Skip to main content

Advertisement

Log in

MiR-30a regulates the proliferation, migration, and invasion of human osteosarcoma by targeting Runx2

  • Original Article
  • Published:
Tumor Biology

Abstract

Osteosarcoma (OS) is the most common primary malignant bone tumor in young patients. However, treatment paradigms and survival rates have not improved in decades. MicroRNAs have been shown to be critical regulators of physiological homeostasis and pathological process, including bone disease. Nearly half of the microRNA (miRNA) genes are located at genomic regions and fragile sites known to be frequently deleted or amplified in various kinds of cancers. In this study, we investigated the role miR-30a in OS. A negative correlation between miR-30a expression and malignant grade was observed in OS cell lines. The overexpression of miR-30a reduced proliferation, migration, and invasion in 143B cells and the inhibitor of miR-30a increased proliferation, migration, and invasion in Saos2 cells. Further studies revealed that runt-related transcription factors 2 (Runx2) was a regulative target gene of miR-30a. Rescue assay significantly reversed the effects of overexpressing or inhibiting miR-30a. miR-30a also suppressed tumor formation and pulmonary metastasis in vivo. All the results suggest a critical role of miR-30a in suppressing proliferation, migration, and invasion of OS by targeting Runx2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barro V, Velez R, Pacha D, Giralt J, Roca I, Aguirre M. Bernese periacetabular osteotomy in a hip extra-articular resection followed by reconstruction using an extracorporeal irradiated acetabulum autograft with megaprosthesis, for proximal femur osteosarcoma in a pediatric patient. Case Rep Med. 2015;2015:813683. doi:10.1155/2015/813683.

    PubMed  PubMed Central  Google Scholar 

  2. Savage SA, Mirabello L, Wang Z, Gastier-Foster JM, Gorlick R, Khanna C, et al. Genome-wide association study identifies two susceptibility loci for osteosarcoma. Nat Genet. 2013;45(7):799–803. doi:10.1038/ng.2645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shao XJ, Miao MH, Xue J, Ji XQ, Zhu H. The down-regulation of microRNA-497 contributes to cell growth and cisplatin resistance through PI3K/Akt pathway in osteosarcoma. Cell Physiol Biochem. 2015;36(5):2051–62. doi:10.1159/000430172.

    Article  CAS  PubMed  Google Scholar 

  4. Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: osteosarcoma and related tumors. Cancer Genet Cytogenet. 2003;145(1):1–30.

    Article  CAS  PubMed  Google Scholar 

  5. Chen YU, Xu SF, Xu M, Yu XC. Postoperative infection and survival in osteosarcoma patients: reconsideration of immunotherapy for osteosarcoma. Mol Clin Oncol. 2015;3(3):495–500. doi:10.3892/mco.2015.528.

    PubMed  PubMed Central  Google Scholar 

  6. Hattinger CM, Fanelli M, Tavanti E, Vella S, Ferrari S, Picci P, et al. Advances in emerging drugs for osteosarcoma. Expert Opin Emerg Drugs. 2015;1–20. doi:10.1517/14728214.2015.1051965.

  7. Vimalraj S, Arumugam B, Miranda PJ, Selvamurugan N. Runx2: structure, function, and phosphorylation in osteoblast differentiation. Int J Biol Macromol. 2015;78:202–8. doi:10.1016/j.ijbiomac.2015.04.008.

    Article  CAS  PubMed  Google Scholar 

  8. Guo YW, Chiu CY, Liu CL, Jap TS, Lin LY. Novel mutation of RUNX2 gene in a patient with cleidocranial dysplasia. Int J Clin Exp Pathol. 2015;8(1):1057–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wysokinski D, Pawlowska E, Blasiak J. RUNX2: a master bone growth regulator that may be involved in the DNA damage response. DNA Cell Biol. 2015;34(5):305–15. doi:10.1089/dna.2014.2688.

    Article  CAS  PubMed  Google Scholar 

  10. Bruderer M, Richards RG, Alini M, Stoddart MJ. Role and regulation of RUNX2 in osteogenesis. Eur Cell Mater. 2014;28:269–86.

    CAS  PubMed  Google Scholar 

  11. Cohen-Solal KA, Boregowda RK, Lasfar A. RUNX2 and the PI3K/AKT axis reciprocal activation as a driving force for tumor progression. Mol Cancer. 2015;14(1):137. doi:10.1186/s12943-015-0404-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li XQ, Du X, Li DM, Kong PZ, Sun Y, Liu PF, et al. ITGBL1 is a Runx2 transcriptional target and promotes breast cancer bone metastasis by activating the TGF-beta signaling pathway. Cancer Res. 2015. doi:10.1158/0008-5472.can-15-0240.

    Google Scholar 

  13. Ge C, Zhao G, Li Y, Li H, Zhao X, Pannone G, et al. Role of Runx2 phosphorylation in prostate cancer and association with metastatic disease. Oncogene. 2015. doi:10.1038/onc.2015.91.

    PubMed Central  Google Scholar 

  14. Nesbitt H, Browne G, O’Donovan KM, Byrne NM, Worthington J, McKeown SR, et al. Nitric oxide up-regulates RUNX2 in LNCaP prostate tumours: implications for tumour growth in vitro and in vivo. J Cell Physiol. 2015. doi:10.1002/jcp.25093.

    Google Scholar 

  15. Li N, Luo D, Hu X, Luo W, Lei G, Wang Q, et al. RUNX2 and osteosarcoma. Anti Cancer Agents Med Chem. 2015;15(7):881–7.

    Article  CAS  Google Scholar 

  16. Abdelzaher E, Kotb AF. High coexpression of runt-related transcription factor 2 (RUNX2) and p53 independently predicts early tumor recurrence in bladder urothelial carcinoma patients. Appl Immunohistochem Mol Morphol. 2015. doi:10.1097/pai.0000000000000193.

    Google Scholar 

  17. Won KY, Park HR, Park YK. Prognostic implication of immunohistochemical Runx2 expression in osteosarcoma. Tumori. 2009;95(3):311–6.

    CAS  PubMed  Google Scholar 

  18. van der Deen M, Akech J, Lapointe D, Gupta S, Young DW, Montecino MA, et al. Genomic promoter occupancy of runt-related transcription factor RUNX2 in osteosarcoma cells identifies genes involved in cell adhesion and motility. J Biol Chem. 2012;287(7):4503–17. doi:10.1074/jbc.M111.287771.

    Article  CAS  PubMed  Google Scholar 

  19. Xue J, Niu YF, Huang J, Peng G, Wang LX, Yang YH, et al. miR-141 suppresses the growth and metastasis of HCC cells by targeting E2F3. Tumour Biol. 2014;35(12):12103–7. doi:10.1007/s13277-014-2513-9.

    Article  CAS  PubMed  Google Scholar 

  20. Sui C, Xu F, Shen W, Geng L, Xie F, Dai B, et al. Overexpression of miR-218 inhibits hepatocellular carcinoma cell growth through RET. Tumour Biol. 2015;36(3):1511–8. doi:10.1007/s13277-014-2679-1.

    Article  CAS  PubMed  Google Scholar 

  21. Huffaker TB, O’Connell RM. miR-155-SOCS1 as a functional axis: satisfying the burden of proof. Immunity. 2015;43(1):3–4. doi:10.1016/j.immuni.2015.06.020.

    Article  CAS  PubMed  Google Scholar 

  22. Belgardt BF, Ahmed K, Spranger M, Latreille M, Denzler R, Kondratiuk N, et al. The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes. Nat Med. 2015;21(6):619–27. doi:10.1038/nm.3862.

    Article  CAS  PubMed  Google Scholar 

  23. Ma Y, She XG, Ming YZ, Wan QQ. miR-24 promotes the proliferation and invasion of HCC cells by targeting SOX7. Tumour Biol. 2014;35(11):10731–6. doi:10.1007/s13277-014-2018-6.

    Article  CAS  PubMed  Google Scholar 

  24. Nouraee N, Mowla SJ. miRNA therapeutics in cardiovascular diseases: promises and problems. Front Genet. 2015;6:232. doi:10.3389/fgene.2015.00232.

  25. Bertoli G, Cava C, Castiglioni I. MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics. 2015;5(10):1122–43. doi:10.7150/thno.11543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang F, Ren X, Zhang X. Role of microRNA-150 in solid tumors. Oncol Lett. 2015;10(1):11–6. doi:10.3892/ol.2015.3170.

    PubMed  PubMed Central  Google Scholar 

  27. Yu F, Deng H, Yao H, Liu Q, Su F, Song E. Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene. 2010;29(29):4194–204.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang X, Daucher M, Armistead D, Russell R, Kottilil S. MicroRNA expression profiling in HCV-infected human hepatoma cells identifies potential anti-viral targets induced by interferon-alpha. PLoS One. 2013;8(2):e55733. doi:10.1371/journal.pone.0055733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ouzounova M, Vuong T, Ancey PB, Ferrand M, Durand G, Le-Calvez Kelm F, et al. MicroRNA miR-30 family regulates non-attachment growth of breast cancer cells. BMC Genomics. 2013;14:139. doi:10.1186/1471-2164-14-139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang T, Li F, Tang S. MiR-30a upregulates BCL2A1, IER3 and cyclin D2 expression by targeting FOXL2. Oncol Lett. 2015;9(2):967–71. doi:10.3892/ol.2014.2723.

    CAS  PubMed  Google Scholar 

  31. Dass CR, Ek ET, Contreras KG, Choong PF. A novel orthotopic murine model provides insights into cellular and molecular characteristics contributing to human osteosarcoma. Clin Exp Metastasis. 2006;23(7-8):367–80. doi:10.1007/s10585-006-9046-6.

    Article  PubMed  Google Scholar 

  32. Pereira DM, Rodrigues PM, Borralho PM, Rodrigues CM. Delivering the promise of miRNA cancer therapeutics. Drug Discov Today. 2013;18(5):282–9.

    Article  CAS  PubMed  Google Scholar 

  33. Volinia S, Calin GA, Liu C-G, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103(7):2257–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dalmay T. Mechanism of miRNA-mediated repression of mRNA translation. Essays Biochem. 2013;54:29–38. doi:10.1042/bse0540029.

    Article  CAS  PubMed  Google Scholar 

  35. Kao CJ, Martiniez A, Shi XB, Yang J, Evans CP, Dobi A, et al. miR-30 as a tumor suppressor connects EGF/Src signal to ERG and EMT. Oncogene. 2014;33(19):2495–503. doi:10.1038/onc.2013.200.

    Article  CAS  PubMed  Google Scholar 

  36. Qi F, He T, Jia L, Song N, Guo L, Ma X, et al. The miR-30 family inhibits pulmonary vascular hyperpermeability in the premetastatic phase by direct targeting of Skp2. Clin Cancer Res. 2015;21(13):3071–80. doi:10.1158/1078-0432.ccr-14-2785.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Q, Tang Q, Qin D, Yu L, Huang R, Lv G, et al. Role of microRNA 30a targeting insulin receptor substrate 2 in colorectal tumorigenesis. Mol Cell Biol. 2015;35(6):988–1000. doi:10.1128/mcb.01242-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Franzetti GA, Laud-Duval K, Bellanger D, Stern MH, Sastre-Garau X, Delattre O. MiR-30a-5p connects EWS-FLI1 and CD99, two major therapeutic targets in Ewing tumor. Oncogene. 2013;32(33):3915–21. doi:10.1038/onc.2012.403.

    Article  CAS  PubMed  Google Scholar 

  39. Khanna C, Wan X, Bose S, Cassaday R, Olomu O, Mendoza A, et al. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med. 2004;10(2):182–6.

    Article  CAS  PubMed  Google Scholar 

  40. Mirabello L, Koster R, Moriarity BS, Spector LG, Meltzer PS, Gary J, et al. A genome-wide scan identifies variants in NFIB associated with metastasis in patients with osteosarcoma. Cancer Discov. 2015. doi:10.1158/2159-8290.cd-15-0125.

    PubMed  PubMed Central  Google Scholar 

  41. Jones KB, Salah Z, Del Mare S, Galasso M, Gaudio E, Nuovo GJ, et al. miRNA signatures associate with pathogenesis and progression of osteosarcoma. Cancer Res. 2012;72(7):1865–77. doi:10.1158/0008-5472.can-11-2663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fujita T, Azuma Y, Fukuyama R, Hattori Y, Yoshida C, Koida M, et al. Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. J Cell Biol. 2004;166(1):85–95. doi:10.1083/jcb.200401138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. He H, Ni J, Huang J. Molecular mechanisms of chemoresistance in osteosarcoma (review). Oncol Lett. 2014;7(5):1352–62. doi:10.3892/ol.2014.1935.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang Q, Jiang Z, Meng T, Yin H, Wang J, Wan W, et al. MiR-30a inhibits osteolysis by targeting RunX2 in giant cell tumor of bone. Biochem Biophys Res Commun. 2014;453(1):160–5. doi:10.1016/j.bbrc.2014.09.076.

    Article  CAS  PubMed  Google Scholar 

  45. Wu T, Zhou H, Hong Y, Li J, Jiang X, Huang H. miR-30 family members negatively regulate osteoblast differentiation. J Biol Chem. 2012;287(10):7503–11. doi:10.1074/jbc.M111.292722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Tongchuan He (University of Chicago) for generously providing the pAdEasy-1 and pAdTrace-TO4 vectors.

Funding

This work was supported by the National Natural Science Foundation of China (31200971).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Shi.

Ethics declarations

Conflicts of interest

None

Ethics approval

All animal experiments in the present study were performed in compliance with the guidelines of the Committee on Use of Live Animals in Chongqing Medical University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Yan, S., Wang, J. et al. MiR-30a regulates the proliferation, migration, and invasion of human osteosarcoma by targeting Runx2. Tumor Biol. 37, 3479–3488 (2016). https://doi.org/10.1007/s13277-015-4086-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4086-7

Keywords

Navigation