Skip to main content

Advertisement

Log in

Green tea polyphenol EGCG suppresses osteosarcoma cell growth through upregulating miR-1

  • Original Article
  • Published:
Tumor Biology

Abstract

(−)-Epigallocatechin-3-gallate (EGCG), the most abundant and active polyphenol in green tea, has been demonstrated to have anticancer effects in a wide variety of human cancer. MicroRNAs (miRNAs) are a class of short noncoding RNAs and play important role in gene regulation and are critically involved in the pathogenesis and progression of human cancer. This study aims to investigate the effects of EGCG on osteosarcoma (OS) cells and elucidate the underlying mechanism. Cellular function assays revealed that EGCG inhibited cell proliferation, induced cell cycle arrest and promoted apoptosis of OS cells in vitro, and also inhibited the growth of transplanted tumors in vivo. By miRNA microarray and RT-qPCR analysis, miR-1 was found to be significantly upregulated in MG-63 and U-2OS treated by EGCG in dose- and time-dependent manners, and miR-1 downregulation by inhibitor mimics attenuated EGCG-induced inhibition on cell growth of OS cells. We also confirmed that miR-1 was also frequently decreased in clinical OS tumor tissues. Moreover, both EGCG and miR-1 mimic inhibited c-MET expression, and combination treatment with EGCG and c-MET inhibitor (crizotinib) had enhanced inhibitory effects on the growth of MG-63 and U-2OS cells. Taken together, these results suggest that EGCG has an anticancer effect on OS cells, at least partially, through regulating miR-1/c-MET interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Luetke A, Meyers PA, Lewis I, Juergens H. Osteosarcoma treatment—where do we stand? A state of the art review. Cancer Treat Rev. 2014;40:523–32.

    Article  PubMed  Google Scholar 

  2. He H, Ni J, Huang J. Molecular mechanisms of chemoresistance in osteosarcoma (review). Oncol Lett. 2014;7:1352–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen D, Wan SB, Yang H, Yuan J, Chan TH, Dou QP. Egcg, green tea polyphenols and their synthetic analogs and prodrugs for human cancer prevention and treatment. Adv Clin Chem. 2011;53:155–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lamoral-Theys D, Pottier L, Dufrasne F, Neve J, Dubois J, Kornienko A, et al. Natural polyphenols that display anticancer properties through inhibition of kinase activity. Curr Med Chem. 2010;17:812–25.

    Article  CAS  PubMed  Google Scholar 

  5. Garg AK, Buchholz TA, Aggarwal BB. Chemosensitization and radiosensitization of tumors by plant polyphenols. Antioxid Redox Signal. 2005;7:1630–47.

    Article  CAS  PubMed  Google Scholar 

  6. Fujiki H, Suganuma M, Kurusu M, Okabe S, Imayoshi Y, Taniguchi S, et al. New tnf-alpha releasing inhibitors as cancer preventive agents from traditional herbal medicine and combination cancer prevention study with egcg and sulindac or tamoxifen. Mutat Res. 2003;523–524:119–25.

    Article  PubMed  Google Scholar 

  7. Suganuma M, Saha A, Fujiki H. New cancer treatment strategy using combination of green tea catechins and anticancer drugs. Cancer Sci. 2011;102:317–23.

    Article  CAS  PubMed  Google Scholar 

  8. Bartel DP. Micrornas: target recognition and regulatory functions. Cell. 2009;136:215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Farazi TA, Spitzer JI, Morozov P, Tuschl T. Mirnas in human cancer. J Pathol. 2011;223:102–15.

    Article  CAS  PubMed  Google Scholar 

  10. Milenkovic D, Jude B, Morand C. Mirna as molecular target of polyphenols underlying their biological effects. Free Radic Biol Med. 2013;64:40–51.

    Article  CAS  PubMed  Google Scholar 

  11. Sethi S, Li Y, Sarkar FH. Regulating mirna by natural agents as a new strategy for cancer treatment. Curr Drug Targets. 2013;14:1167–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang Z, Li Y, Ahmad A, Azmi AS, Kong D, Banerjee S, et al. Targeting mirnas involved in cancer stem cell and emt regulation: an emerging concept in overcoming drug resistance. Drug Resist Updat Rev Commentaries Antimicrob Anticancer Chemother. 2010;13:109–18.

    CAS  Google Scholar 

  13. Zhang J, Chen YL, Ji G, Fang W, Gao Z, Liu Y, et al. Sorafenib inhibits epithelial-mesenchymal transition through an epigenetic-based mechanism in human lung epithelial cells. PLoS One. 2013;8, e64954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schramm L. Going green: the role of the green tea component egcg in chemoprevention. J Carcinogenesis Mutagen. 2013;4:1000142.

    Article  Google Scholar 

  15. Park JS, Khoi PN, Joo YE, Lee YH, Lang SA, Stoeltzing O, et al. Egcg inhibits recepteur d’origine nantais expression by suppressing egr-1 in gastric cancer cells. Int J Oncol. 2013;42:1120–6.

    CAS  PubMed  Google Scholar 

  16. Ogawa K, Hara T, Shimizu M, Nagano J, Ohno T, Hoshi M, et al. (−)-epigallocatechin gallate inhibits the expression of indoleamine 2,3-dioxygenase in human colorectal cancer cells. Oncol Lett. 2012;4:546–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma YC, Li C, Gao F, Xu Y, Jiang ZB, Liu JX, et al. Epigallocatechin gallate inhibits the growth of human lung cancer by directly targeting the egfr signaling pathway. Oncol Rep. 2014;31:1343–9.

    CAS  PubMed  Google Scholar 

  18. Braicu C, Gherman CD, Irimie A, Berindan-Neagoe I. Epigallocatechin-3-gallate (egcg) inhibits cell proliferation and migratory behaviour of triple negative breast cancer cells. J Nanosci Nanotechnol. 2013;13:632–7.

    Article  CAS  PubMed  Google Scholar 

  19. Trudel D, Labbe DP, Araya-Farias M, Doyen A, Bazinet L, Duchesne T, et al. A two-stage, single-arm, phase ii study of egcg-enriched green tea drink as a maintenance therapy in women with advanced stage ovarian cancer. Gynecol Oncol. 2013;131:357–61.

    Article  PubMed  Google Scholar 

  20. Hsieh TC, Wu JM. Targeting cwr22rv1 prostate cancer cell proliferation and gene expression by combinations of the phytochemicals egcg, genistein and quercetin. Anticancer Res. 2009;29:4025–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hwang JT, Ha J, Park IJ, Lee SK, Baik HW, Kim YM, et al. Apoptotic effect of egcg in ht-29 colon cancer cells via ampk signal pathway. Cancer Lett. 2007;247:115–21.

    Article  CAS  PubMed  Google Scholar 

  22. Park IJ, Lee YK, Hwang JT, Kwon DY, Ha J, Park OJ. Green tea catechin controls apoptosis in colon cancer cells by attenuation of h2o2-stimulated cox-2 expression via the ampk signaling pathway at low-dose h2o2. Ann N Y Acad Sci. 2009;1171:538–44.

    Article  CAS  PubMed  Google Scholar 

  23. Xu L, Zhang Y, Wang H, Zhang G, Ding Y, Zhao L. Tumor suppressor mir-1 restrains epithelial-mesenchymal transition and metastasis of colorectal carcinoma via the mapk and pi3k/akt pathway. J Transl Med. 2014;12:244.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kawakami K, Enokida H, Chiyomaru T, Tatarano S, Yoshino H, Kagara I, et al. The functional significance of mir-1 and mir-133a in renal cell carcinoma. Eur J Cancer. 2012;48:827–36.

    Article  CAS  PubMed  Google Scholar 

  25. Li D, Yang P, Li H, Cheng P, Zhang L, Wei D, et al. Microrna-1 inhibits proliferation of hepatocarcinoma cells by targeting endothelin-1. Life Sci. 2012;91:440–7.

    Article  CAS  PubMed  Google Scholar 

  26. Yoshino H, Chiyomaru T, Enokida H, Kawakami K, Tatarano S, Nishiyama K, et al. The tumour-suppressive function of mir-1 and mir-133a targeting tagln2 in bladder cancer. Br J Cancer. 2011;104:808–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hudson RS, Yi M, Esposito D, Watkins SK, Hurwitz AA, Yfantis HG, et al. Microrna-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer. Nucleic Acids Res. 2012;40:3689–703.

    Article  CAS  PubMed  Google Scholar 

  28. Novello C, Pazzaglia L, Cingolani C, Conti A, Quattrini I, Manara MC, et al. Mirna expression profile in human osteosarcoma: role of mir-1 and mir-133b in proliferation and cell cycle control. Int J Oncol. 2013;42:667–75.

    CAS  PubMed  Google Scholar 

  29. Sampson ER, Martin BA, Morris AE, Xie C, Schwarz EM, O’Keefe RJ, et al. The orally bioavailable met inhibitor pf-2341066 inhibits osteosarcoma growth and osteolysis/matrix production in a xenograft model. J Bone Miner Res Off J Am Soc Bone Miner Res. 2011;26:1283–94.

    Article  CAS  Google Scholar 

  30. Migliore C, Martin V, Leoni VP, Restivo A, Atzori L, Petrelli A, et al. Mir-1 downregulation cooperates with macc1 in promoting met overexpression in human colon cancer. Clinical Cancer Res Off J Am Assoc Cancer Res. 2012;18:737–47.

    Article  CAS  Google Scholar 

  31. Nasser MW, Datta J, Nuovo G, Kutay H, Motiwala T, Majumder S, et al. Down-regulation of micro-rna-1 (mir-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by mir-1. J Biol Chem. 2008;283:33394–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yan D, Dong Xda E, Chen X, Wang L, Lu C, Wang J, et al. Microrna-1/206 targets c-met and inhibits rhabdomyosarcoma development. J Biol Chem. 2009;284:29596–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanchun Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, K., Wang, W. Green tea polyphenol EGCG suppresses osteosarcoma cell growth through upregulating miR-1. Tumor Biol. 37, 4373–4382 (2016). https://doi.org/10.1007/s13277-015-4187-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4187-3

Keywords

Navigation