Skip to main content
Log in

Tumor-Suppressing Effects of miR-141 in Human Osteosarcoma

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Osteosarcoma is the most common primary malignancy to arise from bone. The pathogenesis of osteosarcoma is unclear, and new therapy molecular target is needed. The miRNAs researched suggested that miRNAs are involved in the pathogenesis of osteosarcoma. MiR-141, which belong to miR-200 family, take a part in tumorigenesis. However, the role of miR-141 in the pathogenesis of osteosarcoma remained unclear. In this study, we focused on the miR-141 in osteosarcoma and found that the expression of miR-141 is lower in osteosarcoma. Overexpression of miR-141 not only inhibits osteosarcoma cell proliferation but also induces cell apoptosis. It is estimated that miR-141 played its role via ZEB1 and ZEB2. In all, miR-141 played a osteosarcoma-suppressing role via ZEB1 and ZEB2. Our finding may elucidate the miRNAs mechanism in osteosarcoma and provide a new molecule target for osteosarcoma therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mirabello, L., Troisi, R. J., & Savage, S. A. (2009). Osteosarcoma incidence and survival rates from 1973 to 2004: Data from the surveillance, epidemiology, and end results program. Cancer, 115(7), 1531–1543.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Bielack, S. S., Kempf-Bielack, B., Delling, G., Exner, G. U., Flege, S., Helmke, K., et al. (2002). Prognostic factors in high-grade osteosarcoma of the extremities or trunk: An analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. Journal of Clinical Oncology, 20(3), 776–790.

    Article  PubMed  Google Scholar 

  3. Lewis, V. O. (2009). What’s new in musculoskeletal oncology. Journal of Bone and Joint Surgery American Volume, 91(6), 1546–1556.

    Article  Google Scholar 

  4. Meyers, P. A., Schwartz, C. L., Krailo, M., Kleinerman, E. S., Betcher, D., Bernstein, M. L., et al. (2005). Osteosarcoma: A randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. Journal of Clinical Oncology, 23(9), 2004–2011.

    Article  CAS  PubMed  Google Scholar 

  5. Cho, Y., Jung, G. H., Chung, S. H., Kim, J. Y., Choi, Y., & Kim, J. D. (2011). Long-term survivals of stage IIb osteosarcoma: A 20-year experience in a single institution. Clinics in Orthopedic Surgery, 3(1), 48–54.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Tsuchiya, H., Tomita, K., Mori, Y., Asada, N., Morinaga, T., Kitano, S., et al. (1998). Caffeine-assisted chemotherapy and minimized tumor excision for nonmetastatic osteosarcoma. Anticancer Research, 18(1B), 657–666.

    CAS  PubMed  Google Scholar 

  7. Bolling, T., Schuller, P., Distelmaier, B., Schuck, A., Ernst, I., Gosheger, G., et al. (2008). Perioperative high-dose rate brachytherapy using a bendy applicator (flab): Treatment results of 74 patients. Anticancer Research, 28(6B), 3885–3890.

    PubMed  Google Scholar 

  8. Kim, V. N., Han, J., & Siomi, M. C. (2009). Biogenesis of small RNAs in animals. Nature Reviews Molecular Cell Biology, 10(2), 39–126.

    Article  Google Scholar 

  9. Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136(2), 215–233.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Valencia-Sanchez, M. A., Liu, J., Hannon, G. J., & Parker, R. (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes & Development, 20(5), 515–524.

    Article  CAS  Google Scholar 

  11. Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1), 15–20.

    Article  CAS  PubMed  Google Scholar 

  12. Griffiths-Jones, S., Saini, H. K., van Dongen, S., & Enright, A. J. (2008). miRBase: Tools for microRNA genomics. Nucleic Acids Research, 36, D154–D158.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Mizuno, Y., Yagi, K., Tokuzawa, Y., Kanesaki-Yatsuka, Y., Suda, T., Katagiri, T., et al. (2008). miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation. Biochemical and Biophysical Research Communications, 368(2), 267–272.

    Article  CAS  PubMed  Google Scholar 

  14. Luzi, E., Marini, F., Sala, S. C., Tognarini, I., Galli, G., & Brandi, M. L. (2008). Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. Journal of Bone and Mineral Research, 23(2), 287–295.

    Article  CAS  PubMed  Google Scholar 

  15. Sugatani, T., & Hruska, K. A. (2007). MicroRNA-223 is a key factor in osteoclast differentiation. Journal of Cellular Biochemistry, 101(4), 996–999.

    Article  CAS  PubMed  Google Scholar 

  16. Itoh, T., Nozawa, Y., & Akao, Y. (2009). MicroRNA-141 and -200a are involved in bone morphogenetic protein-2-induced mouse pre-osteoblast differentiation by targeting distal-less homeobox 5. Journal of Biological Chemistry, 284(29), 19272–19279.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Mateescu, B., Batista, L., Cardon, M., Gruosso, T., de Feraudy, Y., Mariani, O., et al. (2011). miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nature Medicine, 17(12), 1627–1635.

    Article  CAS  PubMed  Google Scholar 

  18. Hao, J., Zhang, S., Zhou, Y., Liu, C., Hu, X., & Shao, C. (2011). MicroRNA 421 suppresses DPC4/Smad4 in pancreatic cancer. Biochemical and Biophysical Research Communications, 406(4), 552–557.

    Article  CAS  PubMed  Google Scholar 

  19. Lu, J., Wen, M., Huang, Y., He, X., Wang, Y., Wu, Q., et al. (2013). C2ORF40 suppresses breast cancer cell proliferation and invasion through modulating expression of M phase cell cycle genes. Epigenetics, 8(6), 571–583.

    Article  CAS  PubMed  Google Scholar 

  20. Li, D., Liu, X., Lin, L., Hou, J., Li, N., Wang, C., et al. (2011). MicroRNA-99a inhibits hepatocellular carcinoma growth and correlates with prognosis of patients with hepatocellular carcinoma. Journal of Biological Chemistry, 286(42), 36677–36685.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Coronnello, C., Benos, P. V., & Comi, R. (2013). Combinatorial microRNA target prediction tool. Nucleic Acids Research, 41, W159–W164.

    Article  PubMed Central  PubMed  Google Scholar 

  22. John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C., & Marks, D. S. (2004). Human MicroRNA targets. PLoS Biology, 2(11), e363.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P., & Burge, C. B. (2003). Prediction of mammalian microRNA targets. Cell, 115(7), 787–798.

    Article  CAS  PubMed  Google Scholar 

  24. Megraw, M., Sethupathy, P., Corda, B., & Hatzigeorgiou, A. G. (2007). miRGen: A database for the study of animal microRNA genomic organization and function. Nucleic Acids Research, 35, D149–D155.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Alexiou, P., Vergoulis, T., Gleditzsch, M., Prekas, G., Dalamagas, T., Megraw, M., et al. (2010). miRGen 2.0: A database of microRNA genomic information and regulation. Nucleic Acids Research, 38, D137–D141.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Jones, K. B., Salah, Z., Del Mare, S., Galasso, M., Gaudio, E., Nuovo, G. J., et al. (2012). miRNA signatures associate with pathogenesis and progression of osteosarcoma. Cancer Research, 72(7), 1865–1877.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Hurteau, G. J., Carlson, J. A., Spivack, S. D., & Brock, G. J. (2007). Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Research, 67(17), 7972–7976.

    Article  CAS  PubMed  Google Scholar 

  28. Bracken, C. P., Gregory, P. A., Kolesnikoff, N., Bert, A. G., Wang, J., Shannon, M. F., et al. (2008). A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Research, 68(19), 7846–7854.

    Article  CAS  PubMed  Google Scholar 

  29. Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9(6), 582–589.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10(5), 593–601.

    Article  CAS  PubMed  Google Scholar 

  31. Korpal, M., Lee, E. S., Hu, G., & Kang, Y. (2008). The miR-200 family inhibits epithelial–mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. Journal of Biological Chemistry, 283(22), 14910–14914.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Park, S. M., Gaur, A. B., Lengyel, E., & Peter, M. E. (2008). The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes & Development, 22(7), 894–907.

    Article  CAS  Google Scholar 

  33. Shimono, Y., Zabala, M., Cho, R. W., Lobo, N., Dalerba, P., Qian, D., et al. (2009). Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell, 138(3), 592–603.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Wellner, U., Schubert, J., Burk, U. C., Schmalhofer, O., Zhu, F., Sonntag, A., et al. (2009). The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature Cell Biology, 11(12), 1487–1495.

    Article  CAS  PubMed  Google Scholar 

  35. Iliopoulos, D., Lindahl-Allen, M., Polytarchou, C., Hirsch, H. A., Tsichlis, P. N., & Struhl, K. (2010). Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Molecular Cell, 39(5), 761–772.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Schickel, R., Park, S. M., Murmann, A. E., & Peter, M. E. (2010). miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1. Molecular Cell, 38(6), 908–915.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Chang, C. J., Chao, C. H., Xia, W., Yang, J. Y., Xiong, Y., Li, C. W., et al. (2011). p53 Regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs. Nature Cell Biology, 13(3), 317–323.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kim, T., Veronese, A., Pichiorri, F., Lee, T. J., Jeon, Y. J., Volinia, S., et al. (2011). p53 Regulates epithelial–mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. Journal of Experimental Medicine, 208(5), 875–883.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianning Zhao.

Additional information

Haidong Xu and Qiang Mei have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Mei, Q., Xiong, C. et al. Tumor-Suppressing Effects of miR-141 in Human Osteosarcoma. Cell Biochem Biophys 69, 319–325 (2014). https://doi.org/10.1007/s12013-013-9801-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9801-7

Keywords

Navigation