016:7319464. https://doi.org/10.1155/2016/7319464.

    Article  Google Scholar 

  428. Hu W, Xiao Z. Formononetin induces apoptosis of human osteosarcoma cell line U2OS by regulating the expression of Bcl-2, Bax and MiR-375 in vitro and in vivo. Cell Physiol Biochem. 2015;37:933–9. https://doi.org/10.1159/000430220.

    Article  CAS  PubMed  Google Scholar 

  429. Dai N, Qing Y, Cun Y, Zhong Z, Li C, Zhang S, Shan J, Yang X, Dai X, Cheng Y, Xiao H, Xu C, Li M, Wang D. miR-513a-5p regulates radiosensitivity of osteosarcoma by targeting human apurinic/apyrimidinic endonuclease. Oncotarget. 2018;9:25414–26. https://doi.org/10.18632/oncotarget.11003.

    Article  PubMed  Google Scholar 

  430. Yang Z, Wa Q-D, Lu C, Pan W, Lu Z-Μ, Ao J. miR-328-3p enhances the radiosensitivity of osteosarcoma and regulates apoptosis and cell viability via H2AX. Oncol Rep. 2018;39:545–53. https://doi.org/10.3892/or.2017.6112.

    Article  CAS  PubMed  Google Scholar 

  431. Xie C-H, Cao Y-M, Huang Y, Shi Q-W, Guo J-H, Fan Z-W, Li J-G, Chen B-W, Wu B-Y. Long non-coding RNA TUG1 contributes to tumorigenesis of human osteosarcoma by sponging miR-9-5p and regulating POU2F1 expression. Tumour Biol. 2016;37:15031–41. https://doi.org/10.1007/s13277-016-5391-5.

    Article  CAS  PubMed  Google Scholar 

  432. Wang Y, Yang T, Zhang Z, Lu M, Zhao W, Zeng X, Zhang W. Long non-coding RNA TUG1 promotes migration and invasion by acting as a ceRNA of miR-335-5p in osteosarcoma cells. Cancer Sci. 2017;108:859–67. https://doi.org/10.1111/cas.13201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  433. Cao J, Han X, Qi X, Jin X, Li X. TUG1 promotes osteosarcoma tumorigenesis by upregulating EZH2 expression via miR-144-3p. Int J Oncol. 2017;51:1115–23. https://doi.org/10.3892/ijo.2017.4110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  434. Li G, Liu K, Du X. Long non-coding RNA TUG1 promotes proliferation and inhibits apoptosis of osteosarcoma cells by sponging miR-132-3p and upregulating SOX4 expression. Yonsei Med J. 2018;59:226–35. https://doi.org/10.3349/ymj.2018.59.2.226.

    Article  CAS  PubMed  Google Scholar 

  435. Li Y, Zhang T, Zhang Y, Zhao X, Wang W. Targeting the FOXM1-regulated long noncoding RNA TUG1 in osteosarcoma. Cancer Sci. 2018;109:3093–104. https://doi.org/10.1111/cas.13765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  436. Xie C, Chen B, Wu B, Guo J, Cao Y. LncRNA TUG1 promotes cell proliferation and suppresses apoptosis in osteosarcoma by regulating miR-212-3p/FOXA1 axis. Biomed Pharmacother. 2018;97:1645–53. https://doi.org/10.1016/j.biopha.2017.12.004.

    Article  CAS  PubMed  Google Scholar 

  437. Wang J, Sun G. FOXO1-MALAT1-miR-26a-5p feedback loop mediates proliferation and migration in osteosarcoma cells. Oncol Res. 2017;25:1517–27. https://doi.org/10.3727/096504017X14859934460780.

    Article  PubMed  PubMed Central  Google Scholar 

  438. Liu K, Huang J, Ni J, Song D, Ding M, Wang J, Huang X, Li W. MALAT1 promotes osteosarcoma development by regulation of HMGB1 via miR-142-3p and miR-129-5p. Cell Cycle. 2017;16:578–87. https://doi.org/10.1080/15384101.2017.1288324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  439. Zhang Y, Dai Q, Zeng F, Liu H. MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the Rac1/JNK pathway via targeting MiR-509. Oncol Res. 2018. https://doi.org/10.3727/096504017x14957939026111.

    Article  PubMed  PubMed Central  Google Scholar 

  440. Luo W, He H, Xiao W, Liu Q, Deng Z, Lu Y, Wang Q, Zheng Q, Li Y. MALAT1 promotes osteosarcoma development by targeting TGFA via MIR376A. Oncotarget. 2016;7:54733–43. https://doi.org/10.18632/oncotarget.10752.

    Article  PubMed  PubMed Central  Google Scholar 

  441. Lv G-Y, Miao J, Zhang X-L. Long noncoding RNA XIST promotes osteosarcoma progression by targeting ras-related protein RAP2B via miR-320b. Oncol Res. 2018;26:837–46. https://doi.org/10.3727/096504017X14920318811721.

    Article  PubMed  PubMed Central  Google Scholar 

  442. Zhang R, Xia T. Long non-coding RNA XIST regulates PDCD4 expression by interacting with miR-21-5p and inhibits osteosarcoma cell growth and metastasis. Int J Oncol. 2017;51:1460–70. https://doi.org/10.3892/ijo.2017.4127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  443. Zeng H-F, Qiu H-Y, Feng F-B. Long noncoding RNA LINC01133 functions as an miR-422a sponge to aggravate the tumorigenesis of human osteosarcoma. Oncol Res. 2018;26:335–43. https://doi.org/10.3727/096504017X14907375885605.

    Article  PubMed  PubMed Central  Google Scholar 

  444. Zhao J, Cheng L. Long non-coding RNA CCAT1/miR-148a axis promotes osteosarcoma proliferation and migration through regulating PIK3IP1. Acta Biochim Biophys Sin (Shanghai). 2017;49:503–12. https://doi.org/10.1093/abbs/gmx041.

    Article  CAS  Google Scholar 

  445. Cui M, Wang J, Li Q, Zhang J, Jia J, Zhan X. Long non-coding RNA HOXA11-AS functions as a competing endogenous RNA to regulate ROCK1 expression by sponging miR-124-3p in osteosarcoma. Biomed Pharmacother. 2017;92:437–44. https://doi.org/10.1016/j.biopha.2017.05.081.

    Article  CAS  PubMed  Google Scholar 

  446. Liu C, Pan C, Cai Y, Wang H. Interplay between long noncoding RNA ZEB1-AS1 and miR-200s regulates osteosarcoma cell proliferation and migration. J Cell Biochem. 2017;118:2250–60. https://doi.org/10.1002/jcb.25879.

    Article  CAS  PubMed  Google Scholar 

  447. Han F, Wang C, Wang Y, Zhang L. Long noncoding RNA ATB promotes osteosarcoma cell proliferation, migration and invasion by suppressing miR-200s. Am J Cancer Res. 2017;7:770–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  448. Wang Y, Kong D. Knockdown of lncRNA MEG3 inhibits viability, migration, and invasion and promotes apoptosis by sponging miR-127 in osteosarcoma cell. J Cell Biochem. 2018;119:669–79. https://doi.org/10.1002/jcb.26230.

    Article  CAS  PubMed  Google Scholar 

  449. Liu K, Hou Y, Liu Y, Zheng J. LncRNA SNHG15 contributes to proliferation, invasion and autophagy in osteosarcoma cells by sponging miR-141. J Biomed Sci. 2017;24:46. https://doi.org/10.1186/s12929-017-0353-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  450. Ba Z, Gu L, Hao S, Wang X, Cheng Z, Nie G. Downregulation of lncRNA CASC2 facilitates osteosarcoma growth and invasion through miR-181a. Cell Prolif. 2018;51:e12409. https://doi.org/10.1111/cpr.12409.

    Article  CAS  Google Scholar 

  451. Zhu K-P, Ma X-L, Zhang C-L. LncRNA ODRUL contributes to osteosarcoma progression through the miR-3182/MMP2 axis. Mol Ther. 2017;25:2383–93. https://doi.org/10.1016/j.ymthe.2017.06.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  452. Wang J, Cao L, Wu J, Wang Q. Long non-coding RNA SNHG1 regulates NOB1 expression by sponging miR-326 and promotes tumorigenesis in osteosarcoma. Int J Oncol. 2018;52:77–88. https://doi.org/10.3892/ijo.2017.4187.

    Article  CAS  PubMed  Google Scholar 

  453. Jiang Z, Jiang C, Fang J. Up-regulated lnc-SNHG1 contributes to osteosarcoma progression through sequestration of miR-577 and activation of WNT2B/Wnt/β-catenin pathway. Biochem Biophys Res Commun. 2018;495:238–45. https://doi.org/10.1016/j.bbrc.2017.11.012.

    Article  CAS  PubMed  Google Scholar 

  454. Zhou S, Yu L, Xiong M, Dai G. LncRNA SNHG12 promotes tumorigenesis and metastasis in osteosarcoma by upregulating Notch2 by sponging miR-195-5p. Biochem Biophys Res Commun. 2018;495:1822–32. https://doi.org/10.1016/j.bbrc.2017.12.047.

    Article  CAS  PubMed  Google Scholar 

  455. Li J, Wu Q-M, Wang X-Q, Zhang C-Q. Long noncoding RNA miR210HG sponges miR-503 to facilitate osteosarcoma cell invasion and metastasis. DNA Cell Biol. 2017;36:1117–25. https://doi.org/10.1089/dna.2017.3888.

    Article  CAS  PubMed  Google Scholar 

  456. Dai J, Xu L, Hu X, Han G, Jiang H, Sun H, Zhu G, Tang X. Long noncoding RNA OIP5-AS1 accelerates CDK14 expression to promote osteosarcoma tumorigenesis via targeting miR-223. Biomed Pharmacother. 2018;106:1441–7. https://doi.org/10.1016/j.biopha.2018.07.109.

    Article  CAS  PubMed  Google Scholar 

  457. Li R, Liu S, Li Y, Tang Q, Xie Y, Zhai R. Long noncoding RNA AFAP1-AS1 enhances cell proliferation and invasion in osteosarcoma through regulating miR-4695-5p/TCF4-β-catenin signaling. Mol Med Rep. 2018;18:1616–22. https://doi.org/10.3892/mmr.2018.9131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  458. Gu Z, Hou Z, Zheng L, Wang X, Wu L, Zhang C. LncRNA DICER1-AS1 promotes the proliferation, invasion and autophagy of osteosarcoma cells via miR-30b/ATG5. Biomed Pharmacother. 2018;104:110–8. https://doi.org/10.1016/j.biopha.2018.04.193.

    Article  CAS  PubMed  Google Scholar 

  459. Yang G, Song R, Wang L, Wu X. Knockdown of long non-coding RNA TP73-AS1 inhibits osteosarcoma cell proliferation and invasion through sponging miR-142. Biomed Pharmacother. 2018;103:1238–45. https://doi.org/10.1016/j.biopha.2018.04.146.

    Article  CAS  PubMed  Google Scholar 

  460. Jia D, Niu Y, Li D, Liu Z. lncRNA C2dat1 promotes cell proliferation, migration, and invasion by targeting miR-34a-5p in osteosarcoma cells. Oncol Res. 2018;26:753–64. https://doi.org/10.3727/096504017X15024946480113.

    Article  PubMed  PubMed Central  Google Scholar 

  461. Kong D, Wang Y. Knockdown of lncRNA HULC inhibits proliferation, migration, invasion, and promotes apoptosis by sponging miR-122 in osteosarcoma. J Cell Biochem. 2018;119:1050–61. https://doi.org/10.1002/jcb.26273.

    Article  CAS  PubMed  Google Scholar 

  462. Ye K, Wang S, Zhang H, Han H, Ma B, Nan W. Long noncoding RNA GAS5 suppresses cell growth and epithelial-mesenchymal transition in osteosarcoma by regulating the miR-221/ARHI pathway. J Cell Biochem. 2017;118:4772–81. https://doi.org/10.1002/jcb.26145.

    Article  CAS  PubMed  Google Scholar 

  463. Wang H, Yu Y, Fan S, Luo L. Knockdown of long non-coding RNA NEAT1 inhibits proliferation and invasion and induces apoptosis of osteosarcoma by inhibiting miR-194 expression. Yonsei Med J. 2017;58:1092–100. https://doi.org/10.3349/ymj.2017.58.6.1092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  464. Han W, Liu J. LncRNA-p21 inhibited the proliferation of osteosarcoma cells via the miR-130b/PTEN/AKT signaling pathway. Biomed Pharmacother. 2018;97:911–8. https://doi.org/10.1016/j.biopha.2017.11.014.

    Article  CAS  PubMed  Google Scholar 

  465. Wang Y, Kong D. LncRNA GAS5 represses osteosarcoma cells growth and metastasis via sponging MiR-203a. Cell Physiol Biochem. 2018;45:844–55. https://doi.org/10.1159/000487178.

    Article  CAS  PubMed  Google Scholar 

  466. Jiang N, Wang X, Xie X, Liao Y, Liu N, Liu J, Miao N, Shen J, Peng T. lncRNA DANCR promotes tumor progression and cancer stemness features in osteosarcoma by upregulating AXL via miR-33a-5p inhibition. Cancer Lett. 2017;405:46–55. https://doi.org/10.1016/j.canlet.2017.06.009.

    Article  CAS  PubMed  Google Scholar 

  467. Zhou Q, Chen F, Zhao J, Li B, Liang Y, Pan W, Zhang S, Wang X, Zheng D. Long non-coding RNA PVT1 promotes osteosarcoma development by acting as a molecular sponge to regulate miR-195. Oncotarget. 2016;7:82620–33. https://doi.org/10.18632/oncotarget.13012.

    Article  PubMed  PubMed Central  Google Scholar 

  468. Song J, Wu X, Liu F, Li M, Sun Y, Wang Y, Wang C, Zhu K, Jia X, Wang B, Ma X. Long non-coding RNA PVT1 promotes glycolysis and tumor progression by regulating miR-497/HK2 axis in osteosarcoma. Biochem Biophys Res Commun. 2017;490:217–24. https://doi.org/10.1016/j.bbrc.2017.06.024.

    Article  CAS  PubMed  Google Scholar 

  469. Wang Y, Zhang L, Zheng X, Zhong W, Tian X, Yin B, Tian K, Zhang W. Long non-coding RNA LINC00161 sensitises osteosarcoma cells to cisplatin-induced apoptosis by regulating the miR-645-IFIT2 axis. Cancer Lett. 2016;382:137–46. https://doi.org/10.1016/j.canlet.2016.08.024.

    Article  CAS  PubMed  Google Scholar 

  470. Han Z, Shi L. Long non-coding RNA LUCAT1 modulates methotrexate resistance in osteosarcoma via miR-200c/ABCB1 axis. Biochem Biophys Res Commun. 2018;495:947–53. https://doi.org/10.1016/j.bbrc.2017.11.121.

    Article  CAS  PubMed  Google Scholar 

  471. Wang Z, Liu Z, Wu S. Long non-coding RNA CTA sensitizes osteosarcoma cells to doxorubicin through inhibition of autophagy. Oncotarget. 2017;8:31465–77. https://doi.org/10.18632/oncotarget.16356.

    Article  PubMed  PubMed Central  Google Scholar 

  472. Huang L, Chen M, Pan J, Yu W. Circular RNA circNASP modulates the malignant behaviors in osteosarcoma via miR-1253/FOXF1 pathway. Biochem Biophys Res Commun. 2018;500:511–7. https://doi.org/10.1016/j.bbrc.2018.04.131.

    Article  CAS  PubMed  Google Scholar 

  473. Wu Z, Shi W, Jiang C. Overexpressing circular RNA hsa_circ_0002052 impairs osteosarcoma progression via inhibiting Wnt/β-catenin pathway by regulating miR-1205/APC2 axis. Biochem Biophys Res Commun. 2018;502:465–71. https://doi.org/10.1016/j.bbrc.2018.05.184.

    Article  CAS  PubMed  Google Scholar 

  474. Tiram G, Segal E, Krivitsky A, Shreberk-Hassidim R, Ferber S, Ofek P, Udagawa T, Edry L, Shomron N, Roniger M, Kerem B, Shaked Y, Aviel-Ronen S, Barshack I, Calderón M, Haag R, Satchi-Fainaro R. Identification of dormancy-associated MicroRNAs for the design of osteosarcoma-targeted dendritic polyglycerol nanopolyplexes. ACS Nano. 2016;10:2028–45. https://doi.org/10.1021/acsnano.5b06189.

    Article  CAS  PubMed  Google Scholar 

  475. Bernstein M, Kovar H, Paulussen M, Randall RL, Schuck A, Teot LA, Juergens H. Ewing’s sarcoma family of tumors: current management. Oncologist. 2006;11:503–19. https://doi.org/10.1634/theoncologist.11-5-503.

    Article  CAS  PubMed  Google Scholar 

  476. Lazar A, Abruzzo LV, Pollock RE, Lee S, Czerniak B. Molecular diagnosis of sarcomas: chromosomal translocations in sarcomas. Arch Pathol Lab Med. 2006;130:1199–207. https://doi.org/10.1043/1543-2165(2006)130%5b1199:MDOS%5d2.0.CO;2.

    Article  CAS  PubMed  Google Scholar 

  477. Matsui Y, Chansky HA, Barahmand-Pour F, Zielinska-Kwiatkowska A, Tsumaki N, Myoui A, Yoshikawa H, Yang L, Eyre DR. COL11A2 collagen gene transcription is differentially regulated by EWS/ERG sarcoma fusion protein and wild-type ERG. J Biol Chem. 2003;278:11369–75. https://doi.org/10.1074/jbc.M300164200.

    Article  CAS  PubMed  Google Scholar 

  478. De Vito C, Riggi N, Suvà M-L, Janiszewska M, Horlbeck J, Baumer K, Provero P, Stamenkovic I. Let-7a is a direct EWS-FLI-1 target implicated in Ewing’s sarcoma development. PLoS One. 2011;6:e23592. https://doi.org/10.1371/journal.pone.0023592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  479. Fusco A, Fedele M. Roles of HMGA proteins in cancer. Nat Rev Cancer. 2007;7:899–910. https://doi.org/10.1038/nrc2271.

    Article  CAS  PubMed  Google Scholar 

  480. Grossel MJ, Hinds PW. From cell cycle to differentiation: an expanding role for cdk6. Cell Cycle. 2006;5:266–70. https://doi.org/10.4161/cc.5.3.2385.

    Article  CAS  PubMed  Google Scholar 

  481. Zhang Z, Li Y, Huang L, Xiao Q, Chen X, Zhong J, Chen Y, Yang D, Han Z, Shu Y, Dai M, Cao K. Let-7a suppresses macrophage infiltrations and malignant phenotype of Ewing sarcoma via STAT3/NF-κB positive regulatory circuit. Cancer Lett. 2016;374:192–201. https://doi.org/10.1016/j.canlet.2016.02.027.

    Article  CAS  PubMed  Google Scholar 

  482. Kawano M, Tanaka K, Itonaga I, Iwasaki T, Tsumura H. c-Myc represses tumor-suppressive microRNAs, let-7a, miR-16 and miR-29b, and induces cyclin D2-mediated cell proliferation in Ewing’s sarcoma cell line. PLoS One. 2015;10:e0138560. https://doi.org/10.1371/journal.pone.0138560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  483. Sohn EJ, Park J, Kang S, Wu Y-P. Accumulation of pre-let-7g and downregulation of mature let-7g with the depletion of EWS. Biochem Biophys Res Commun. 2012;426:89–93. https://doi.org/10.1016/j.bbrc.2012.08.041.

    Article  CAS  PubMed  Google Scholar 

  484. Ban J, Jug G, Mestdagh P, Schwentner R, Kauer M, Aryee DNT, Schaefer K-L, Nakatani F, Scotlandi K, Reiter M, Strunk D, Speleman F, Vandesompele J, Kovar H. Hsa-mir-145 is the top EWS-FLI1-repressed microRNA involved in a positive feedback loop in Ewing’s sarcoma. Oncogene. 2011;30:2173–80. https://doi.org/10.1038/onc.2010.581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  485. Schwentner R, Herrero-Martin D, Kauer MO, Mutz CN, Katschnig AM, Sienski G, Alonso J, Aryee DNT, Kovar H. The role of miR-17-92 in the miRegulatory landscape of Ewing sarcoma. Oncotarget. 2017;8:10980–93. https://doi.org/10.18632/oncotarget.14091.

    Article  PubMed  Google Scholar 

  486. Kawano M, Tanaka K, Itonaga I, Iwasaki T, Tsumura H. MicroRNA-20b promotes cell proliferation via targeting of TGF-β receptor II and upregulates MYC expression in Ewing’s sarcoma cells. Int J Oncol. 2017;51:1842–50. https://doi.org/10.3892/ijo.2017.4155.

    Article  CAS  PubMed  Google Scholar 

  487. Franzetti G-A, Laud-Duval K, Bellanger D, Stern M-H, Sastre-Garau X, Delattre O. MiR-30a-5p connects EWS-FLI1 and CD99, two major therapeutic targets in Ewing tumor. Oncogene. 2013;32:3915–21. https://doi.org/10.1038/onc.2012.403.

    Article  CAS  PubMed  Google Scholar 

  488. Moore C, Parrish JK, Jedlicka P. MiR-193b, downregulated in Ewing Sarcoma, targets the ErbB4 oncogene to inhibit anchorage-independent growth. PLoS One. 2017;12:e0178028. https://doi.org/10.1371/journal.pone.0178028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  489. Lu Q, Lu M, Li D, Zhang S. MicroRNA-34b promotes proliferation, migration and invasion of Ewing’s sarcoma cells by downregulating Notch1. Mol Med Rep. 2018;18:3577–88. https://doi.org/10.3892/mmr.2018.9365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  490. Roberto GM, Vieira GM, Delsin LEA, de Oliveria Silva M, Hakime RG, Engel EE, Scrideli CA, Tone LG, Brassesco MS. MiR-708-5p is inversely associated with EWS/FLI1 Ewing sarcoma but does not represent a prognostic predictor. Cancer Genet. 2019;230:21–7. https://doi.org/10.1016/j.cancergen.2018.11.003.

    Article  CAS  PubMed  Google Scholar 

  491. Parrish JK, Sechler M, Winn RA, Jedlicka P. The histone demethylase KDM3A is a microRNA-22-regulated tumor promoter in Ewing Sarcoma. Oncogene. 2015;34:257–62. https://doi.org/10.1038/onc.2013.541.

    Article  CAS  PubMed  Google Scholar 

  492. McKinsey EL, Parrish JK, Irwin AE, Niemeyer BF, Kern HB, Birks DK, Jedlicka P. A novel oncogenic mechanism in Ewing sarcoma involving IGF pathway targeting by EWS/Fli1-regulated microRNAs. Oncogene. 2011;30:4910–20. https://doi.org/10.1038/onc.2011.197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  493. Martignetti L, Laud-Duval K, Tirode F, Pierron G, Reynaud S, Barillot E, Delattre O, Zinovyev A. Antagonism pattern detection between MicroRNA and target expression in Ewing’s sarcoma. PLoS One. 2012;7:e41770. https://doi.org/10.1371/journal.pone.0041770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  494. Karnuth B, Dedy N, Spieker T, Lawlor ER, Gattenlöhner S, Ranft A, Dirksen U, Jürgens H, Bräuninger A. Differentially expressed miRNAs in Ewing sarcoma compared to mesenchymal stem cells: low miR-31 expression with effects on proliferation and invasion. PLoS One. 2014;9:e93067. https://doi.org/10.1371/journal.pone.0093067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  495. Parafioriti A, Bason C, Armiraglio E, Calciano L, Daolio PA, Berardocco M, Di Bernardo A, Colosimo A, Luksch R, Berardi AC. Ewing’s sarcoma: an analysis of miRNA expression profiles and target genes in paraffin-embedded primary tumor tissue. Int J Mol Sci. 2016;17:656. https://doi.org/10.3390/ijms17050656.

    Article  CAS  PubMed Central  Google Scholar 

  496. Mosakhani N, Guled M, Leen G, Calabuig-Fariñas S, Niini T, Machado I, Savola S, Scotlandi K, López-Guerrero JA, Llombart-Bosch A, Knuutila S. An integrated analysis of miRNA and gene copy numbers in xenografts of Ewing’s sarcoma. J Exp Clin Cancer Res. 2012;31:24. https://doi.org/10.1186/1756-9966-31-24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  497. Li J, You T, Jing J. MiR-125b inhibits cell biological progression of Ewing’s sarcoma by suppressing the PI3K/Akt signalling pathway. Cell Prolif. 2014;47:152–60. https://doi.org/10.1111/cpr.12093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  498. Li W, Li Y, Guo J, Pan H, Zhang Y, Wang X. Overexpression of miR-199b-5p inhibits Ewing’s sarcoma cell lines by targeting CCNL1. Mol Med Rep. 2015;12:3359–64. https://doi.org/10.3892/mmr.2015.3888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  499. Chen J, Zhou X, Xiao Q, Wang T, Shao G, Li Y, Zhang Z. MiR-107 suppresses cell proliferation and tube formation of Ewing sarcoma cells partly by targeting HIF-1β. Hum Cell. 2018;31:42–9. https://doi.org/10.1007/s13577-017-0183-9.

    Article  CAS  PubMed  Google Scholar 

  500. Zhou X, Chen J, Xiao Q, Wang T, Yu Y, Li B, Shao G, Li Y, Zhang Z. MicroRNA-638 inhibits cell growth and tubule formation by suppressing VEGFA expression in human Ewing sarcoma cells. Biosci Rep. 2018;38:BSR20171017. https://doi.org/10.1042/bsr20171017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  501. Ye C, Yu X, Liu X, Dai M, Zhang B. miR-30d inhibits cell biological progression of Ewing’s sarcoma by suppressing the MEK/ERK and PI3K/Akt pathways in vitro. Oncol Lett. 2018;15:4390–6. https://doi.org/10.3892/ol.2018.7900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  502. Tanaka K, Kawano M, Itonaga I, Iwasaki T, Miyazaki M, Ikeda S, Tsumura H. Tumor suppressive microRNA-138 inhibits metastatic potential via the targeting of focal adhesion kinase in Ewing’s sarcoma cells. Int J Oncol. 2016;48:1135–44. https://doi.org/10.3892/ijo.2016.3317.

    Article  CAS  PubMed  Google Scholar 

  503. Li Y, Shao G, Zhang M, Zhu F, Zhao B, He C, Zhang Z. miR-124 represses the mesenchymal features and suppresses metastasis in Ewing sarcoma. Oncotarget. 2017;8:10274–86. https://doi.org/10.18632/oncotarget.14394.

    Article  PubMed  Google Scholar 

  504. Satterfield L, Shuck R, Kurenbekova L, Allen-Rhoades W, Edwards D, Huang S, Rajapakshe K, Coarfa C, Donehower LA, Yustein JT. miR-130b directly targets ARHGAP1 to drive activation of a metastatic CDC42-PAK1-AP1 positive feedback loop in Ewing sarcoma. Int J Cancer. 2017;141:2062–75. https://doi.org/10.1002/ijc.30909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  505. Kawano M, Tanaka K, Itonaga I, Iwasaki T, Tsumura H. MicroRNA-301a promotes cell proliferation via PTEN targeting in Ewing’s sarcoma cells. Int J Oncol. 2016;48:1531–40. https://doi.org/10.3892/ijo.2016.3379.

    Article  CAS  PubMed  Google Scholar 

  506. Kawano M, Tanaka K, Itonaga I, Iwasaki T, Tsumura H. MicroRNA-181c prevents apoptosis by targeting of FAS receptor in Ewing’s sarcoma cells. Cancer Cell Int. 2018;18:37. https://doi.org/10.1186/s12935-018-0536-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  507. Dylla L, Moore C, Jedlicka P. MicroRNAs in Ewing sarcoma. Front Oncol. 2013;3:65. https://doi.org/10.3389/fonc.2013.00065.

    Article  PubMed  PubMed Central  Google Scholar 

  508. Nakatani F, Ferracin M, Manara MC, Ventura S, Del Monaco V, Ferrari S, Alberghini M, Grilli A, Knuutila S, Schaefer K-L, Mattia G, Negrini M, Picci P, Serra M, Scotlandi K. miR-34a predicts survival of Ewing’s sarcoma patients and directly influences cell chemo-sensitivity and malignancy. J Pathol. 2012;226:796–805. https://doi.org/10.1002/path.3007.

    Article  CAS  PubMed  Google Scholar 

  509. Marino MT, Grilli A, Baricordi C, Manara MC, Ventura S, Pinca RS, Bellenghi M, Calvaruso M, Mattia G, Donati D, Tripodo C, Picci P, Ferrari S, Scotlandi K. Prognostic significance of miR-34a in Ewing sarcoma is associated with cyclin D1 and ki-67 expression. Ann Oncol Off J Eur Soc Med Oncol. 2014;25:2080–6. https://doi.org/10.1093/annonc/mdu249.

    Article  CAS  Google Scholar 

  510. Ventura S, Aryee DNT, Felicetti F, De Feo A, Mancarella C, Manara MC, Picci P, Colombo MP, Kovar H, Carè A, Scotlandi K. CD99 regulates neural differentiation of Ewing sarcoma cells through miR-34a-Notch-mediated control of NF-κB signaling. Oncogene. 2016;35:3944–54. https://doi.org/10.1038/onc.2015.463.

    Article  CAS  PubMed  Google Scholar 

  511. Roberto GM, Delsin LEA, Vieira GM, Silva MO, Hakime RG, Gava NF, Engel EE, Scrideli CA, Tone LG, Brassesco MS. ROCK1-predicted microRNAs dysregulation contributes to tumor progression in Ewing sarcoma. Pathol Oncol Res. 2017. https://doi.org/10.1007/s12253-017-0374-4.

    Article  PubMed  Google Scholar 

  512. Ruymann FB, Grovas AC. Progress in the diagnosis and treatment of rhabdomyosarcoma and related soft tissue sarcomas. Cancer Invest. 2000;18:223–41.

    CAS  PubMed  Google Scholar 

  513. O’Brien D, Jacob AG, Qualman SJ, Chandler DS. Advances in pediatric rhabdomyosarcoma characterization and disease model development. Histol Histopathol. 2012;27:13–22. https://doi.org/10.14670/HH-27.13.

    Article  PubMed  Google Scholar 

  514. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011;39:D152–7. https://doi.org/10.1093/nar/gkq1027.

    Article  CAS  PubMed  Google Scholar 

  515. Novák J, Vinklárek J, Bienertová-Vašků J, Slabý O. MicroRNAs involved in skeletal muscle development and their roles in rhabdomyosarcoma pathogenesis. Pediatr Blood Cancer. 2013;60:1739–46. https://doi.org/10.1002/pbc.24664.

    Article  CAS  PubMed  Google Scholar 

  516. Kim HK, Lee YS, Sivaprasad U, Malhotra A, Dutta A. Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol. 2006;174:677–87. https://doi.org/10.1083/jcb.200603008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  517. Chen J-F, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang D-Z. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006;38:228–33. https://doi.org/10.1038/ng1725.

    Article  CAS  PubMed  Google Scholar 

  518. Bersani F, Lingua MF, Morena D, Foglizzo V, Miretti S, Lanzetti L, Carrà G, Morotti A, Ala U, Provero P, Chiarle R, Singer S, Ladanyi M, Tuschl T, Ponzetto C, Taulli R. Deep sequencing reveals a novel miR-22 regulatory network with therapeutic potential in rhabdomyosarcoma. Cancer Res. 2016;76:6095–106. https://doi.org/10.1158/0008-5472.CAN-16-0709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  519. Taulli R, Bersani F, Foglizzo V, Linari A, Vigna E, Ladanyi M, Tuschl T, Ponzetto C. The muscle-specific microRNA miR-206 blocks human rhabdomyosarcoma growth in xenotransplanted mice by promoting myogenic differentiation. J Clin Invest. 2009;119:2366–78. https://doi.org/10.1172/JCI38075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  520. Yan D, Dong XDE, Chen X, Wang L, Lu C, Wang J, Qu J, Tu L. MicroRNA-1/206 targets c-Met and inhibits rhabdomyosarcoma development. J Biol Chem. 2009;284:29596–604. https://doi.org/10.1074/jbc.M109.020511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  521. Missiaglia E, Shepherd CJ, Patel S, Thway K, Pierron G, Pritchard-Jones K, Renard M, Sciot R, Rao P, Oberlin O, Delattre O, Shipley J. MicroRNA-206 expression levels correlate with clinical behaviour of rhabdomyosarcomas. Br J Cancer. 2010;102:1769–77. https://doi.org/10.1038/sj.bjc.6605684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  522. Skrzypek K, Kusienicka A, Trzyna E, Szewczyk B, Ulman A, Konieczny P, Adamus T, Badyra B, Kortylewski M, Majka M. SNAIL is a key regulator of alveolar rhabdomyosarcoma tumor growth and differentiation through repression of MYF5 and MYOD function. Cell Death Dis. 2018;9:643. https://doi.org/10.1038/s41419-018-0693-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  523. Ciesla M, Marona P, Kozakowska M, Jez M, Seczynska M, Loboda A, Bukowska-Strakova K, Szade A, Walawender M, Kusior M, Stepniewski J, Szade K, Krist B, Yagensky O, Urbanik A, Kazanowska B, Dulak J, Jozkowicz A. Heme oxygenase-1 controls an HDAC4-miR-206 pathway of oxidative stress in rhabdomyosarcoma. Cancer Res. 2016;76:5707–18. https://doi.org/10.1158/0008-5472.CAN-15-1883.

    Article  CAS  PubMed  Google Scholar 

  524. Dey BK, Gagan J, Dutta A. miR-206 and -486 induce myoblast differentiation by downregulating Pax7. Mol Cell Biol. 2011;31:203–14. https://doi.org/10.1128/MCB.01009-10.

    Article  CAS  PubMed  Google Scholar 

  525. Li L, Sarver AL, Alamgir S, Subramanian S. Downregulation of microRNAs miR-1, -206 and -29 stabilizes PAX3 and CCND2 expression in rhabdomyosarcoma. Lab Invest. 2012;92:571–83. https://doi.org/10.1038/labinvest.2012.10.

    Article  CAS  PubMed  Google Scholar 

  526. Hanna JA, Garcia MR, Lardennois A, Leavey PJ, Maglic D, Fagnan A, Go JC, Roach J, Wang Y-D, Finkelstein D, Hatley ME. PAX3-FOXO1 drives miR-486-5p and represses miR-221 contributing to pathogenesis of alveolar rhabdomyosarcoma. Oncogene. 2018;37:1991–2007. https://doi.org/10.1038/s41388-017-0081-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  527. Missiaglia E, Shepherd CJ, Aladowicz E, Olmos D, Selfe J, Pierron G, Delattre O, Walters Z, Shipley J. MicroRNA and gene co-expression networks characterize biological and clinical behavior of rhabdomyosarcomas. Cancer Lett. 2017;385:251–60. https://doi.org/10.1016/j.canlet.2016.10.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  528. Hanna JA, Garcia MR, Go JC, Finkelstein D, Kodali K, Pagala V, Wang X, Peng J, Hatley ME. PAX7 is a required target for microRNA-206-induced differentiation of fusion-negative rhabdomyosarcoma. Cell Death Dis. 2016;7:e2256. https://doi.org/10.1038/cddis.2016.159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  529. Rao PK, Missiaglia E, Shields L, Hyde G, Yuan B, Shepherd CJ, Shipley J, Lodish HF. Distinct roles for miR-1 and miR-133a in the proliferation and differentiation of rhabdomyosarcoma cells. FASEB J. 2010;24:3427–37. https://doi.org/10.1096/fj.09-150698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  530. Sugito N, Taniguchi K, Kuranaga Y, Ohishi M, Soga T, Ito Y, Miyachi M, Kikuchi K, Hosoi H, Akao Y. Cancer-specific energy metabolism in rhabdomyosarcoma cells is regulated by MicroRNA. Nucleic Acid Ther. 2017;27:365–77. https://doi.org/10.1089/nat.2017.0673.

    Article  CAS  PubMed  Google Scholar 

  531. Wang H, Garzon R, Sun H, Ladner KJ, Singh R, Dahlman J, Cheng A, Hall BM, Qualman SJ, Chandler DS, Croce CM, Guttridge DC. NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell. 2008;14:369–81. https://doi.org/10.1016/j.ccr.2008.10.006.

    Article  CAS  PubMed  Google Scholar 

  532. Sun M, Huang F, Yu D, Zhang Y, Xu H, Zhang L, Li L, Dong L, Guo L, Wang S. Autoregulatory loop between TGF-β1/miR-411-5p/SPRY4 and MAPK pathway in rhabdomyosarcoma modulates proliferation and differentiation. Cell Death Dis. 2015;6:e1859. https://doi.org/10.1038/cddis.2015.225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  533. Ciarapica R, Russo G, Verginelli F, Raimondi L, Donfrancesco A, Rota R, Giordano A. Deregulated expression of miR-26a and Ezh2 in rhabdomyosarcoma. Cell Cycle. 2009;8:172–5. https://doi.org/10.4161/cc.8.1.7292.

    Article  CAS  PubMed  Google Scholar 

  534. Vella S, Pomella S, Leoncini PP, Colletti M, Conti B, Marquez VE, Strillacci A, Roma J, Gallego S, Milano GM, Capogrossi MC, Bertaina A, Ciarapica R, Rota R. MicroRNA-101 is repressed by EZH2 and its restoration inhibits tumorigenic features in embryonal rhabdomyosarcoma. Clin Epigenetics. 2015;7:82. https://doi.org/10.1186/s13148-015-0107-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  535. Sun MM, Li JF, Guo LL, Xiao HT, Dong L, Wang F, Huang FB, Cao D, Qin T, Yin XH, Li JM, Wang SL. TGF-β1 suppression of microRNA-450b-5p expression: a novel mechanism for blocking myogenic differentiation of rhabdomyosarcoma. Oncogene. 2014;33:2075–86. https://doi.org/10.1038/onc.2013.165.

    Article  CAS  PubMed  Google Scholar 

  536. Imam JS, Buddavarapu K, Lee-Chang JS, Ganapathy S, Camosy C, Chen Y, Rao MK. MicroRNA-185 suppresses tumor growth and progression by targeting the Six1 oncogene in human cancers. Oncogene. 2010;29:4971–9. https://doi.org/10.1038/onc.2010.233.

    Article  CAS  PubMed  Google Scholar 

  537. Sarver AL, Li L, Subramanian S. MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and promoting tumor cell migration. Cancer Res. 2010;70:9570–80. https://doi.org/10.1158/0008-5472.CAN-10-2074.

    Article  CAS  PubMed  Google Scholar 

  538. Armeanu-Ebinger S, Herrmann D, Bonin M, Leuschner I, Warmann SW, Fuchs J, Seitz G. Differential expression of miRNAs in rhabdomyosarcoma and malignant rhabdoid tumor. Exp Cell Res. 2012;318:2567–77. https://doi.org/10.1016/j.yexcr.2012.07.015.

    Article  CAS  PubMed  Google Scholar 

  539. Tombolan L, Zampini M, Casara S, Boldrin E, Zin A, Bisogno G, Rosolen A, De Pittà C, Lanfranchi G. MicroRNA-27a contributes to rhabdomyosarcoma cell proliferation by suppressing RARA and RXRA. PLoS One. 2015;10:e0125171. https://doi.org/10.1371/journal.pone.0125171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  540. Diao Y, Guo X, Jiang L, Wang G, Zhang C, Wan J, Jin Y, Wu Z. miR-203, a tumor suppressor frequently down-regulated by promoter hypermethylation in rhabdomyosarcoma. J Biol Chem. 2014;289:529–39. https://doi.org/10.1074/jbc.M113.494716.

    Article  CAS  PubMed  Google Scholar 

  541. Megiorni F, Cialfi S, McDowell HP, Felsani A, Camero S, Guffanti A, Pizer B, Clerico A, De Grazia A, Pizzuti A, Moles A, Dominici C. Deep Sequencing the microRNA profile in rhabdomyosarcoma reveals down-regulation of miR-378 family members. BMC Cancer. 2014;14:880. https://doi.org/10.1186/1471-2407-14-880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  542. Skrzypek K, Kusienicka A, Szewczyk B, Adamus T, Lukasiewicz E, Miekus K, Majka M. Constitutive activation of MET signaling impairs myogenic differentiation of rhabdomyosarcoma and promotes its development and progression. Oncotarget. 2015;6:31378–98. https://doi.org/10.18632/oncotarget.5145.

    Article  PubMed  PubMed Central  Google Scholar 

  543. Huang H, Liu J, Hua H, Li S, Zhao J, Yue S, Yu T, Jin Y, Cheng SY. MiR-214 and N-ras regulatory loop suppresses rhabdomyosarcoma cell growth and xenograft tumorigenesis. Oncotarget. 2014;5:2161–75. https://doi.org/10.18632/oncotarget.1855.

    Article  PubMed  PubMed Central  Google Scholar 

  544. Ma W, Zhang X, Chai J, Chen P, Ren P, Gong M. Circulating miR-148a is a significant diagnostic and prognostic biomarker for patients with osteosarcoma. Tumour Biol. 2014;35:12467–72. https://doi.org/10.1007/s13277-014-2565-x.

    Article  CAS  PubMed  Google Scholar 

  545. Pezuk JA. The importance of circulating miRNAs and its limitation on the clinic. Hum J Rev Artic Novemb Ijsrm Human. 2017;8:278–83.

    CAS  Google Scholar 

  546. Cortez MA, Bueso-ramos C, Ferdin J, Lopez-berestein G, Anil K, Calin GA. MicroRNAs in body fluids–the mix of hormones and biomarkers. Nat Rev Clincal Oncol. 2012;8:467–77. https://doi.org/10.1038/nrclinonc.2011.76.micrornas.

    Article  Google Scholar 

  547. Leong SP, Ballesteros-Merino C, Jensen SM, Marwitz S, Bifulco C, Fox BA, Skoberne M. Novel frontiers in detecting cancer metastasis. Clin Exp Metastasis. 2018;35:403–12. https://doi.org/10.1007/s10585-018-9918-6.

    Article  PubMed  Google Scholar 

  548. Faraldi M, Gomarasca M, Banfi G, Lombardi G. Free circulating miRNAs measurement in clinical settings: the still unsolved issue of the normalization. Adv Clin Chem. 2018;87:113–39. https://doi.org/10.1016/bs.acc.2018.07.003.

    Article  PubMed  PubMed Central  Google Scholar 

  549. Occhipinti G, Giulietti M, Principato G, Piva F. The choice of endogenous controls in exosomal microRNA assessments from biofluids. Tumour Biol. 2016;37:11657–65. https://doi.org/10.1007/s13277-016-5164-1.

    Article  CAS  PubMed  Google Scholar 

  550. Zhao G, Jiang T, Liu Y, Huai G, Lan C, Li G, Jia G, Wang K, Yang M. Droplet digital PCR-based circulating microRNA detection serve as a promising diagnostic method for gastric cancer. BMC Cancer. 2018;18:676. https://doi.org/10.1186/s12885-018-4601-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  551. Sheinerman K, Tsivinsky V, Mathur A, Kessler D, Shaz B, Umansky S. Age- and sex-dependent changes in levels of circulating brain-enriched microRNAs during normal aging. Aging (Albany NY). 2018;10:3017–41. https://doi.org/10.18632/aging.101613.

    Article  CAS  Google Scholar 

  552. Wang X, Ning Y, Yang L, Liu H, Wu C, Wang S, Guo X. Diagnostic value of circulating microRNAs for osteosarcoma in Asian populations: a meta-analysis. Clin Exp Med. 2017;17:175–83. https://doi.org/10.1007/s10238-016-0422-5.

    Article  CAS  PubMed  Google Scholar 

  553. Murray MJ, Raby KL, Saini HK, Bailey S, Wool SV, Tunnacliffe JM, Enright AJ, Nicholson JC, Coleman N. Solid tumors of childhood display specific serum microRNA profiles. Cancer Epidemiol Biomarkers Prev. 2015;24:350–60. https://doi.org/10.1158/1055-9965.EPI-14-0669.

    Article  CAS  PubMed  Google Scholar 

  554. Nie CL, Ren WH, Ma Y, Xi JS, Han B. Circulating miR-125b as a biomarker of Ewing’s sarcoma in Chinese children. Genet Mol Res. 2015;14:19049–56. https://doi.org/10.4238/2015.December.29.12.

    Article  CAS  PubMed  Google Scholar 

  555. Ouyang L, Liu P, Yang S, Ye S, Xu W, Liu X. A three-plasma miRNA signature serves as novel biomarkers for osteosarcoma. Med Oncol. 2013;30:340. https://doi.org/10.1007/s12032-012-0340-7.

    Article  CAS  PubMed  Google Scholar 

  556. Lian F, Cui Y, Zhou C, Gao K, Wu L. Identification of a plasma four-microRNA panel as potential noninvasive biomarker for osteosarcoma. PLoS One. 2015;10:e0121499. https://doi.org/10.1371/journal.pone.0121499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  557. Tian Q, Jia J, Ling S, Liu Y, Yang S, Shao Z. A causal role for circulating miR-34b in osteosarcoma. Eur J Surg Oncol. 2014;40:67–72. https://doi.org/10.1016/j.ejso.2013.08.024.

    Article  CAS  PubMed  Google Scholar 

  558. Nakka M, Allen-Rhoades W, Li Y, Kelly AJ, Shen J, Taylor AM, Barkauskas DA, Yustein JT, Andrulis IL, Wunder JS, Gorlick R, Meltzer PS, Lau CC, Man T-K, TARGET osteosarcoma consortium the T osteosarcoma. Biomarker significance of plasma and tumor miR-21, miR-221, and miR-106a in osteosarcoma. Oncotarget. 2017;8:96738–52. https://doi.org/10.18632/oncotarget.18236.

    Article  PubMed  PubMed Central  Google Scholar 

  559. Zhang C, Yao C, Li H, Wang G, He X. Serum levels of microRNA-133b and microRNA-206 expression predict prognosis in patients with osteosarcoma. Int J Clin Exp Pathol. 2014;7:4194–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  560. Cai H, Zhao H, Tang J, Wu H. Serum miR-195 is a diagnostic and prognostic marker for osteosarcoma. J Surg Res. 2015;194:505–10. https://doi.org/10.1016/j.jss.2014.11.025.

    Article  CAS  PubMed  Google Scholar 

  561. Zhang C, Yao C, Li H, Wang G, He X. Combined elevation of microRNA-196a and microRNA-196b in sera predicts unfavorable prognosis in patients with osteosarcomas. Int J Mol Sci. 2014;15:6544–55. https://doi.org/10.3390/ijms15046544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  562. Zhou G, Lu M, Chen J, Li C, Zhang J, Chen J, Shi X, Wu S. Identification of miR-199a-5p in serum as noninvasive biomarkers for detecting and monitoring osteosarcoma. Tumour Biol. 2015;36:8845–52. https://doi.org/10.1007/s13277-015-3421-3.

    Article  CAS  PubMed  Google Scholar 

  563. Monterde-Cruz L, Ramírez-Salazar EG, Rico-Martínez G, Linares-González LM, Guzmán-González R, Delgado-Cedillo E, Estrada-Villaseñor E, Valdés-Flores M, Velázquez-Cruz R, Hidalgo-Bravo A. Circulating miR-215-5p and miR-642a-5p as potential biomarker for diagnosis of osteosarcoma in Mexican population. Hum Cell. 2018;31:292–9. https://doi.org/10.1007/s13577-018-0214-1.

    Article  CAS  PubMed  Google Scholar 

  564. Fujiwara T, Uotani K, Yoshida A, Morita T, Nezu Y, Kobayashi E, Yoshida A, Uehara T, Omori T, Sugiu K, Komatsubara T, Takeda K, Kunisada T, Kawamura M, Kawai A, Ochiya T, Ozaki T. Clinical significance of circulating miR-25-3p as a novel diagnostic and prognostic biomarker in osteosarcoma. Oncotarget. 2017;8:33375–92. https://doi.org/10.18632/oncotarget.16498.

    Article  PubMed  PubMed Central  Google Scholar 

  565. Li S, Gao Y, Wang Y, Wang K, Dai Z-P, Xu D, Liu W, Li Z-L, Zhang Z-D, Yang S-H, Yang C. Serum microRNA-17 functions as a prognostic biomarker in osteosarcoma. Oncol Lett. 2016;12:4905–10. https://doi.org/10.3892/ol.2016.5362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  566. Li Q, Song S, Ni G, Li Y, Wang X. Serum miR-542-3p as a prognostic biomarker in osteosarcoma. Cancer Biomark. 2018;21:521–6. https://doi.org/10.3233/CBM-170255.

    Article  CAS  PubMed  Google Scholar 

  567. Yao Z-S, Li C, Liang D, Jiang X-B, Tang J-J, Ye L-Q, Yuan K, Ren H, Yang Z-D, Jin D-X, Zhang S-C, Ding J-Y, Tang Y-C, Xu J-X, Chen K, Xie W-X, Guo D-Q, Cui J-C. Diagnostic and prognostic implications of serum miR-101 in osteosarcoma. Cancer Biomark. 2018;22:127–33. https://doi.org/10.3233/CBM-171103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  568. Pang P-C, Shi X-Y, Huang W-L, Sun K. miR-497 as a potential serum biomarker for the diagnosis and prognosis of osteosarcoma. Eur Rev Med Pharmacol Sci. 2016;20:3765–9.

    PubMed  Google Scholar 

  569. Miyachi M, Tsuchiya K, Yoshida H, Yagyu S, Kikuchi K, Misawa A, Iehara T, Hosoi H. Circulating muscle-specific microRNA, miR-206, as a potential diagnostic marker for rhabdomyosarcoma. Biochem Biophys Res Commun. 2010;400:89–93. https://doi.org/10.1016/j.bbrc.2010.08.015.

    Article  CAS  PubMed  Google Scholar 

  570. Allen-Rhoades W, Yustein JT. Detection of plasma MicroRNA signature in osteosarcoma patients. Methods Mol Biol. 2018;1699:113–8. https://doi.org/10.1007/978-1-4939-7435-1_9.

    Article  CAS  PubMed  Google Scholar 

  571. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331:1559–64. https://doi.org/10.1126/science.1203543.

    Article  CAS  PubMed  Google Scholar 

  572. Hurst DR, Edmonds MD, Welch DR. Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res. 2009;69:7495–8. https://doi.org/10.1158/0008-5472.CAN-09-2111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  573. Kim J, Yao F, Xiao Z, Sun Y, Ma L. MicroRNAs and metastasis: small RNAs play big roles. Cancer Metastasis Rev. 2018;37:5–15. https://doi.org/10.1007/s10555-017-9712-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  574. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449:682–8. https://doi.org/10.1038/nature06174.

    Article  CAS  PubMed  Google Scholar 

  575. Liu Z, Liu Z, Zhang Y, Li Y, Liu B, Zhang K. miR-24 represses metastasis of human osteosarcoma cells by targeting Ack1 via AKT/MMPs pathway. Biochem Biophys Res Commun. 2017;486:211–7. https://doi.org/10.1016/j.bbrc.2017.02.045.

    Article  CAS  PubMed  Google Scholar 

  576. Cao R, Shao J, Hu Y, Wang L, Li Z, Sun G, Gao X. microRNA-338-3p inhibits proliferation, migration, invasion, and EMT in osteosarcoma cells by targeting activator of 90 kDa heat shock protein ATPase homolog 1. Cancer Cell Int. 2018;18:49. https://doi.org/10.1186/s12935-018-0551-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  577. Li G, Li L, Sun Q, Wu J, Ge W, Lu G, Cai M. MicroRNA-3200-5p promotes osteosarcoma cell invasion via suppression of BRMS1. Mol Cells. 2018;41:523–31. https://doi.org/10.14348/molcells.2018.2200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  578. Wu S, Du X, Wu M, Du H, Shi X, Zhang T. MicroRNA-409-3p inhibits osteosarcoma cell migration and invasion by targeting catenin-δ1. Gene. 2016;584:83–9. https://doi.org/10.1016/j.gene.2016.03.021.

    Article  CAS  PubMed  Google Scholar 

  579. Salah Z, Arafeh R, Maximov V, Galasso M, Khawaled S, Abou-Sharieha S, Volinia S, Jones KB, Croce CM, Aqeilan RI. miR-27a and miR-27a* contribute to metastatic properties of osteosarcoma cells. Oncotarget. 2015;6:4920–35. https://doi.org/10.18632/oncotarget.3025.

    Article  PubMed  PubMed Central  Google Scholar 

  580. Han K, Chen X, Bian N, Ma B, Yang T, Cai C, Fan Q, Zhou Y, Zhao TB. MicroRNA profiling identifies MiR-195 suppresses osteosarcoma cell metastasis by targeting CCND1. Oncotarget. 2015;6:8875–89. https://doi.org/10.18632/oncotarget.3560.

    Article  PubMed  PubMed Central  Google Scholar 

  581. Zhang F, Zhu Y, Fan G, Hu S. MicroRNA-2682-3p inhibits osteosarcoma cell proliferation by targeting CCND2, MMP8 and Myd88. Oncol Lett. 2018;16:3359–64. https://doi.org/10.3892/ol.2018.9029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  582. Lin T, Ma Q, Zhang Y, Zhang H, Yan J, Gao C. MicroRNA-27a functions as an oncogene in human osteosarcoma by targeting CCNG1. Oncol Lett. 2018;15:1067–71. https://doi.org/10.3892/ol.2017.7389.

    Article  CAS  PubMed  Google Scholar 

  583. Tang W, Wang W, Zhao Y, Zhao Z. MicroRNA-874 inhibits cell proliferation and invasion by targeting cyclin-dependent kinase 9 in osteosarcoma. Oncol Lett. 2018;15:7649–54. https://doi.org/10.3892/ol.2018.8294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  584. Zou Y, Huang Y, Yang J, Wu J, Luo C. miR-34a is downregulated in human osteosarcoma stem-like cells and promotes invasion, tumorigenic ability and self-renewal capacity. Mol Med Rep. 2017;15:1631–7. https://doi.org/10.3892/mmr.2017.6187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  585. Xu N, Li Z, Yu Z, Yan F, Liu Y, Lu X, Yang W. MicroRNA-33b suppresses migration and invasion by targeting c-Myc in osteosarcoma cells. PLoS ONE. 2014;9:e115300. https://doi.org/10.1371/journal.pone.0115300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  586. Zhang F, Huang W, Sheng M, Liu T. MiR-451 inhibits cell growth and invasion by targeting CXCL16 and is associated with prognosis of osteosarcoma patients. Tumour Biol. 2015;36:2041–8. https://doi.org/10.1007/s13277-014-2811-2.

    Article  CAS  PubMed  Google Scholar 

  587. Liu S-Y, Deng S-Y, He Y-B, Ni G-X. miR-451 inhibits cell growth, migration and angiogenesis in human osteosarcoma via down-regulating IL 6R. Biochem Biophys Res Commun. 2017;482:987–93. https://doi.org/10.1016/j.bbrc.2016.11.145.

    Article  CAS  PubMed  Google Scholar 

  588. Zhu Y, Tang L, Zhao S, Sun B, Cheng L, Tang Y, Luo Z, Lin Z, Zhu J, Zhu W, Zhao R, Lu B, Long H. CXCR4-mediated osteosarcoma growth and pulmonary metastasis is suppressed by MicroRNA-613. Cancer Sci. 2018;109:2412–22. https://doi.org/10.1111/cas.13653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  589. Wu Q, Zhou W, Feng Q, Liu X, Xiong Y, Li H. MicroRNA-92b promotes cell proliferation and invasion in osteosarcoma by directly targeting Dickkopf-related protein 3. Exp Ther Med. 2018;15:173–81. https://doi.org/10.3892/etm.2017.5356.

    Article  CAS  PubMed  Google Scholar 

  590. Song Q-C, Shi Z-B, Zhang Y-T, Ji L, Wang K-Z, Duan D-P, Dang X-Q. Downregulation of microRNA-26a is associated with metastatic potential and the poor prognosis of osteosarcoma patients. Oncol Rep. 2014;31:1263–70. https://doi.org/10.3892/or.2014.2989.

    Article  CAS  PubMed  Google Scholar 

  591. Sun X, Geng X, Zhang J, Zhang C. miRNA-646 suppresses osteosarcoma cell metastasis by downregulating fibroblast growth factor 2 (FGF2). Tumour Biol. 2015;36:2127–34. https://doi.org/10.1007/s13277-014-2822-z.

    Article  CAS  PubMed  Google Scholar 

  592. Liu X, Zhang C, Wang C, Sun J, Wang D, Zhao Y, Xu X. miR-210 promotes human osteosarcoma cell migration and invasion by targeting FGFRL1. Oncol Lett. 2018;16:2229–36. https://doi.org/10.3892/ol.2018.8939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  593. Chen H, Xiao Z, Yu R, Wang Y, Xu R, Zhu X. miR-181d-5p-FOXP1 feedback loop modulates the progression of osteosarcoma. Biochem Biophys Res Commun. 2018;503:1434–41. https://doi.org/10.1016/j.bbrc.2018.07.060.

    Article  CAS  PubMed  Google Scholar 

  594. Qu F, Li C-B, Yuan B-T, Qi W, Li H-L, Shen X-Z, Zhao G, Wang J-T, Liu Y-J. MicroRNA-26a induces osteosarcoma cell growth and metastasis via the Wnt/β-catenin pathway. Oncol Lett. 2016;11:1592–6. https://doi.org/10.3892/ol.2015.4073.

    Article  CAS  PubMed  Google Scholar 

  595. Zhang C, Song G, Ye W, Xu B. MicroRNA-302a inhibits osteosarcoma cell migration and invasion by directly targeting IGF-1R. Oncol Lett. 2018;15:5577–83. https://doi.org/10.3892/ol.2018.8049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  596. Wang L, Aireti A, Aihaiti A, Li K. Expression of microRNA-150 and its target gene IGF2BP1 in human osteosarcoma and their clinical implications. Pathol Oncol Res. 2018. https://doi.org/10.1007/s12253-018-0454-0.

    Article  PubMed  Google Scholar 

  597. Li X, Liu X, Fang J, Li H, Chen J. microRNA-363 plays a tumor suppressive role in osteosarcoma by directly targeting MAP2K4. Int J Clin Exp Med. 2015;8:20157–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  598. Cui C, Shi X. miR-187 inhibits tumor growth and invasion by directly targeting MAPK12 in osteosarcoma. Exp Ther Med. 2017;14:1045–50. https://doi.org/10.3892/etm.2017.4624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  599. Du L, Chen T, Zhao K, Yang D. miR-30a suppresses osteosarcoma proliferation and metastasis by downregulating MEF2D expression. Onco Targ Ther. 2018;11:2195–202. https://doi.org/10.2147/OTT.S102430.

    Article  Google Scholar 

  600. Tsai H-C, Su H-L, Huang C-Y, Fong Y-C, Hsu C-J, Tang C-H. CTGF increases matrix metalloproteinases expression and subsequently promotes tumor metastasis in human osteosarcoma through down-regulating miR-519d. Oncotarget. 2014;5:3800–12. https://doi.org/10.18632/oncotarget.1998.

    Article  PubMed  PubMed Central  Google Scholar 

  601. Sun X, Xu Y, Zhang S, Li X, Wang Y, Zhang Y, Zhao X, Li Y, Wang Y. MicroRNA-183 suppresses the vitality, invasion and migration of human osteosarcoma cells by targeting metastasis-associated protein 1. Exp Ther Med. 2018;15:5058–64. https://doi.org/10.3892/etm.2018.6068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  602. Zhao J, Chen F, Zhou Q, Pan W, Wang X, Xu J, Ni L, Yang H. Aberrant expression of microRNA-99a and its target gene mTOR associated with malignant progression and poor prognosis in patients with osteosarcoma. Onco Targ Ther. 2016;9:1589–97. https://doi.org/10.2147/OTT.S102421.

    Article  CAS  Google Scholar 

  603. Jiao G-J, Zhang S-J, Li Y, Wu W-L, Liu H-C. MicroRNA-645 promotes metastasis of osteosarcoma via targeting tumor suppressor NM23 nucleoside diphosphate kinase 2. Clin Exp Pharmacol Physiol. 2018;45:1317–24. https://doi.org/10.1111/1440-1681.13006.

    Article  CAS  PubMed  Google Scholar 

  604. Xu M, Jin H, Xu C-X, Bi W-Z, Wang Y. MiR-34c inhibits osteosarcoma metastasis and chemoresistance. Med Oncol. 2014;31:972. https://doi.org/10.1007/s12032-014-0972-x.

    Article  CAS  PubMed  Google Scholar 

  605. Liu Q, Yang G, Qian Y. Loss of MicroRNA-489-3p promotes osteosarcoma metastasis by activating PAX3-MET pathway. Mol Carcinog. 2017;56:1312–21. https://doi.org/10.1002/mc.22593.

    Article  CAS  PubMed  Google Scholar 

  606. Liu Y, Cheng Z, Pan F, Yan W. MicroRNA-373 promotes growth and cellular invasion in osteosarcoma cells by activation of the PI3K/AKT-Rac1-JNK pathway: the potential role in spinal osteosarcoma. Oncol Res. 2017;25:989–99. https://doi.org/10.3727/096504016X14813867762123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  607. Li C, Xu B, Miu X, Deng Z, Liao H, Hao L. Inhibition of miRNA-21 attenuates the proliferation and metastasis of human osteosarcoma by upregulating PTEN. Exp Ther Med. 2018;15:1036–40. https://doi.org/10.3892/etm.2017.5477.

    Article  CAS  PubMed  Google Scholar 

  608. Jiashi W, Chuang Q, Zhenjun Z, Guangbin W, Bin L, Ming H. MicroRNA-506-3p inhibits osteosarcoma cell proliferation and metastasis by suppressing RAB3D expression. Aging (Albany NY). 2018;10:1294–305. https://doi.org/10.18632/aging.101468.

    Article  Google Scholar 

  609. Zhou X, Wei M, Wang W. MicroRNA-340 suppresses osteosarcoma tumor growth and metastasis by directly targeting ROCK1. Biochem Biophys Res Commun. 2013;437:653–8. https://doi.org/10.1016/j.bbrc.2013.07.033.

    Article  CAS  PubMed  Google Scholar 

  610. Li Z, Ni J, Song D, Ding M. Regulatory mechanism of microRNA-128 in osteosarcoma tumorigenesis and evolution through targeting SASH1. Oncol Lett. 2018;15:8687–94. https://doi.org/10.3892/ol.2018.8397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  611. Zhang J-F, Zhang G-Y, Hu X-M, Luo Z-P, Ma Y-Z. MicroRNA-384 downregulates SETD8 expression to suppress cell growth and metastasis in osteosarcoma cells. Eur Rev Med Pharmacol Sci. 2018;22:1602–8. https://doi.org/10.26355/eurrev_201803_14566.

    Article  PubMed  Google Scholar 

  612. Yu Z, Zhang Y, Gao N, Wang X. Overexpression of miR-506 inhibits growth of osteosarcoma through Snail2. Am J Transl Res. 2015;7:2716–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  613. Wang W-T, Qi Q, Zhao P, Li C-Y, Yin X-Y, Yan R-B. miR-590-3p is a novel microRNA which suppresses osteosarcoma progression by targeting SOX9. Biomed Pharmacother. 2018;107:1763–9. https://doi.org/10.1016/j.biopha.2018.06.124.

    Article  CAS  PubMed  Google Scholar 

  614. Qian M, Gong H, Yang X, Zhao J, Yan W, Lou Y, Peng D, Li Z, Xiao J. MicroRNA-493 inhibits the proliferation and invasion of osteosarcoma cells through directly targeting specificity protein 1. Oncol Lett. 2018;15:8149–56. https://doi.org/10.3892/ol.2018.8268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  615. Xie L, Yao Z, Zhang Y, Li D, Hu F, Liao Y, Zhou L, Zhou Y, Huang Z, He Z, Han L, Yang Y, Yang Z. Deep RNA sequencing reveals the dynamic regulation of miRNA, lncRNAs, and mRNAs in osteosarcoma tumorigenesis and pulmonary metastasis. Cell Death Dis. 2018;9:772. https://doi.org/10.1038/s41419-018-0813-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  616. Zhou Z, Li Z, Shen Y, Chen T. MicroRNA-138 directly targets TNFAIP8 and acts as a tumor suppressor in osteosarcoma. Exp Ther Med. 2017;14:3665–73. https://doi.org/10.3892/etm.2017.4947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  617. Rehei A-L, Zhang L, Fu Y-X, Mu W-B, Yang D-S, Liu Y, Zhou S-J, Younusi A. MicroRNA-214 functions as an oncogene in human osteosarcoma by targeting TRAF3. Eur Rev Med Pharmacol Sci. 2018;22:5156–64. https://doi.org/10.26355/eurrev_201808_15711.

    Article  PubMed  Google Scholar 

  618. Niu J, Sun Y, Guo Q, Niu D, Liu B. miR-1 inhibits cell growth, migration, and invasion by targeting VEGFA in osteosarcoma cells. Dis Markers. 2016;2016:7068986. https://doi.org/10.1155/2016/7068986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  619. Shen L, Wang P, Yang J, Li X. MicroRNA-217 regulates WASF3 expression and suppresses tumor growth and metastasis in osteosarcoma. PLoS One. 2014;9:e109138. https://doi.org/10.1371/journal.pone.0109138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  620. Lin Z-W, Zhang W, Jiang S-D, Wei W-B, Li X-F. Inhibition of microRNA-940 suppresses the migration and invasion of human osteosarcoma cells through the secreted frizzled-related protein 1-mediated Wnt/β-catenin signaling pathway. J Cell Biochem. 2018;120:2657–70. https://doi.org/10.1002/jcb.27580.

    Article  CAS  Google Scholar 

  621. Chu Y-W, Wang C-R, Weng F-B, Yan Z-J, Wang C. MicroRNA-222 contributed to cell proliferation, invasion and migration via regulating YWHAG in osteosarcoma. Eur Rev Med Pharmacol Sci. 2018;22:2588–97. https://doi.org/10.26355/eurrev_201805_14952.

    Article  PubMed  Google Scholar 

  622. Xu J, Wang Z, Liao Z, Dai D, Ma X. MicroRNA-150 functions as an antioncogenic regulator in osteosarcoma. Oncol Lett. 2017;14:2483–90. https://doi.org/10.3892/ol.2017.6393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  623. Ye Z, Jingzhong L, Yangbo L, Lei C, Jiandong Y. Propofol inhibits proliferation and invasion of osteosarcoma cells by regulation of microRNA-143 expression. Oncol Res. 2013;21:201–7. https://doi.org/10.3727/096504014X13890370410203.

    Article  CAS  PubMed  Google Scholar 

  624. Li F, Li S, Cheng T. TGF-β1 promotes osteosarcoma cell migration and invasion through the miR-143-versican pathway. Cell Physiol Biochem. 2014;34:2169–79. https://doi.org/10.1159/000369660.

    Article  CAS  PubMed  Google Scholar 

  625. Mao JH, Zhou RP, Peng AF, Liu ZL, Huang SH, Long XH, Shu Y. microRNA-195 suppresses osteosarcoma cell invasion and migration in vitro by targeting FASN. Oncol Lett. 2012;4:1125–9. https://doi.org/10.3892/ol.2012.863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  626. Babar IA, Cheng CJ, Booth CJ, Liang X, Weidhaas JB, Saltzman WM, Slack FJ. Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci USA. 2012;109:E1695–704. https://doi.org/10.1073/pnas.1201516109.

    Article  PubMed  PubMed Central  Google Scholar 

  627. Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M. microRNAs in cancer management. Lancet Oncol. 2012;13:e249–58. https://doi.org/10.1016/S1470-2045(12)70073-6.

    Article  CAS  PubMed  Google Scholar 

  628. Bravo V, Rosero S, Ricordi C, Pastori RL. Instability of miRNA and cDNAs derivatives in RNA preparations. Biochem Biophys Res Commun. 2007;353:1052–5. https://doi.org/10.1016/j.bbrc.2006.12.135.

    Article  CAS  PubMed  Google Scholar 

  629. Nguyen T, Menocal EM, Harborth J, Fruehauf JH. RNAi therapeutics: an update on delivery. Curr Opin Mol Ther. 2008;10:158–67.

    CAS  PubMed  Google Scholar 

  630. Gill S-L, O’Neill H, McCoy RJ, Logeswaran S, O’Brien F, Stanton A, Kelly H, Duffy GP. Enhanced delivery of microRNA mimics to cardiomyocytes using ultrasound responsive microbubbles reverses hypertrophy in an in vitro model. Technol Health Care. 2014;22:37–51. https://doi.org/10.3233/THC-130772.

    Article  PubMed  Google Scholar 

  631. Liu J, Dang L, Li D, Liang C, He X, Wu H, Qian A, Yang Z, Au DWT, Chiang MWL, Zhang B-T, Han Q, Yue KKM, Zhang H, Lv C, Pan X, Xu J, Bian Z, Shang P, Tan W, Liang Z, Guo B, Lu A, Zhang G. A delivery system specifically approaching bone resorption surfaces to facilitate therapeutic modulation of microRNAs in osteoclasts. Biomaterials. 2015;52:148–60. https://doi.org/10.1016/j.biomaterials.2015.02.007.

    Article  CAS  PubMed  Google Scholar 

  632. Wang S, Cao M, Deng X, Xiao X, Yin Z, Hu Q, Zhou Z, Zhang F, Zhang R, Wu Y, Sheng W, Zeng Y. Degradable hyaluronic acid/protamine sulfate interpolyelectrolyte complexes as miRNA-delivery nanocapsules for triple-negative breast cancer therapy. Adv Healthc Mater. 2015;4:281–90. https://doi.org/10.1002/adhm.201400222.

    Article  CAS  PubMed  Google Scholar 

  633. Janssen HLA, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y, Persson R, King BD, Kauppinen S, Levin AA, Hodges MR. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368:1685–94. https://doi.org/10.1056/NEJMoa1209026.

    Article  CAS  PubMed  Google Scholar 

  634. Zhang L, Lyer AK, Yang X, Kobayashi E, Guo Y, Mankin H, Hornicek FJ, Amiji MM, Duan Z. Polymeric nanoparticle-based delivery of microRNA-199a-3p inhibits proliferation and growth of osteosarcoma cells. Int J Nanomedicine. 2015;10:2913–24. https://doi.org/10.2147/IJN.S79143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  635. Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B. 2016;6:287–96. https://doi.org/10.1016/j.apsb.2016.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  636. Simonson B, Das S. MicroRNA therapeutics: the next magic bullet? Mini Rev Med Chem. 2015;15:467–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  637. Shimbo K, Miyaki S, Ishitobi H, Kato Y, Kubo T, Shimose S, Ochi M. Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration. Biochem Biophys Res Commun. 2014;445:381–7. https://doi.org/10.1016/j.bbrc.2014.02.007.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Brassesco.

Ethics declarations

Conflict of interest

Nothing to declare.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viera, G.M., Salomao, K.B., de Sousa, G.R. et al. miRNA signatures in childhood sarcomas and their clinical implications. Clin Transl Oncol 21, 1583–1623 (2019). https://doi.org/10.1007/s12094-019-02104-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-019-02104-z

Keywords

Navigation