Skip to main content
Log in

Origins of the Ambient Solar Wind: Implications for Space Weather

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Sun’s outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress—in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory—that gives us hope that the above problems are indeed solvable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • L. Abbo, R. Lionello, P. Riley, Y.-M. Wang, Coronal pseudo-streamer and bipolar streamer observed by SOHO/UVCS in March 2008. Sol. Phys. 290, 2043–2054 (2015)

    Article  ADS  Google Scholar 

  • L. Abbo, L. Ofman, S.K. Antiochos, V.H. Hansteen, L. Harra, Y.-K. Ko, G. Lapenta, B. Li, P. Riley, L. Strachan, R. von Steiger, Y.-M. Wang, Slow solar wind: Observations and modeling. Space Sci. Rev. 201, 55–108 (2016)

    Article  ADS  Google Scholar 

  • H. Alfvén, On the solar corona. Arkiv Math. Astron. Fysik (Band 27A) 25, 1–23 (1941)

    MATH  Google Scholar 

  • M.D. Altschuler, G. Newkirk, Magnetic fields and the structure of the solar corona: I: Methods of calculating coronal fields. Sol. Phys. 9, 131–149 (1969)

    Article  ADS  Google Scholar 

  • S.K. Antiochos, Z. Mikić, V.S. Titov, R. Lionello, J.A. Linker, A model for the sources of the slow wind. Astrophys. J. 731, 112 (2011)

    Article  ADS  Google Scholar 

  • E. Antonucci, M.A. Dodero, S. Giordano, Fast solar wind velocity in a polar coronal hole during solar minimum. Sol. Phys. 197, 115–134 (2000)

    Article  ADS  Google Scholar 

  • C.N. Arge, V.J. Pizzo, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. 105, 10465–10480 (2000)

    Article  ADS  Google Scholar 

  • C.N. Arge, D. Odstrčil, V.J. Pizzo, L.R. Mayer, Improved method for specifying solar wind speed near the Sun, in Solar Wind Ten, ed. by M. Velli, R. Bruno. AIP Conf. Proc., vol. 679 (AIP, New York, 2003), pp. 190–193

    Google Scholar 

  • W.I. Axford, J.F. McKenzie, The origin of high speed solar wind streams, in Solar Wind Seven, ed. by E. Marsch, R. Schwenn (Pergamon, New York, 1992), pp. 1–5

    Google Scholar 

  • U. Bąk-Stȩślicka, S.E. Gibson, Y. Fan, C. Bethge, B. Forland, L.A. Rachmeler, The magnetic structure of solar prominence cavities: New observational signature revealed by coronal magnetometry. Astrophys. J. Lett. 770, L28 (2013)

    Article  ADS  Google Scholar 

  • D.N. Baker, P.J. Erickson, J.F. Fennell, J.C. Foster, A.N. Jaynes, P.T. Verronen, Space weather effects in the Earth’s radiation belts. Space Sci. Rev. (2017), this issue

  • S.D. Bale, M. Pulupa, C. Salem, C.H.K. Chen, E. Quataert, Electron heat conduction in the solar wind: Transition from Spitzer-Härm to the collisionless limit. Astrophys. J. Lett. 769, L22 (2013)

    Article  ADS  Google Scholar 

  • S.J. Bame, J.R. Asbridge, W.C. Feldman, J.T. Gosling, Evidence for a structure-free state at high solar wind speeds. J. Geophys. Res. 82, 1487–1492 (1977)

    Article  ADS  Google Scholar 

  • D. Banerjee, L. Teriaca, J.G. Doyle, K. Wilhelm, Broadening of Si VIII lines observed in the solar polar coronal holes. Astron. Astrophys. 339, 208–214 (1998)

    ADS  Google Scholar 

  • A. Barnes, Acceleration of the solar wind. Rev. Geophys. 30, 43–55 (1992)

    Article  ADS  Google Scholar 

  • T.S. Bastian, Radio wave propagation in the corona and the interplanetary medium. Astrophys. Space Sci. 277, 107–116 (2001)

    Article  ADS  MATH  Google Scholar 

  • T.S. Bastian, A.O. Benz, D.E. Gary, Radio emission from solar flares. Annu. Rev. Astron. Astrophys. 36, 131–188 (1998)

    Article  ADS  Google Scholar 

  • B. Bavassano, E. Pietropaolo, R. Bruno, On the evolution of outward and inward Alfvénic fluctuations in the polar wind. J. Geophys. Res. 105, 15959–15964 (2000)

    Article  ADS  Google Scholar 

  • A. Bemporad, L. Abbo, Spectroscopic signature of Alfvén waves damping in a polar coronal hole up to 0.4 solar radii. Astrophys. J. 751, 110 (2012)

    Article  ADS  Google Scholar 

  • L. Berger, R.F. Wimmer-Schweingruber, G. Gloeckler, Systematic measurements of ion-proton differential streaming in the solar wind. Phys. Rev. Lett. 106, 151103 (2011)

    Article  ADS  Google Scholar 

  • T. Berger, R. Viereck, H. Singer, T. Onsager, D. Biesecker, R. Rutledge, S. Hill, R. Akmaev, G. Milward, T. Fuller-Rowell, Characteristics of operational space weather forecasting: Observations and models. Presented at 1st Joint AAS/AGU Triennial Earth-Sun Summit, 112.04 (2015)

  • M.K. Bird, P. Edenhofer, Remote sensing observations of the solar corona, in Physics of the Inner Heliosphere I, ed. by R. Schwenn, E. Marsch (Springer, Berlin, 1990), pp. 13–97

    Chapter  Google Scholar 

  • M.G. Bobra, X. Sun, J.T. Hoeksema, M. Turmon, Y. Liu, K. Hayashi, G. Barnes, K.D. Leka, The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: SHARPs: Space-weather HMI active region patches. Sol. Phys. 289, 3549–3578 (2014)

    Article  ADS  Google Scholar 

  • J.E. Borovsky, Flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU. J. Geophys. Res. 113, A08110 (2008)

    ADS  Google Scholar 

  • J.E. Borovsky, The plasma structure of coronal hole solar wind: Origins and evolution. J. Geophys. Res. 121, 5055–5087 (2016)

    Article  Google Scholar 

  • J.E. Borovsky, M.H. Denton, Differences between CME-driven storms and CIR-driven storms. J. Geophys. Res. 111, A07S08 (2006)

    ADS  Google Scholar 

  • A.R. Breen, B.J. Thompson, M. Kojima, D.A. Biesecker, A. Canals, R.A. Fallows, J.A. Linker, A.J. Lazarus, A. Lecinski, Z. Mikić, P.J. Moran, P.J.S. Williams, Measurements of the solar wind over a wide range of heliocentric distances: A comparison of results from the first three Whole Sun Months. J. Atmos. Sol.-Terr. Phys. 62, 1527–1543 (2000)

    Article  ADS  Google Scholar 

  • D.H. Brooks, H.P. Warren, Establishing a connection between active region outflows and the solar wind: Abundance measurements with EIS/Hinode. Astrophys. J. Lett. 727, L13 (2011)

    Article  ADS  Google Scholar 

  • A.S. Brun, R.A. García, G. Houdek, D. Nandy, M. Pinsonneault, The solar-stellar connection. Space Sci. Rev. 196, 303–356 (2015)

    Article  ADS  Google Scholar 

  • L.F. Burlaga, A. Szabo, Fast and slow flows in the solar wind near the ecliptic at 1 AU. Space Sci. Rev. 87, 137–140 (1999)

    Article  ADS  Google Scholar 

  • M.D. Cash, D.A. Biesecker, V. Pizzo, C.A. Koning, G. Millward, C.N. Arge, C.J. Henney, D. Odstrčil, Space Weather 13, 611–625 (2015)

    Article  ADS  Google Scholar 

  • J.W. Chamberlain, Interplanetary gas. II. Expansion of a model solar corona. Astrophys. J. 131, 47–56 (1960)

    Article  ADS  Google Scholar 

  • B.D.G. Chandran, T.J. Dennis, E. Quataert, S.D. Bale, Incorporating kinetic physics into a two-fluid solar-wind model with temperature anisotropy and low-frequency Alfvén-wave turbulence. Astrophys. J. 743, 197 (2011)

    Article  ADS  Google Scholar 

  • H. Che, M.L. Goldstein, The origin of non-Maxwellian solar wind electron velocity distribution function: Connection to nanoflares in the solar corona. Astrophys. J. Lett. 795, L38 (2014)

    Article  ADS  Google Scholar 

  • C.H.K. Chen, Recent progress in astrophysical plasma turbulence from solar wind observations. J. Plasma Phys. 82, 535820602 (2016)

    Article  Google Scholar 

  • J.W. Cirtain, L. Golub, A.R. Winebarger, B. De Pontieu, K. Kobayashi, R.L. Moore, R.W. Walsh, K.E. Korreck, M. Weber, P. McCauley, A. Title, S. Kuzin, C.E. DeForest, Energy release in the solar corona from spatially resolved magnetic braids. Nature 493, 501–503 (2013)

    Article  ADS  Google Scholar 

  • P.J. Coleman, Turbulence, viscosity, and dissipation in the solar-wind plasma. Astrophys. J. 153, 371–388 (1968)

    Article  ADS  Google Scholar 

  • S.R. Cranmer, Coronal holes and the high-speed solar wind. Space Sci. Rev. 101, 229–294 (2002)

    Article  ADS  Google Scholar 

  • S.R. Cranmer, Observational aspects of wave acceleration in open magnetic regions, in SOHO-13: Waves, Oscillations, and Small-Scale Events in the Solar Atmosphere, ed. by H. Lacoste (ESA, Noordwijk, 2004), pp. 353–362

    Google Scholar 

  • S.R. Cranmer, Why is the fast solar wind fast and the slow solar wind slow? A survey of geometrical models, in Connecting Sun and Heliosphere, ed. by B. Fleck, T.H. Zurbuchen, H. Lacoste. ESA, vol. SP-592 (ESA, Noordwijk, 2005), pp. 159–164

    Google Scholar 

  • S.R. Cranmer, Coronal holes. Living Rev. Sol. Phys. 6, 3 (2009)

    Article  ADS  Google Scholar 

  • S.R. Cranmer, Suprathermal electrons in the solar corona: Can nonlocal transport explain heliospheric charge states? Astrophys. J. Lett. 791, L31 (2014a)

    Article  ADS  Google Scholar 

  • S.R. Cranmer, Ensemble simulations of proton heating in the solar wind via turbulence and ion cyclotron resonance. Astrophys. J. Suppl. Ser. 213, 16 (2014b)

    Article  ADS  Google Scholar 

  • S.R. Cranmer, S.H. Saar, Testing a predictive theoretical model for the mass loss rates of cool stars. Astrophys. J. 741, 54 (2011)

    Article  ADS  Google Scholar 

  • S.R. Cranmer, A.A. van Ballegooijen, On the generation, propagation, and reflection of Alfvén waves from the solar photosphere to the distant heliosphere. Astrophys. J. Suppl. Ser. 156, 265–293 (2005)

    Article  ADS  Google Scholar 

  • S.R. Cranmer, A.A. van Ballegooijen, Can the solar wind be driven by magnetic reconnection in the Sun’s magnetic carpet? Astrophys. J. 720, 824–847 (2010)

    Article  ADS  Google Scholar 

  • S.R. Cranmer, L.N. Woolsey, Driving solar spicules and jets with magnetohydrodynamic turbulence: Testing a persistent idea. Astrophys. J. 812, 71 (2015)

    Article  ADS  Google Scholar 

  • S.R. Cranmer, J.L. Kohl, G. Noci, E. Antonucci, G. Tondello, M.C.E. Huber, L. Strachan, A.V. Panasyuk, L.D. Gardner, M. Romoli, S. Fineschi, D. Dobrzycka, J.C. Raymond, P. Nicolosi, O.H.W. Siegmund, D. Spadaro, C. Benna, A. Ciaravella, S. Giordano, S.R. Habbal, M. Karovska, X. Li, R. Martin, J.G. Michels, A. Modigliani, G. Naletto, R.H. O’Neal, C. Pernechele, G. Poletto, P.L. Smith, R.M. Suleiman, An empirical model of a polar coronal hole at solar minimum. Astrophys. J. 511, 481–501 (1999)

    Article  ADS  Google Scholar 

  • S.R. Cranmer, A.A. van Ballegooijen, R.J. Edgar, Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence. Astrophys. J. Suppl. Ser. 171, 520–551 (2007)

    Article  ADS  Google Scholar 

  • S.R. Cranmer, A.V. Panasyuk, J.L. Kohl, Improved constraints on the preferential heating and acceleration of oxygen ions in the extended solar corona. Astrophys. J. 678, 1480–1497 (2008)

    Article  ADS  Google Scholar 

  • S.R. Cranmer, W.H. Matthaeus, B.A. Breech, J.C. Kasper, Empirical constraints on proton and electron heating in the solar wind. Astrophys. J. 702, 1604–1614 (2009)

    Article  ADS  Google Scholar 

  • S.R. Cranmer, A.A. van Ballegooijen, L.N. Woolsey, Connecting the Sun’s high-resolution magnetic carpet to the turbulent heliosphere. Astrophys. J. 767, 125 (2013)

    Article  ADS  Google Scholar 

  • N.U. Crooker, R.L. McPherron, M.J. Owens, Comparison of interplanetary signatures of streamers and pseudostreamers. J. Geophys. Res. 119, 4157–4163 (2014)

    Article  Google Scholar 

  • K. Dalmasse, D. Nychka, S.E. Gibson, N. Flyer, Y. Fan, ROAM: A radial-basis-function optimization approximation method for diagnosing the three-dimensional coronal magnetic field. Front. Astron. Space Sci. 3, 24 (2016)

    Article  ADS  Google Scholar 

  • J.M. Davila, N. Gopalswamy, B.J. Thompson, Universal processes in heliophysics, in Universal Heliophysical Processes, ed. by N. Gopalswamy, D.F. Webb. IAU Symp., vol. 257 (Cambridge University Press, Cambridge, 2009), pp. 11–16

    Google Scholar 

  • I. De Moortel, S.J. Bradshaw, Forward modelling of coronal intensity perturbations. Sol. Phys. 252, 101–119 (2008)

    Article  ADS  Google Scholar 

  • I. De Moortel, V.M. Nakariakov, Magnetohydrodynamic waves and coronal seismology: An overview of recent results. Philos. Trans. R. Soc. A 370, 3193–3216 (2012)

    Article  ADS  Google Scholar 

  • B. De Pontieu, S.W. McIntosh, M. Carlsson, V.H. Hansteen, T.D. Tarbell, C.J. Schrijver, A.M. Title, R.A. Shine, S. Tsuneta, Y. Katsukawa, K. Ichimoto, Y. Suematsu, T. Shimizu, S. Nagata, Chromospheric Alfvén waves strong enough to power the solar wind. Science 318, 1574–1577 (2007)

    Article  ADS  Google Scholar 

  • B. De Pontieu, S.W. McIntosh, V.H. Hansteen, C.J. Schrijver, Observing the roots of solar coronal heating in the chromosphere. Astrophys. J. Lett. 701, L1–L6 (2009)

    Article  ADS  Google Scholar 

  • G. de Toma, Evolution of coronal holes and implications for high-speed solar wind during the minimum between cycles 23 and 24. Sol. Phys. 274, 195–217 (2011)

    Article  ADS  Google Scholar 

  • C.E. DeForest, T.A. Howard, Feasibility of heliospheric imaging from near Earth. Astrophys. J. 804, 126 (2015)

    Article  ADS  Google Scholar 

  • C.E. DeForest, T.A. Howard, S.J. Tappin, Observations of detailed structure in the solar wind at 1 AU with STEREO/HI-2. Astrophys. J. 738, 103 (2011)

    Article  ADS  Google Scholar 

  • C.E. DeForest, W.H. Matthaeus, N.M. Viall, S.R. Cranmer, Fading coronal structure and the onset of turbulence in the young solar wind. Astrophys. J. 828, 66 (2016)

    Article  ADS  Google Scholar 

  • A.J. Dessler, Solar wind and interplanetary magnetic field. Rev. Geophys. Space Phys. 5, 1–41 (1967)

    Article  ADS  Google Scholar 

  • J.B. Dove, S.E. Gibson, L.A. Rachmeler, S. Tomczyk, P. Judge, A ring of polarized light: Evidence for twisted coronal magnetism in cavities. Astrophys. J. Lett. 731, L1 (2011)

    Article  ADS  Google Scholar 

  • I. Doxas, W. Horton, J. Lyon, M. Wiltberger, R.S. Weigel, Branch prediction and speculative execution: A magnetospheric data assimilation scheme for space weather forecasting. Space Weather 5, S11001 (2007)

    Article  ADS  Google Scholar 

  • J. Eastwood, R. Nakamura, M. Hesse, Space weather driven dynamics of the magnetosphere. Space Sci. Rev. (2017), this issue

  • E. Echer, B.T. Tsurutani, W.D. Gonzalez, Interplanetary origins of moderate (\(-100~\mbox{nT} < \mbox{Dst} \leq -50~\mbox{nT}\)) geomagnetic storms during solar cycle 23 (1996–2008). J. Geophys. Res. 118, 385–392 (2013)

    Article  Google Scholar 

  • J.K. Edmondson, On the role of interchange reconnection in the generation of the slow solar wind. Space Sci. Rev. 172, 209–225 (2012)

    Article  ADS  Google Scholar 

  • S.J. Edwards, A.R. Yeates, F.-X. Bocquet, D.H. Mackay, Influence of non-potential coronal magnetic topology on solar-wind models. Sol. Phys. 290, 2791–2808 (2015)

    Article  ADS  Google Scholar 

  • A.I. Efimov, T. Imamura, K.-I. Oyama, K. Noguchi, L.N. Samoznaev, A.S. Nabatov, M.K. Bird, I.V. Chashei, Properties of solar wind turbulence from radio occultation experiments with the NOZOMI spacecraft. Astron. Rep. 54, 1032–1041 (2010)

    Article  ADS  Google Scholar 

  • G. Einaudi, P. Boncinelli, R.B. Dahlburg, J.T. Karpen, Formation of the slow solar wind in a coronal streamer. J. Geophys. Res. 104, 521–534 (1999)

    Article  ADS  Google Scholar 

  • H.A. Elliott, C.J. Henney, D.J. McComas, C.W. Smith, B.J. Vasquez, Temporal and radial variation of the solar wind temperature–speed relationship. J. Geophys. Res. 117, A09102 (2012)

    ADS  Google Scholar 

  • B.A. Emery, I.G. Richardson, D.S. Evans, F.J. Rich, G.R. Wilson, Solar rotational periodicities and the semiannual variation in the solar wind, radiation belt, and aurora. Sol. Phys. 274, 399–425 (2011)

    Article  ADS  Google Scholar 

  • R. Esser, S. Fineschi, D. Dobrzycka, S.R. Habbal, R.J. Edgar, J.C. Raymond, J.L. Kohl, M. Guhathakurta, Plasma properties in coronal holes derived from measurements of minor ion spectral lines and polarized white light intensity. Astrophys. J. Lett. 510, L63–L67 (1999)

    Article  ADS  Google Scholar 

  • R.M. Evans, M. Opher, R. Oran, B. van der Holst, I.V. Sokolov, R. Frazin, T.I. Gombosi, A. Vásquez, Coronal heating by surface Alfvén wave damping: Implementation in a global magnetohydrodynamics model of the solar wind. Astrophys. J. 756, 155 (2012)

    Article  ADS  Google Scholar 

  • A.N. Fazakerley, L.K. Harra, L. van Driel-Gesztelyi, An investigation of the sources of Earth-directed solar wind during Carrington Rotation 2053. Astrophys. J. 823, 145 (2016)

    Article  ADS  Google Scholar 

  • X. Feng, X. Ma, C. Xiang, Data-driven modeling of the solar wind from 1 \(R_{s}\) to 1 AU. J. Geophys. Res. 120, 10159–10174 (2015)

    Article  Google Scholar 

  • G.H. Fisher, W.P. Abbett, D.J. Bercik, M.D. Kazachenko, B.J. Lynch, B.T. Welsch, J.T. Hoeksema, K. Hayashi, Y. Liu, A.A. Norton, A. Sainz Dalda, X. Sun, M.L. DeRosa, M.C.M. Cheung, The coronal global evolutionary model: Using HMI vector magnetogram and Doppler data to model the buildup of free magnetic energy in the solar corona. Space Weather 13, 369–373 (2015)

    Article  ADS  Google Scholar 

  • L.A. Fisk, Acceleration of the solar wind as a result of the reconnection of open magnetic flux with coronal loops. J. Geophys. Res. 108, 1157 (2003)

    Article  Google Scholar 

  • L.A. Fisk, N.A. Schwadron, T.H. Zurbuchen, Acceleration of the fast solar wind by the emergence of new magnetic flux. J. Geophys. Res. 104, 19765–19772 (1999)

    Article  ADS  Google Scholar 

  • N.J. Fox, M. Velli, S.D. Bale, R. Decker, A. Driesman, R.A. Howard, J.C. Kasper, J. Kinnison, M. Kusterer, D. Lario, M.K. Lockwood, D.J. McComas, N.E. Raouafi, A. Szabo, The solar probe plus mission: Humanity’s first visit to our star. Space Sci. Rev. 204, 7–48 (2016)

    Article  ADS  Google Scholar 

  • R.A. Frazin, S.R. Cranmer, J.L. Kohl, Empirically determined anisotropic velocity distributions and outflows of O5+ ions in a coronal streamer at solar minimum. Astrophys. J. 597, 1145–1157 (2003)

    Article  ADS  Google Scholar 

  • J.W. Freeman, Estimates of solar wind heating inside 0.3 AU. Geophys. Res. Lett. 15, 88–91 (1988)

    Article  ADS  Google Scholar 

  • H. Fu, M.S. Madjarska, L.D. Xia, B. Li, Z.H. Huang, Z. Wangguan, Charge states and FIP bias of the solar wind from coronal holes, active regions, and quiet Sun. Astrophys. J. 836, 169 (2017)

    Article  ADS  Google Scholar 

  • K. Fujiki, M. Tokumaru, T. Iju, K. Hakamada, M. Kojima, Relationship between solar-wind speed and coronal magnetic-field properties. Sol. Phys. 290, 2491–2505 (2015)

    Article  ADS  Google Scholar 

  • A.B. Galvin, J.L. Kohl, Whole Sun Month at solar minimum: An introduction. J. Geophys. Res. 104, 9673–9678 (1999)

    Article  ADS  Google Scholar 

  • N. Ganushkina, A. Jaynes, Space weather effects produced by ring current particles. Space Sci. Rev. (2017), this issue

  • J. Geiss, P. Hirt, H. Leutwyler, On acceleration and motion of ions in corona and solar wind. Sol. Phys. 12, 458–483 (1970)

    Article  ADS  Google Scholar 

  • J. Geiss, G. Gloeckler, R. von Steider, Origin of the solar wind from composition data. Space Sci. Rev. 72, 49–60 (1995)

    Article  ADS  Google Scholar 

  • A. Ghosh, S. Chatterjee, A.R. Khan, D. Tripathi, A.N. Ramaprakash, D. Banerjee, P. Chordia, A.M. Gandorder, N. Krivova, D. Nandy, C. Rajarshi, S.K. Solanki, S. Sriram, The solar ultraviolet imaging telescope onboard Aditya-L1. Proc. SPIE 9905, 990503 (2016)

    Article  Google Scholar 

  • S.E. Gibson, Data–model comparison using FORWARD and CoMP, in Polarimetry: From the Sun to Stars and Stellar Environments, ed. by K. Nagendra, S. Bagnulo, R. Centeno, M. Martínez. IAU Symp., vol. 305 (Cambridge University Press, Cambridge, 2015), pp. 245–250

    Google Scholar 

  • S.E. Gibson, A. Fludra, F. Bagenal, D. Biesecker, G. del Zanna, B. Bromage, Solar minimum streamer densities and temperatures using Whole Sun Month coordinated data sets. J. Geophys. Res. 104, 9691–9700 (1999)

    Article  ADS  Google Scholar 

  • S.E. Gibson, J.U. Kozyra, G. de Toma, B.A. Emery, T. Onsager, B.J. Thompson, If the Sun is so quiet, why is the Earth ringing? A comparison of two solar minimum intervals. J. Geophys. Res. 114, A09105 (2009)

    ADS  Google Scholar 

  • S.E. Gibson, G. de Toma, B. Emery, P. Riley, L. Zhao, Y. Elsworth, R.J. Leamon, J. Lei, S. McIntosh, R.A. Mewaldt, B.J. Thompson, D. Webb, The Whole Heliosphere Interval in the context of a long and structured solar minimum: An overview from Sun to Earth. Sol. Phys. 274, 5–27 (2011)

    Article  ADS  Google Scholar 

  • S.E. Gibson, T. Kucera, S. White, J. Dove, Y. Fan, B. Forland, L. Rachmeler, C. Downs, K. Reeves, FORWARD: A toolset for multiwavelength coronal magnetometry. Front. Astron. Space Sci. 3, 8 (2016)

    Article  ADS  Google Scholar 

  • S.E. Gibson, K. Dalmasse, L.A. Rachmeler, M.L. DeRosa, S. Tomczyk, G. de Toma, J. Burkepile, M. Galloy, Magnetic nulls and super-radial expansion in the solar corona. Astrophys. J. 840, L13 (2017a)

    Article  ADS  Google Scholar 

  • S.E. Gibson, D. Webb, I.M. Hewins, R.H. McFadden, B.A. Emery, W. Denig, P.S. McIntosh, Beyond sunspots: Studies using the McIntosh archive of global solar magnetic field patterns, in Living Around Active Stars, ed. by D. Nandi, A. Valio, P. Petit. IAU Symp., vol. 328 (2017b), in press

    Google Scholar 

  • G. Gloeckler, J. Geiss, H. Balsiger, P. Bedini, J.C. Cain, J. Fischer, L.A. Fisk, A.B. Galvin, F. Gliem, D.C. Hamilton, J.V. Hollweg, F.M. Ipavich, R. Joos, S. Livi, R.A. Lundgren, U. Mall, J.F. McKenzie, K.W. Ogilvie, F. Ottens, W. Rieck, E.O. Tums, R. von Steiger, W. Weiss, B. Wilken, The solar wind ion composition spectrometer. Astron. Astrophys. Suppl. Ser. 92, 267–289 (1992)

    ADS  Google Scholar 

  • B.E. Goldstein, M. Neugebauer, J.L. Phillips, S. Bame, J.T. Gosling, D. McComas, Y.-M. Wang, N.R. Sheeley, S.T. Suess, Ulysses plasma parameters: Latitudinal, radial, and temporal variations. Astron. Astrophys. 316, 296–303 (1996)

    ADS  Google Scholar 

  • N. Gopalswamy, A. Lara, R.P. Lepping, M.L. Kaiser, D. Berdichevsky, O.C.St. Cyr, Interplanetary acceleration of coronal mass ejections. Geophys. Res. Lett. 27, 145–148 (2000)

    Article  ADS  Google Scholar 

  • J.T. Gosling, R.T. Hansen, S.J. Bame, Solar wind speed distributions: 1962–1970. J. Geophys. Res. 76, 1811–1815 (1971)

    Article  ADS  Google Scholar 

  • J.T. Gosling, D.J. McComas, J.L. Phillips, S.J. Bame, Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections. J. Geophys. Res. 96, 7831–7839 (1991)

    Article  ADS  Google Scholar 

  • R.R. Grall, W.A. Coles, M.T. Klinglesmith, A.R. Breen, P.J.S. Williams, J. Markkanen, R. Esser, Nature 379, 429–432 (1996)

    Article  ADS  Google Scholar 

  • A. Greco, W.H. Matthaeus, R. D’Amicis, S. Servidio, P. Dmitruk, Evidence for nonlinear development of magnetohydrodynamic scale intermittency in the inner heliosphere. Astrophys. J. 749, 105 (2012)

    Article  ADS  Google Scholar 

  • L. Green, B. Vršnak, T. Török, S. Krucker, C. Manchester, A. Veronig, The origin and predictability of solar eruptions. Space Sci. Rev. (2017), this issue

  • C. Gressl, A.M. Veronig, M. Temmer, D. Odstrčil, J.A. Linker, Z. Mikić, P. Riley, Comparative study of MHD modeling of the background solar wind. Sol. Phys. 289, 1783–1801 (2014)

    Article  ADS  Google Scholar 

  • G.R. Gupta, Spectroscopic evidence of Alfvén wave damping in the off-limb solar corona. Astrophys. J. 836, 4 (2017)

    Article  ADS  Google Scholar 

  • S.R. Habbal, H. Morgan, M. Druckmüller, A. Ding, J.F. Cooper, A. Daw, E.C. Sittler, Probing the fundamental physics of the solar corona with lunar solar occultation observations. Sol. Phys. 285, 9–24 (2013)

    Article  ADS  Google Scholar 

  • M. Hahn, D.W. Savin, Observational quantification of the energy dissipated by Alfvén waves in a polar coronal hole: Evidence that waves drive the fast solar wind. Astrophys. J. 776, 78 (2013)

    Article  ADS  Google Scholar 

  • M. Hahn, E. Landi, D.W. Savin, Evidence of wave damping at low heights in a polar coronal hole. Astrophys. J. 753, 36 (2012)

    Article  ADS  Google Scholar 

  • B. Haisch, J.H.M.M. Schmitt, Advances in solar-stellar astrophysics. Publ. Astron. Soc. Pac. 108, 113–129 (1996)

    Article  ADS  Google Scholar 

  • R. Hammer, Energy balance of stellar coronae. I. Methods and examples. Astrophys. J. 259, 767–778 (1982)

    Article  ADS  Google Scholar 

  • V.H. Hansteen, E. Leer, Coronal heating, densities, and temperatures and solar wind acceleration. J. Geophys. Res. 100, 21577–21594 (1995)

    Article  ADS  Google Scholar 

  • L.K. Harra, T. Sakao, C.H. Mandrini, H. Hara, S. Imada, P.R. Young, L. van Driel-Gesztelyi, D. Baker, Outflows at the edges of active regions: Contribution to solar wind formation? Astrophys. J. Lett. 676, L147 (2008)

    Article  ADS  Google Scholar 

  • K.L. Harvey, F. Recely, Polar coronal holes during cycles 22 and 23. Sol. Phys. 211, 31–52 (2002)

    Article  ADS  Google Scholar 

  • P. Hellinger, P. Trávníček, J.C. Kasper, A.J. Lazarus, Solar wind proton temperature anisotropy: Linear theory and WIND/SWE observations. Geophys. Res. Lett. 33, L09101 (2006)

    Article  ADS  Google Scholar 

  • P. Hellinger, S. Landi, L. Matteini, A. Verdini, L. Franci, Mirror instability in the turbulent solar wind. Astrophys. J. 838, 158 (2017)

    Article  ADS  Google Scholar 

  • M. Hesse, M. Kuznetsova, M. Maddox, A. Pulkkinen, J.S. Shim, D. Berrios, L. Rastaetter, P. MacNeice, S. Taktakishvili, A. Chulaki, L. Moiseev, S. Bakshi, K. Patel, Space weather models and their validation and verification at the CCMC. Presented at COSPAR Scientific Assembly, PSW1-003-10 (2010)

  • J. Heyvaerts, E.R. Priest, Coronal heating by reconnection in DC current systems: A theory based on Taylor’s hypothesis. Astron. Astrophys. 137, 63–78 (1984)

    ADS  Google Scholar 

  • A.K. Higginson, S.K. Antiochos, C.R. DeVore, P.F. Wyper, T.H. Zurbuchen, Dynamics of coronal hole boundaries. Astrophys. J. 837, 113 (2017)

    Article  ADS  Google Scholar 

  • J.T. Hoeksema, P.H. Scherrer, An atlas of photospheric magnetic field observations and computed coronal magnetic fields: 1976–1985. Sol. Phys. 105, 205–211 (1986)

    Article  ADS  Google Scholar 

  • J.V. Hollweg, Transition region, corona, and solar wind in coronal holes. J. Geophys. Res. 91, 4111–4125 (1986)

    Article  ADS  Google Scholar 

  • J.V. Hollweg, P.A. Isenberg, Generation of the fast solar wind: A review with emphasis on the resonant cyclotron interaction. J. Geophys. Res. 107, 1147 (2002)

    Article  Google Scholar 

  • T.E. Holzer, W.I. Axford, The theory of stellar winds and related outflows. Annu. Rev. Astron. Astrophys. 8, 31–60 (1970)

    Article  ADS  Google Scholar 

  • A.J. Hundhausen, Coronal Expansion and Solar Wind (Springer, Berlin, 1972)

    Book  Google Scholar 

  • E.K.J. Huttunen, H.E.J. Koskinen, R. Schwenn, Variability of magnetospheric storms driven by different solar wind perturbations. J. Geophys. Res. 107, 1121 (2002)

    Article  Google Scholar 

  • R.H.A. Iles, A.N. Fazakerley, A.D. Johnstone, N.P. Meredith, P. Bühler, The relativistic electron response in the outer radiation belt during magnetic storms. Ann. Geophys. 20, 957–965 (2002)

    Article  ADS  Google Scholar 

  • T. Imamura, M. Tokumaru, H. Isobe, D. Shiota, H. Ando, M. Miyamoto, T. Toda, B. Häusler, M. Pätzold, A. Nabatov, A. Asai, Outflow structure of the quiet Sun corona probed by spacecraft radio scintillations in strong scattering. Astrophys. J. 788, 117 (2014)

    Article  ADS  Google Scholar 

  • A. Isavnin, A. Vourlidas, E.K.J. Kilpua, Three-dimensional evolution of flux-rope CMEs and its relation to the local orientation of the heliospheric current sheet. Sol. Phys. 289, 2141–2156 (2014)

    Article  ADS  Google Scholar 

  • S.A. Jacques, Momentum and energy transport by waves in the solar atmosphere and solar wind. Astrophys. J. 215, 942–951 (1977)

    Article  ADS  Google Scholar 

  • A.N. Jaynes, D.N. Baker, H.J. Singer, J.V. Rodriguez, T.M. Loto’aniu, A.F. Ali, S.R. Elkington, X. Li, S.G. Kanekal, S.G. Claudepierre, J.F. Fennell, W. Li, R.M. Thorne, C.A. Kletzing, H.E. Spence, G.D. Reeves, Source and seed populations for relativistic electrons: Their roles in radiation belt changes. J. Geophys. Res. 120, 7240–7254 (2015)

    Article  Google Scholar 

  • L.K. Jian, C.T. Russell, J.G. Luhmann, P.J. MacNeice, D. Odstrčil, P. Riley, J.A. Linker, R.M. Skoug, J.T. Steinberg, Comparison of observations at ACE and Ulysses with Enlil model results: Stream interaction regions during Carrington Rotations 2016–2018. Sol. Phys. 273, 179–203 (2011)

    Article  ADS  Google Scholar 

  • L.K. Jian, P.J. MacNeice, A. Taktakishvili, D. Odstrčil, B. Jackson, H.-S. Yu, P. Riley, I.V. Sokolov, R.M. Evans, Validation for solar wind prediction at Earth: Comparison of coronal and heliospheric models installed at the CCMC. Space Weather 13, 316–338 (2015)

    Article  ADS  Google Scholar 

  • L.K. Jian, P.J. MacNeice, M.L. Mays, A. Taktakishvili, D. Odstrčil, B. Jackson, H.-S. Yu, P. Riley, I.V. Sokolov, Validation for global solar wind prediction using Ulysses comparison: Multiple coronal and heliospheric models installed at the Community Coordinated Modeling Center. Space Weather 14, 592–611 (2016)

    Article  ADS  Google Scholar 

  • M. Jin, W.B. Manchester, B. van der Holst, J.R. Gruesbeck, R.A. Frazin, E. Landi, A.M. Vásquez, P.L. Lamy, A. Llebaria, A. Fedorov, G. Tóth, T.I. Gombosi, A global two-temperature corona and inner heliosphere model: A comprehensive validation study. Astrophys. J. 745, 6 (2012)

    Article  ADS  Google Scholar 

  • K. Jockers, Solar wind models based on exospheric theory. Astron. Astrophys. 6, 219–239 (1970)

    ADS  Google Scholar 

  • V. Joulin, E. Buchlin, J. Solomon, C. Guennou, Energetic characterisation and statistics of solar coronal brightenings. Astron. Astrophys. 591, A148 (2016)

    Article  ADS  Google Scholar 

  • P.G. Judge, S.W. McIntosh, Non-uniqueness of atmospheric modeling. Sol. Phys. 190, 331–350 (1999)

    Article  ADS  Google Scholar 

  • P.G. Judge, S. Habbal, E. Landi, From forbidden coronal lines to meaningful coronal magnetic fields. Sol. Phys. 288, 467–480 (2013)

    Article  ADS  Google Scholar 

  • E.K. Kaghashvili, On the acceleration of the solar wind: Role of the inhomogeneous flow. Astrophys. J. 512, 969–974 (1999)

    Article  ADS  Google Scholar 

  • E.K. Kaghashvili, Alfvén wave driven compressional fluctuations in shear flows. Phys. Plasmas 14, 044502 (2007)

    Article  ADS  Google Scholar 

  • N.V. Karachik, A.A. Pevtsov, Solar wind and coronal bright points inside coronal holes. Astrophys. J. 735, 47 (2011)

    Article  ADS  Google Scholar 

  • J.T. Karpen, C.R. DeVore, S.K. Antiochos, E. Pariat, Reconnection-driven coronal-hole jets with gravity and solar wind. Astrophys. J. 834, 62 (2017)

    Article  ADS  Google Scholar 

  • J.C. Kasper, A.J. Lazarus, S.P. Gary, Hot solar-wind helium: Direct evidence for local heating by Alfvén-cyclotron dissipation. Phys. Rev. Lett. 101, 261103 (2008)

    Article  ADS  Google Scholar 

  • E.K.J. Kilpua, H. Hietala, D.L. Turner, H.E.J. Koskinen, T.I. Pulkkinen, J.V. Rodriguez, G.D. Reeves, S.G. Claudepierre, H.E. Spence, Unraveling the drivers of the storm time radiation belt response. Geophys. Res. Lett. 42, 3076–3084 (2015)

    Article  ADS  Google Scholar 

  • E.K.J. Kilpua, M.S. Madjarska, N. Karna, T. Wiegelmann, C. Farrugia, W. Yu, K. Andreeova, Sources of the slow solar wind during the solar cycle 23/24 minimum. Sol. Phys. 291, 2441–2456 (2016)

    Article  ADS  Google Scholar 

  • E.K.J. Kilpua, A. Balogh, R. von Steiger, Y.D. Liu, Geoeffective properties of solar transients and stream interaction regions. Space Sci. Rev. (2017), this issue. doi:10.1007/s11214-017-0411-3

    Google Scholar 

  • J.H. King, N.E. Papitashvili, Solar wind spatial scales in and comparisons of hourly wind and ACE plasma and magnetic field data. J. Geophys. Res. 110, A02104 (2005)

    Article  ADS  Google Scholar 

  • L. Klein, S. Dalla, Acceleration and propagation of solar energetic particles. Space Sci. Rev. (2017), this issue. doi:10.1007/s11214-017-0382-4

    Google Scholar 

  • J.A. Klimchuk, S.J. Bradshaw, Are chromospheric nanoflares a primary source of coronal plasma? Astrophys. J. 791, 60 (2014)

    Article  ADS  Google Scholar 

  • Y.-K. Ko, J.C. Raymond, J. Li, A. Ciaravella, J. Michels, S. Fineschi, R. Wu, Solar and heliospheric observatory ultraviolet coronagraph spectrometer and Yohkohl soft X-ray telescope observations of the high-temperature corona above an active region complex. Astrophys. J. 578, 979–995 (2002)

    Article  ADS  Google Scholar 

  • Y.-K. Ko, J.D. Moses, J.M. Laming, L. Strachan, S.T. Beltran, S. Tomczyk, S.E. Gibson, F. Auchère, R. Casini, S. Fineschi, M. Knoelker, C. Korendyke, S.W. McIntosh, M. Romoli, J. Rybak, D.G. Socker, A. Vourlidas, Q. Wu, Waves and magnetism in the solar atmosphere (WAMIS). Front. Astron. Space Sci. 3, 1 (2016)

    Article  ADS  Google Scholar 

  • J.L. Kohl, R. Esser, S.R. Cranmer, S. Fineschi, L.D. Gardner, A.V. Panasyuk, L. Strachan, R.M. Suleiman, R.A. Frazin, G. Noci, EUV spectral line profiles in polar coronal holes from 1.3 to 3.0 solar radii. Astrophys. J. Lett. 510, L59–L62 (1999)

    Article  ADS  Google Scholar 

  • J.L. Kohl, G. Noci, S.R. Cranmer, J.C. Raymond, Ultraviolet spectroscopy of the extended solar corona. Astron. Astrophys. Rev. 13, 31–157 (2006)

    Article  ADS  Google Scholar 

  • J.L. Kohl, R. Jain, S.R. Cranmer, L.D. Gardner, A.K. Pradhan, J.C. Raymond, L. Strachan, Next generation UV coronagraph instrumentation for solar cycle 24. J. Astrophys. Astron. 29, 321–327 (2008)

    Article  ADS  Google Scholar 

  • M. Kojima, T. Kakinuma, Solar cycle dependence of global distribution of solar wind speed. Space Sci. Rev. 53, 173–222 (1990)

    Article  ADS  Google Scholar 

  • R.A. Kopp, T.E. Holzer, Dynamics of coronal hole regions, I, Steady polytropic flows with multiple critical points. Sol. Phys. 49, 43–56 (1976)

    Article  ADS  Google Scholar 

  • A.S. Krieger, A.F. Timothy, E.C. Roelof, A coronal hole and its identification as the source of a high velocity solar wind stream. Sol. Phys. 29, 505–525 (1973)

    Article  ADS  Google Scholar 

  • T. Kudoh, K. Shibata, Alfvén wave model of spicules and coronal heating. Astrophys. J. 514, 493–505 (1999)

    Article  ADS  Google Scholar 

  • E. Landi, The off-disk thermal structure of a polar coronal hole. Astrophys. J. 685, 1270–1276 (2008)

    Article  ADS  Google Scholar 

  • E. Landi, S.R. Cranmer, Ion temperatures in the low solar corona: Polar coronal holes at solar minimum. Astrophys. J. 691, 794–805 (2009)

    Article  ADS  Google Scholar 

  • S. Landi, F. Pantellini, Kinetic simulations of the solar wind from the subsonic to the supersonic regime. Astron. Astrophys. 400, 769–778 (2003)

    Article  ADS  Google Scholar 

  • E. Landi, R.L. Alexander, J.R. Gruesbeck, J.A. Gilbert, S.T. Lepri, W.B. Mancheser, T.H. Zurbuchen, Carbon ionization states as a diagnostic of the solar wind. Astrophys. J. 744, 100 (2012a)

    Article  ADS  Google Scholar 

  • E. Landi, G. Del Zanna, P.R. Young, K.P. Dere, H.E. Mason, CHIANTI: An atomic database for emission lines. XII. Version 7 of the database. Astrophys. J. 744, 99 (2012b)

    Article  ADS  Google Scholar 

  • B. Lavraud, Y. Liu, K. Segura, J. He, G. Qin, M. Temmer, J.-C. Vial, M. Xiong, J.A. Davies, A.P. Rouillard, R. Pinto, F. Auchère, R.A. Harrison, C. Eyles, W. Gan, P. Lamy, L. Xia, J.P. Eastwood, L. Kong, J. Wang, R.F. Wimmer-Schweingruber, S. Zhang, Q. Zong, J. Soucek, J. An, L. Prech, A. Zhang, P. Rochus, V. Bothmer, M. Janvier, M. Maksimovic, C.P. Escoubet, E.K.J. Kilpua, J. Tappin, R. Vainio, S. Poedts, M.W. Dunlop, N. Savani, N. Gopalswamy, S.D. Bale, G. Li, T. Howard, C. DeForest, D. Webb, N. Lugaz, S.A. Fuselier, K. Dalmasse, J. Tallineau, D. Vranken, J.G. Fernández, A small mission concept to the Sun-Earth Lagrangian L5 point for innovative solar, heliospheric, and space weather science. J. Atmos. Sol.-Terr. Phys. 146, 171–185 (2016)

    Article  ADS  Google Scholar 

  • G. Le Chat, K. Issautier, N. Meyer-Vernet, The solar wind energy flux. Sol. Phys. 279, 197–205 (2012)

    Article  ADS  Google Scholar 

  • R.J. Leamon, S.W. McIntosh, Empirical solar wind forecasting from the chromosphere. Astrophys. J. 659, 738–742 (2007)

    Article  ADS  Google Scholar 

  • M.A. Lee, B. Roberts, On the behavior of hydromagnetic surface waves. Astrophys. J. 301, 430–439 (1986)

    Article  ADS  Google Scholar 

  • C.O. Lee, J.G. Luhmann, X.P. Zhao, Y. Liu, P. Riley, C.N. Arge, C.T. Russell, I. de Pater, Effects of the weak polar fields of solar cycle 23: Investigation using OMNI for the STEREO mission period. Sol. Phys. 256, 345–363 (2009)

    Article  ADS  Google Scholar 

  • C.O. Lee, C.N. Arge, D. Odstrčil, G. Millward, V. Pizzo, J.M. Quinn, C.J. Henney, Ensemble modeling of CME propagation. Sol. Phys. 285, 349–368 (2013)

    Article  ADS  Google Scholar 

  • E. Leer, T.E. Holzer, Energy addition in the solar wind. J. Geophys. Res. 85, 4681–4688 (1980)

    Article  ADS  Google Scholar 

  • E. Leer, T.E. Holzer, T. Flå, Acceleration of the solar wind. Space Sci. Rev. 33, 161–200 (1982)

    Article  ADS  Google Scholar 

  • J. Lei, J.P. Thayer, W. Wang, R.L. McPherron, Impact of CIR storms on thermosphere density variability during the solar minimum of 2008. Sol. Phys. 274, 427–437 (2011)

    Article  ADS  Google Scholar 

  • J.F. Lemaire, V. Pierrard, Kinetic models of solar and polar winds. Astrophys. Space Sci. 277, 169–180 (2001)

    Article  ADS  MATH  Google Scholar 

  • J.F. Lemaire, M. Scherer, Kinetic models of the solar wind. J. Geophys. Res. 76, 7479–7490 (1971)

    Article  ADS  Google Scholar 

  • J.F. Lemaire, K. Stegen, Improved determination of the location of the temperature maximum in the corona. Sol. Phys. 291, 3659–3683 (2016)

    Article  ADS  Google Scholar 

  • M. Lester, J. Huba, J. Foster, Space weather effects: Ionosphere. Space Sci. Rev. (2017), this issue

  • R.H. Levine, A new theory of coronal heating. Astrophys. J. 190, 457–466 (1974)

    Article  ADS  Google Scholar 

  • R.H. Levine, M.D. Altschuler, J.W. Harvey, Solar sources of the interplanetary magnetic field and solar wind. J. Geophys. Res. 82, 1061–1065 (1977)

    Article  ADS  Google Scholar 

  • Y.-P. Li, Q. Yuan, Q.D. Wang, P.F. Chen, J. Neilsen, T. Fang, S. Zhang, J. Dexter, Statistical and theoretical studies of flares from Sagittarius A, in Multi-Messenger Astrophysics of the Galactic Centre, ed. by R. Crocker, S. Longmore, G. Bicknell. IAU Symp., vol. 322 (Cambridge University Press, Cambridge, 2017), pp. 31–38

    Google Scholar 

  • P.C. Liewer, J.R. Hall, M. De Jong, D.G. Socker, R.A. Howard, P.C. Crane, P. Reiser, N. Rich, A. Vourlidas, Determination of three-dimensional structure of corona streamers and relationship to the solar magnetic field. J. Geophys. Res. 106, 15903–15916 (2001)

    Article  ADS  Google Scholar 

  • P.C. Liewer, M. Neugebauer, T. Zurbuchen, Characteristics of active-region sources of solar wind near solar maximum. Sol. Phys. 223, 209–229 (2004)

    Article  ADS  Google Scholar 

  • P.C. Liewer, D. Alexander, J. Ayon, L. Floyd, G. Garbe, B. Goldstein, D. Hassler, A. Kosovichev, R. Mewaldt, N. Murphy, M. Neugebauer, A. Sandman, D. Socker, S. Suess, R. Ulrich, M. Velli, A. Vourlidas, T.H. Zurbuchen, Solar polar imager: Observing solar activity from a new perspective, in NASA Space Science Vision Missions, ed. by M.S. Allen. Progress in Astronautics and Aeronautics, vol. 224 (AIAA, Reston, 2008), pp. 1–37

    Google Scholar 

  • H. Lin, mxCSM: A 100-slit, 6-wavelength wide-field coronal spectropolarimeter for the study of the dynamics and the magnetic fields of the solar corona. Front. Astron. Space Sci. 3, 9 (2016)

    Article  ADS  Google Scholar 

  • H. Lin, J.R. Kuhn, R. Coulter, Coronal magnetic field measurements. Astrophys. J. Lett. 613, L177–L180 (2004)

    Article  ADS  Google Scholar 

  • J.A. Linker, Z. Mikić, D.A. Biesecker, R.J. Forsyth, S.E. Gibson, A.J. Lazarus, A. Lecinski, P. Riley, A. Szabo, B.J. Thompson, Magnetohydrodynamic modeling of the solar corona during Whole Sun Month. J. Geophys. Res. 104, 9809–9830 (1999)

    Article  ADS  Google Scholar 

  • J.A. Linker, R.M. Caplan, C. Downs, R. Lionello, P. Riley, Z. Mikić, C.J. Henney, C.N. Arge, T. Kim, N. Pogorelov, An empirically driven time-dependent model of the solar wind. J. Phys. Conf. Ser. 719, 012012 (2016)

    Article  Google Scholar 

  • R. Lionello, M. Velli, C. Downs, J.A. Linker, Z. Mikić, A. Verdini, Validating a time-dependent turbulence-driven model of the solar wind. Astrophys. J. 784, 120 (2014)

    Article  ADS  Google Scholar 

  • R. Lionello, T. Török, V.S. Titov, J.E. Leake, Z. Mikić, J.A. Linker, M.G. Linton, The contribution of coronal jets to the solar wind. Astrophys. J. Lett. 831, L2 (2016)

    Article  ADS  Google Scholar 

  • Y. Liu, J.D. Richardson, J.W. Belcher, J.C. Kasper, H.A. Elliott, Thermodynamic structure of collision-dominated expanding plasma: Heating of interplanetary coronal mass ejections. J. Geophys. Res. 111, A01102 (2006)

    Article  ADS  Google Scholar 

  • J. Liu, S.W. McIntosh, I. De Moortel, Y. Wang, On the parallel and perpendicular propagating motions visible in polar plumes: An incubator for (fast) solar wind acceleration. Astrophys. J. 806, 273 (2015)

    Article  ADS  Google Scholar 

  • Y. Liu, J.T. Hoeksema, X. Sun, K. Hayashi, Vector magnetic field synoptic charts from the Helioseismic and Magnetic Imager (HMI). Sol. Phys. 292, 29 (2017)

    Article  ADS  Google Scholar 

  • M.L. Loucif, Giant macrospicules as possible sources of the fast solar wind. Astron. Astrophys. 281, 95–107 (1994)

    ADS  Google Scholar 

  • J.J. Love, E.J. Rigler, S.E. Gibson, Geomagnetic detection of the sectorial solar magnetic field and the historical peculiarity of minimum 23–24. Geophys. Res. Lett. 39, L04102 (2012)

    ADS  Google Scholar 

  • J.G. Luhmann, Y. Li, C.N. Arge, P.R. Gazis, R. Ulrich, Solar cycle changes in coronal holes and space weather cycles. J. Geophys. Res. 107, 1154 (2002)

    Article  Google Scholar 

  • B. Luo, Q. Zhong, S. Liu, J. Gong, A new forecasting index for solar wind velocity based on EIT 284 Å observations. Sol. Phys. 250, 159–170 (2008)

    Article  ADS  Google Scholar 

  • B.J. Lynch, J.K. Edmondson, Y. Li, Interchange reconnection Alfvén wave generation. Sol. Phys. 289, 3043–3058 (2014)

    Article  ADS  Google Scholar 

  • M.S. Madjarska, Z. Huang, J.G. Doyle, S. Subramanian, Coronal hole boundaries evolution at small scales, III, EIS and SUMER views. Astron. Astrophys. 545, A67 (2012)

    Article  ADS  Google Scholar 

  • C. Manchester, Y. Liu, P. Riley, E. Kilpua, T. Török, N. Lugaz, B. Vršnak, Physical processes of CME propagation. Space Sci. Rev. (2017), this issue

  • P.K. Manoharan, C.R. Subrahmanya, J.N. Chengalur, Space weather and solar wind studies with OWFA. J. Astrophys. Astron. 38, 16 (2017)

    Article  ADS  Google Scholar 

  • E. Marsch, Kinetic physics of the solar corona and solar wind. Living Rev. Sol. Phys. 3, 1 (2006)

    Article  ADS  Google Scholar 

  • E. Marsch, K.-H. Mühlhäuser, H. Rosenbauer, R. Schwenn, On the equation of state of solar wind ions derived from Helios measurements. J. Geophys. Res. 88, 2982–2992 (1983)

    Article  ADS  Google Scholar 

  • R.G. Marsden, The heliosphere after Ulysses. Astrophys. Space Sci. 277, 337–347 (2001)

    Article  ADS  MATH  Google Scholar 

  • P.C.H. Martens, G.D.R. Attrill, A.R. Davey, A. Engell, S. Farid, P.C. Grigis, J. Kasper, K. Korreck, S.H. Saar, A. Savcheva, Y. Su, P. Testa, M. Wills-Davey, P.N. Bernasconi, N.-E. Raouafi, V.A. Delouille, J.F. Hochedez, J.W. Cirtain, C.E. DeForest, R.A. Angryk, I. De Moortel, T. Wiegelmann, M.K. Georgoulis, R.T.J. McAteer, R.P. Timmons, Computer vision for the Solar Dynamics Observatory (SDO). Sol. Phys. 275, 79–113 (2012)

    Article  ADS  Google Scholar 

  • B.A. Maruca, J.C. Kasper, S.P. Gary, Instability-driven limits on helium temperature anisotropy in the solar wind: Observations and linear Vlasov analysis. Astrophys. J. 748, 137 (2012)

    Article  ADS  Google Scholar 

  • T. Matsumoto, T.K. Suzuki, Connecting the Sun and the solar wind: The first 2.5-dimensional self-consistent MHD simulation under the Alfvén wave scenario. Astrophys. J. 749, 8 (2012)

    Article  ADS  Google Scholar 

  • W.H. Matthaeus, M. Velli, Who needs turbulence: A review of turbulence effects in the heliosphere and on the fundamental process of reconnection. Space Sci. Rev. 160, 145–168 (2011)

    Article  ADS  Google Scholar 

  • W.H. Matthaeus, C.W. Smith, S. Oughton, Dynamical age of solar wind turbulence in the outer heliosphere. J. Geophys. Res. 103, 6495–6502 (1998)

    Article  ADS  Google Scholar 

  • W.H. Matthaeus, G.P. Zank, S. Oughton, D.J. Mullan, P. Dmitruk, Coronal heating by magnetohydrodynamic turbulence driven by reflected low-frequency waves. Astrophys. J. 523, L93–L96 (1999)

    Article  ADS  Google Scholar 

  • D.J. McComas, R.W. Ebert, H.A. Elliott, B.E. Goldstein, J.T. Gosling, N.A. Schwadron, R.M. Skoug, Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett. 35, L18103 (2008)

    Article  ADS  Google Scholar 

  • S.L. McGregor, W.J. Hughes, C.N. Arge, D. Odstrčil, N.A. Schwadron, The radial evolution of solar wind speeds. J. Geophys. Res. 116, A03106 (2011a)

    ADS  Google Scholar 

  • S.L. McGregor, W.J. Hughes, C.N. Arge, M.J. Owens, D. Odstrčil, The distribution of solar wind speeds during solar minimum: Calibration for numerical solar wind modeling constraints on the source of the slow solar wind. J. Geophys. Res. 116, A03101 (2011b)

    ADS  Google Scholar 

  • S.L. McGregor, M.K. Hudson, W.J. Hughes, Modeling magnetospheric response to synthetic Alfvénic fluctuations in the solar wind: ULF wave fields in the magnetosphere. J. Geophys. Res. 119, 8801–8812 (2014)

    Article  Google Scholar 

  • P.S. McIntosh, Patterns and dynamics of solar magnetic fields and He I coronal holes in cycle 23, in Solar Variability as an Input to the Earth’s Environment, ed. by A. Wilson. ESA, vol. SP-535 (ESA, Noordwijk, 2003), pp. 807–818

    Google Scholar 

  • S.W. McIntosh, B. de Pontieu, M. Carlsson, V. Hansteen, P. Boerner, M. Goossens, Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind. Nature 475, 477–480 (2011)

    Article  ADS  Google Scholar 

  • S.W. McIntosh, W.J. Cramer, M. Pichardo Marcano, R.J. Leamon, The detection of Rossby-like waves on the Sun. Nature Astron. 1, 0086 (2017)

    Article  ADS  Google Scholar 

  • J.F. McKenzie, E. Marsch, Resonant wave acceleration of minor ions in the solar wind. Astrophys. Space Sci. 81, 295–314 (1982)

    Article  ADS  MATH  Google Scholar 

  • B. McPherron, B. Anderson, A. Vijanen, Dynamic magnetospheric forcing, ionospheric current systems. Space Sci. Rev. (2017), this issue

  • V.G. Merkin, J.G. Lyon, D. Lario, C.N. Arge, C.J. Henney, Time-dependent magnetohydrodynamic simulations of the inner heliosphere. J. Geophys. Res. 121, 2866–2890 (2016)

    Article  Google Scholar 

  • N. Meyer-Vernet, How does the solar wind blow? A simple kinetic model. Eur. J. Phys. 20, 167–176 (1999)

    Article  Google Scholar 

  • R.L. Moore, A.C. Sterling, J.W. Cirtain, D.A. Falconer, Solar X-ray jets, type-II spicules, granule-size emerging bipoles, and the genesis of the heliosphere. Astrophys. J. Lett. 731, L18 (2011)

    Article  ADS  Google Scholar 

  • H. Morgan, An observation of solar active region expansion into the heliosphere. Mon. Not. R. Astron. Soc. 433, L74–L78 (2013)

    Article  ADS  Google Scholar 

  • D. Müller, R.G. Marsden, O.C.St. Cyr, H.R. Gilbert, Solar orbiter: Exploring the Sun-heliosphere connection. Sol. Phys. 285, 25–70 (2013)

    Article  ADS  Google Scholar 

  • N.A. Murphy, J.C. Raymond, K.E. Korreck, Plasma heating during a coronal mass ejection observed by the solar and heliospheric observatory. Astrophys. J. 735, 17 (2011)

    Article  ADS  Google Scholar 

  • V.M. Nakariakov, Coronal waves and oscillations, in Solar Activity and Its Magnetic Origin, ed. by V. Bothmer, A. Hady. IAU Symp., vol. 233 (Cambridge University Press, Cambridge, 2006), pp. 464–471

    Google Scholar 

  • M. Neugebauer, C.W. Snyder, Solar plasma experiment. Science 138, 1095–1097 (1962)

    Article  ADS  Google Scholar 

  • M. Neugebauer, D. Reisenfeld, I.G. Richardson, Comparison of algorithms for determination of solar wind regimes. J. Geophys. Res. 121, 8215–8227 (2016)

    Article  Google Scholar 

  • J.A. Newbury, C.T. Russell, J.L. Phillips, S.P. Gary, Electron temperature in the ambient solar wind: Typical properties and a lower bound at 1 AU. J. Geophys. Res. 103, 9553–9566 (1998)

    Article  ADS  Google Scholar 

  • G.M. Nita, G.D. Fleishman, A.A. Kuznetsov, E.P. Kontar, D.E. Gary, Three-dimensional radio and X-ray modeling and data analysis software: Revealing flare complexity. Astrophys. J. 799, 236 (2015)

    Article  ADS  Google Scholar 

  • G. Noci, Energy budget in coronal holes. Sol. Phys. 28, 403–407 (1973)

    Article  ADS  Google Scholar 

  • J.T. Nolte, A.S. Krieger, A.F. Timothy, R.E. Gold, E.C. Roelof, G. Vaiana, A.J. Lazarus, J.D. Sullivan, P.S. McIntosh, Coronal holes as sources of solar wind. Sol. Phys. 46, 303–322 (1976)

    Article  ADS  Google Scholar 

  • T.P. O’Brien, R.L. McPherron, An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay. J. Geophys. Res. 105, 7707–7720 (2000)

    Article  ADS  Google Scholar 

  • D. Odstrčil, V.J. Pizzo, Three-dimensional propagation of coronal mass ejections in a structured solar wind flow, 2: CME launched adjacent to the streamer belt. J. Geophys. Res. 104, 493–504 (1999)

    Article  ADS  Google Scholar 

  • L. Ofman, Wave modeling of the solar wind. Living Rev. Sol. Phys. 7, 4 (2010)

    Article  ADS  Google Scholar 

  • L. Ofman, V.M. Nakariakov, C.E. DeForest, Slow magnetosonic waves in coronal plumes. Astrophys. J. 514, 441–447 (1999)

    Article  ADS  Google Scholar 

  • R. Oran, E. Landi, B. van der Holst, S.T. Lepri, A.M. Vásquez, F.A. Nuevo, R. Frazin, W. Manchester, I. Sokolov, T.I. Gombosi, A steady-state picture of solar wind acceleration and charge state composition derived from a global wave-driven MHD model. Astrophys. J. 806, 55 (2015)

    Article  ADS  Google Scholar 

  • M.J. Owens, H.E. Spence, S.L. McGregor, W.J. Hughes, J.M. Quinn, C.N. Arge, P. Riley, J. Linker, D. Odstrčil, Metrics for solar wind prediction models: Comparison of empirical, hybrid, and physics-based schemes with 8 years of L1 observations. Space Weather 6, S08001 (2008)

    Article  ADS  Google Scholar 

  • M.J. Owens, N.U. Crooker, M. Lockwood, Solar cycle evolution of dipolar and pseudostreamer belts and their relation to the slow solar wind. J. Geophys. Res. 119, 36–46 (2014)

    Article  Google Scholar 

  • M.J. Owens, P. Riley, T.S. Horbury, Probabilistic solar wind and geomagnetic forecasting using an analogue ensemble or ‘similar day’ approach. Sol. Phys. 292, 69 (2017)

    Article  ADS  Google Scholar 

  • O. Panasenco, M. Velli, Coronal pseudostreamers: Source of fast or slow solar wind, in Solar Wind 13, in Proceedings of the Thirteenth International Solar Wind Conference, ed. by G. Zank, J. Borovsky, R. Bruno, J. Cirtain, S. Cranmer, H. Elliott, J. Giacalone, W. Gonzalez, G. Li, E. Marsch, E. Moebius, N. Pogorelov, J. Spann, O. Verkhoglyadova. AIP Conf. Proc., vol. 1539 (AIP, New York, 2013), pp. 50–53

    Google Scholar 

  • A.R. Paraschiv, A. Bemporad, A.C. Sterling, Physical properties of solar polar jets: A statistical study with Hinode XRT data. Astron. Astrophys. 579, A96 (2015)

    Article  ADS  Google Scholar 

  • E. Pariat, K. Dalmasse, C.R. DeVore, S.K. Antiochos, J.T. Karpen, A model for straight and helical solar jets, II, Parametric study of the plasma beta. Astron. Astrophys. 596, A36 (2016)

    Article  ADS  Google Scholar 

  • E.N. Parker, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664–676 (1958)

    Article  ADS  Google Scholar 

  • E.N. Parker, Topological dissipation and the small-scale fields in turbulent gases. Astrophys. J. 174, 499–510 (1972)

    Article  ADS  Google Scholar 

  • E.N. Parker, Nanoflares and the solar X-ray corona. Astrophys. J. 330, 474–479 (1988)

    Article  ADS  Google Scholar 

  • E.N. Parker, Reflections on macrophysics and the Sun. Sol. Phys. 176, 219–247 (1997)

    Article  ADS  Google Scholar 

  • E.N. Parker, Kinetic and hydrodynamic representations of coronal expansion and the solar wind, in Twelfth International Solar Wind Conference, ed. by M. Maksimovic, K. Issautier, N. Meyer-Vernet, M. Moncuquet. AIP Conf. Proc., vol. 1216 (AIP, New York, 2010), pp. 3–7

    Google Scholar 

  • C.E. Parnell, P.E. Jupp, Statistical analysis of the energy distribution of nanoflares in the Quiet Sun. Astrophys. J. 529, 554–569 (2000)

    Article  ADS  Google Scholar 

  • I.J. Parrish, M. McCourt, E. Quataert, P. Sharma, The effects of anisotropic viscosity on turbulence and heat transport in the intracluster medium. Mon. Not. R. Astron. Soc. 422, 704–718 (2012)

    Article  ADS  Google Scholar 

  • J.C. Perez, B.D.G. Chandran, Direct numerical simulations of reflection-driven, reduced magnetohydrodynamic turbulence from the Sun to the Alfvén critical point. Astrophys. J. 776, 124 (2013)

    Article  ADS  Google Scholar 

  • H. Peter, B.N. Dwivedi, Discovery of the Sun’s million-degree hot corona. Front. Astron. Space Sci. 1, 2 (2014)

    Article  ADS  Google Scholar 

  • G. Petrie, High-resolution vector magnetograms of the Sun’s poles from Hinode: Flux distributions and global coronal modeling. Sol. Phys. 292, 13 (2017)

    Article  ADS  Google Scholar 

  • A.A. Pevtsov, L. Bertello, P. MacNeice, G. Petrie, What if we had a magnetograph at Lagrangian L5. Space Weather 14, 1026–1031 (2016)

    Article  ADS  Google Scholar 

  • V. Pierrard, M. Pieters, Coronal heating and solar wind acceleration for electrons, protons, and minor ions obtained from kinetic models based on kappa distributions. J. Geophys. Res. 119, 9441–9455 (2014)

    Article  Google Scholar 

  • R.F. Pinto, A.P. Rouillard, A multiple flux-tube solar wind model. Astrophys. J. 838, 89 (2017)

    Article  ADS  Google Scholar 

  • I. Plotnikov, A.P. Rouillard, J.A. Davies, V. Bothmer, J.P. Eastwood, P. Gallagher, R.A. Harrison, E. Kilpua, C. Möstl, C.H. Perry, L. Rodriguez, B. Lavraud, V. Génot, R.F. Pinto, E. Sanchez-Diaz, Long-term tracking of corotating density structures using heliospheric imaging. Sol. Phys. 291, 1853–1875 (2016)

    Article  ADS  Google Scholar 

  • G.W. Pneuman, The physical structure of coronal holes: Influence of magnetic fields and coronal heating. Astron. Astrophys. 81, 161–166 (1980)

    ADS  Google Scholar 

  • G.W. Pneuman, Driving mechanisms for the solar wind. Space Sci. Rev. 43, 105–138 (1986)

    Article  ADS  Google Scholar 

  • B. Poduval, X.P. Zhao, Validating solar wind prediction using the current sheet source surface model. Astrophys. J. Lett. 782, L22 (2014)

    Article  ADS  Google Scholar 

  • G. Poletto, Sources of solar wind over the solar activity cycle. J. Adv. Res. 4, 215–220 (2013)

    Article  Google Scholar 

  • J. Pomoell, E. Kilpua, C. Verbeke, E. Lumme, S. Poedts, E. Palmerio, A. Isavnin, Modeling the Sun-to-Earth evolution of the magnetic structure of coronal mass ejections with EUHFORIA, in 19th EGU General Assembly (2017), p. 11747

    Google Scholar 

  • E. Quataert, A. Gruzinov, Turbulence and particle heating in advection-dominated accretion flows. Astrophys. J. 520, 248–255 (1999)

    Article  ADS  Google Scholar 

  • L.A. Rachmeler, S.E. Gibson, J.B. Dove, C.R. DeVore, Y. Fan, Polarimetric properties of flux ropes and sheared arcades in coronal prominence cavities. Sol. Phys. 288, 617–636 (2013)

    Article  ADS  Google Scholar 

  • L.A. Rachmeler, S.J. Platten, C. Bethge, D.B. Seaton, A.R. Yeates, Observations of a hybrid double-streamer/pseudostreamer in the solar corona. Astrophys. J. Lett. 787, L3 (2014)

    Article  ADS  Google Scholar 

  • N.-E. Raouafi, S.K. Solanki, Effect of the electron density stratification on off-limb O VI profiles: How large is the velocity distribution anisotropy in the solar corona. Astron. Astrophys. 427, 725–733 (2004)

    Article  ADS  Google Scholar 

  • N.-E. Raouafi, S. Patsourakos, E. Pariat, P.R. Young, A.C. Sterling, A. Savcheva, M. Shimojo, F. Moreno-Insertis, C.R. DeVore, V. Archontis, T. Török, H. Mason, W. Curdt, K. Meyer, K. Dalmasse, Y. Matsui, Solar coronal jets: Observations, theory, and modeling. Space Sci. Rev. 201, 1–53 (2016)

    Article  ADS  Google Scholar 

  • J.-P. Raulin, J.M. Davila, T. Bogdan, K. Yumoto, J. Leibacher, The future of IHY campaigns: Transition to the international space weather initiative. Highlights Astron. 15, 501–503 (2010)

    ADS  Google Scholar 

  • G.D. Reeves, K.L. McAdams, R.H.W. Friedel, T.P. O’Brien, Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys. Res. Lett. 30, 1529 (2003)

    Article  ADS  Google Scholar 

  • N.L. Reginald, J.M. Davila, O.C.St. Cyr, D.M. Rabin, M. Guhathakurta, D.M. Hassler, H. Gashut, Electron temperatures and flow speeds of the low solar corona: MACS results from the total solar eclipse of 29 March 2006 in Libya. Sol. Phys. 270, 235–251 (2011)

    Article  ADS  Google Scholar 

  • D.B. Reisenfeld, D.J. McComas, J.T. Steinberg, Evidence of a solar origins for pressure balance structures in the high-latitude solar wind. Geophys. Res. Lett. 26, 1805–1808 (1999)

    Article  ADS  Google Scholar 

  • P. Riley, Modeling corotating interaction regions: From the Sun to 1 AU. J. Atmos. Sol.-Terr. Phys. 69, 32–42 (2007)

    Article  ADS  Google Scholar 

  • P. Riley, J.G. Luhmann, Interplanetary signatures of unipolar streamers and the origin of the slow solar wind. Sol. Phys. 277, 355–373 (2012)

    Article  ADS  Google Scholar 

  • P. Riley, J.T. Gosling, V.J. Pizzo, A two-dimensional simulation of the radial and latitudinal evolution of a solar wind disturbance driven by a fast, high-pressure coronal mass ejection. J. Geophys. Res. 102, 14677–14686 (1997)

    Article  ADS  Google Scholar 

  • P. Riley, J.T. Gosling, D.J. McComas, V.J. Pizzo, J.G. Luhmann, D. Biesecker, R.J. Forsyth, J.T. Hoeksema, A. Lecinski, B.J. Thompson, Relationship between Ulysses plasma observations and solar observations during the Whole Sun Month. J. Geophys. Res. 104, 9871–9880 (1999)

    Article  ADS  Google Scholar 

  • P. Riley, J.A. Linker, Z. Mikić, An empirically-driven global MHD model of the solar corona and inner heliosphere. J. Geophys. Res. 106, 15889–15901 (2001)

    Article  ADS  Google Scholar 

  • P. Riley, J.A. Linker, Z. Mikić, R. Lionello, S.A. Ledvina, J.G. Luhmann, A comparison between global solar magnetohydrodynamic and potential field source surface model results. Astrophys. J. 653, 1510–1516 (2006)

    Article  ADS  Google Scholar 

  • P. Riley, R. Lionello, J.A. Linker, Z. Mikić, J. Luhmann, J. Wijaya, Global MHD modeling of the solar corona and inner heliosphere for the Whole Heliosphere Interval. Sol. Phys. 274, 361–377 (2011)

    Article  ADS  Google Scholar 

  • P. Riley, J.A. Linker, Z. Mikić, On the application of ensemble modeling techniques to improve ambient solar wind models. J. Geophys. Res. 118, 600–607 (2013)

    Article  Google Scholar 

  • P. Riley, M. Ben-Nun, J.A. Linker, Z. Mikić, L. Svalgaard, J. Harvey, L. Bertello, T. Hoeksema, Y. Liu, R. Ulrich, A multi-observatory inter-comparison of line-of-sight synoptic magnetograms. Sol. Phys. 289, 769–792 (2014)

    Article  ADS  Google Scholar 

  • P. Riley, J.A. Linker, C.N. Arge, On the role played by magnetic expansion factor in the prediction of solar wind speed. Space Weather 13, 154–169 (2015)

    Article  ADS  Google Scholar 

  • D.A. Roberts, Demonstrations that the solar wind is not accelerated by waves or turbulence. Astrophys. J. 711, 1044–1050 (2010)

    Article  ADS  Google Scholar 

  • E.C. Roelof, G.B. Andrews, P.C. Liewer, D. Moses, Telemachus: A mission for a polar view of solar activity. Adv. Space Res. 34, 467–471 (2004)

    Article  ADS  Google Scholar 

  • R. Rosner, W.H. Tucker, G.S. Vaiana, Dynamics of the quiescent solar corona. Astrophys. J. 220, 643–665 (1978)

    Article  ADS  Google Scholar 

  • T. Rotter, A.M. Veronig, M. Temmer, B. Vršnak, Real-time solar wind prediction based on SDO/AIA coronal hole data. Sol. Phys. 290, 1355–1370 (2015)

    Article  ADS  Google Scholar 

  • A.P. Rouillard, N.R. Sheeley, T.J. Cooper, J.A. Davies, B. Lavraud, E.K.J. Kilpua, R.M. Skoug, J.T. Steinberg, A. Szabo, A. Opitz, J.-A. Sauvaud, The solar origin of small interplanetary transients. Astrophys. J. 734, 7 (2011)

    Article  ADS  Google Scholar 

  • A.P. Rouillard, B. Lavraud, V. Genot, M. Bouchemit, N. Dufourg, I. Plotnikov, R.F. Pinto, E. Sanchez-Diaz, M. Lavarra, M. Penou, C. Jacquey, N. Andre, S. Caussarieu, J.-P. Toniutti, D. Popescu, E. Buchlin, S. Caminade, P. Alingery, J.A. Davies, D. Odstrčil, L. Mays, A propagation tool to connect remote-sensing observations with in-situ measurements of heliospheric structures. Planet. Space Sci. (2017), submitted. arXiv:1702.00399

  • J.M. Ryan, W.I. Axford, The behaviour of minor species in the solar wind. Z. Geophys. 41, 221–232 (1975)

    Google Scholar 

  • K.H. Schatten, J.M. Wilcox, N.F. Ness, A model of interplanetary and coronal magnetic fields. Sol. Phys. 6, 442–455 (1969)

    Article  ADS  Google Scholar 

  • J.T. Schmelz, Why stellar astronomers should be interested in the Sun. Adv. Space Res. 32, 895–904 (2003)

    Article  ADS  Google Scholar 

  • C.J. Schrjiver, K. Kauristie, A.D. Aylward, C.M. Denardini, S.E. Gibson, A. Glover, N. Gopalswamy, M. Grande, M. Hapgood, D. Heynderickx, N. Jakowski, V.V. Kalegaev, G. Lapenta, J.A. Linker, S. Liu, C.H. Mandrini, I.R. Mann, T. Nagatsuma, D. Nandy, T. Obara, T.P. O’Brien, T. Onsager, H.J. Opgenoorth, M. Terkildsen, C.E. Valladares, N. Vilmer, Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS. Adv. Space Res. 55, 2745–2807 (2015)

    Article  ADS  Google Scholar 

  • N.A. Schwadron, D.J. McComas, Solar wind scaling law. Astrophys. J. 599, 1395–1403 (2003)

    Article  ADS  Google Scholar 

  • N.A. Schwadron, D.J. McComas, C.E. DeForest, Relationship between solar wind and coronal heating: Scaling laws from solar X-rays. Astrophys. J. 642, 1173–1176 (2006)

    Article  ADS  Google Scholar 

  • R. Schwenn, Space weather: The solar perspective. Living Rev. Sol. Phys. 3, 2 (2006)

    Article  ADS  Google Scholar 

  • J.D. Scudder, Why all stars should possess circumstellar temperature inversions. Astrophys. J. 398, 319–349 (1992)

    Article  ADS  Google Scholar 

  • J.D. Scudder, Radial variation of the solar wind proton temperature: Heat flow or addition. Astrophys. J. 809, 126 (2015)

    Article  ADS  Google Scholar 

  • S. Servidio, F. Valentini, D. Perrone, A. Greco, F. Califano, W.H. Matthaeus, P. Veltri, A kinetic model of plasma turbulence. J. Plasma Phys. 81, 325810107 (2015)

    Article  Google Scholar 

  • N.R. Sheeley, Y.-M. Wang, S.H. Hawley, G.E. Brueckner, K.P. Dere, R.A. Howard, M.J. Koomen, C.M. Korendyke, D.J. Michels, S.E. Paswaters, D.G. Socker, O.C.St. Cyr, D. Wang, P.L. Lamy, A. Llebaria, R. Schwenn, G.M. Simnett, S. Plunkett, D.A. Biesecker, Measurements of flow speeds in the corona between 2 and 30 \(R_{\odot }\). Astrophys. J. 484, 472–478 (1997)

    Article  ADS  Google Scholar 

  • N.R. Sheeley, D.D.H. Lee, K.P. Casto, Y.-M. Wang, N.B. Rich, The structure of streamer blobs. Astrophys. J. 694, 1471–1480 (2009)

    Article  ADS  Google Scholar 

  • F. Shen, X. Feng, C. Xiang, Improvement to the global distribution of coronal plasma and magnetic field on the source surface using expansion factor \(f_{s}\) and angular distance \(\theta_{b}\). J. Atmos. Sol.-Terr. Phys. 77, 125–131 (2012)

    Article  ADS  Google Scholar 

  • D.G. Sibeck, J.D. Richardson, Toward forecasting space weather in the heliosphere. J. Geophys. Res. 102, 14721–14734 (1997)

    Article  ADS  Google Scholar 

  • V.A. Slemzin, F.F. Goryaev, S.V. Kuzin, Spectroscopic diagnostics of the solar coronal plasma. Plasma Phys. Rep. 40, 855–892 (2014)

    Article  ADS  Google Scholar 

  • E.J. Smith, A. Balogh, Ulysses observations of the radial magnetic field. Geophys. Res. Lett. 22, 3317–3320 (1995)

    Article  ADS  Google Scholar 

  • J.J. Sojka, R.L. McPherron, A.P. van Eyken, M.J. Nicholls, C.J. Heinselman, J.D. Kelly, Observations of ionospheric heating during the passage of solar coronal hole fast streams. Geophys. Res. Lett. 36, L19105 (2009)

    Article  ADS  Google Scholar 

  • J.J. Sojka et al., Space weather effects in the atmosphere. Space Sci. Rev. (2017), this issue

  • S.C. Solomon, T.N. Woods, L.V. Didkovsky, J.T. Emmert, L. Qian, Anomalously low solar extreme-ultraviolet irradiance and thermospheric density during solar minimum. Geophys. Res. Lett. 37, L16103 (2010)

    ADS  Google Scholar 

  • M. Stakhiv, E. Landi, S.T. Lepri, R. Oran, T.H. Zurbuchen, On the origin of mid-latitude fast wind: Challenging the two-state solar wind paradigm. Astrophys. J. 801, 100 (2015)

    Article  ADS  Google Scholar 

  • M. Stakhiv, S.T. Lepri, E. Landi, P. Tracy, T.H. Zurbuchen, On solar wind origin and acceleration: Measurements from ACE. Astrophys. J. 829, 117 (2016)

    Article  ADS  Google Scholar 

  • J.E. Stawarz, C.W. Smith, B.J. Vasquez, M.A. Forman, B.T. MacBride, The turbulence cascade and proton heating in the solar wind at 1 AU. Astrophys. J. 697, 1119–1127 (2009)

    Article  ADS  Google Scholar 

  • R.A. Steenburgh, D.A. Biesecker, G.H. Millward, From predicting solar activity to forecasting space weather: Practical examples of research-to-operations and operations-to-research. Sol. Phys. 289, 675–690 (2014)

    Article  ADS  Google Scholar 

  • A.C. Sterling, J.V. Hollweg, Alfvénic resonances on solar spicules. Astrophys. J. 285, 843–850 (1984)

    Article  ADS  Google Scholar 

  • M.L. Stevens, J.A. Linker, P. Riley, W.J. Hughes, Underestimates of the magnetic flux in coupled MHD model solar wind solutions. J. Atmos. Sol.-Terr. Phys. 83, 22–31 (2012)

    Article  ADS  Google Scholar 

  • L. Strachan, R. Suleiman, A.V. Panasyuk, D.A. Biesecker, J.L. Kohl, Empirical densities, kinetic temperatures, and outflow velocities in the equatorial streamer belt at solar minimum. Astrophys. J. 571, 1008–1014 (2002)

    Article  ADS  Google Scholar 

  • L. Strachan, J.M. Laming, Y.-K. Ko, C.M. Korendyke, S.T. Beltran, D.G. Socker, C. Brown, E. Provornikova, The Ultraviolet Spectro-Coronagraph pathfinder mission for the detection of coronal suprathermal seed particles. SPD meeting 47, abstract 301.04, Am. Astron. Soc. (2016)

  • K. Strong, J. Saba, D. Pesnell, J. Luhmann, F. Hill, T. Duvall, 4PI: A global understanding of the solar cycle, in White paper 262 submitted to Solar and Space Physics: A Science for a Technological Society (National Academies Press, Washington, 2012)

    Google Scholar 

  • A. Strugarek, N. Janitzek, A. Lee, P. Löschl, B. Seifert, S. Hoilijoki, E. Kraaikamp, A. Isha Mrigakshi, T. Philippe, S. Spina, M. Bröse, S. Massahi, L. O’Halloran, V. Pereira Blanco, C. Stausland, P. Escoubet, G. Kargl, A space weather mission concept: Observatories of the solar corona and active regions (OSCAR). J. Space Weather Space Clim. 5, A4 (2015)

    Article  Google Scholar 

  • P.A. Sturrock, R.E. Hartle, Two-fluid model of the solar wind. Phys. Rev. Lett. 16, 628–631 (1966)

    Article  ADS  Google Scholar 

  • Š. Štverák, P. Trávníček, P. Hellinger, Electron energetics in the expanding solar wind via Helios observations. J. Geophys. Res. 120, 8177–8193 (2015)

    Article  Google Scholar 

  • S.T. Suess, A.-H. Wang, S.T. Wu, Volumetric heating in coronal streamers. J. Geophys. Res. 101, 19957–19966 (1996)

    Article  ADS  Google Scholar 

  • X. Sun, The magnetic solar photosphere and corona: Observation, modeling, and prediction. Ph.D. dissertation, Stanford University (2012)

  • X. Sun, Y. Liu, J.T. Hoeksema, K. Hayashi, X. Zhao, A new method for polar field interpolation. Sol. Phys. 270, 9–22 (2011)

    Article  ADS  Google Scholar 

  • T.K. Suzuki, Forecasting solar wind speeds. Astrophys. J. Lett. 640, L75–L78 (2006)

    Article  ADS  Google Scholar 

  • T.K. Suzuki, S.-I. Inutsuka, Solar winds driven by nonlinear low-frequency Alfvén waves from the photosphere: Parametric study for fast/slow winds and disappearance of solar winds. J. Geophys. Res. 111, A06101 (2006)

    ADS  Google Scholar 

  • L. Svalgaard, E.W. Cliver, A floor in the solar wind magnetic field. Astrophys. J. Lett. 661, L203–L206 (2007)

    Article  ADS  Google Scholar 

  • M. Temmer, T. Rollett, C. Möstl, A.M. Veronig, B. Vršnak, D. Odstrčil, Influence of the ambient solar wind flow on the propagation behavior of interplanetary coronal mass ejections. Astrophys. J. 743, 101 (2011)

    Article  ADS  Google Scholar 

  • A. Tenerani, M. Velli, Evolving waves and turbulence in the outer corona and inner heliosphere: The accelerating expanding box. Astrophys. J. 843, 26 (2017)

    Article  ADS  Google Scholar 

  • L. Teriaca, G. Poletto, M. Romoli, D.A. Biesecker, The nascent solar wind: Origin and acceleration. Astrophys. J. 588, 566–577 (2003)

    Article  ADS  Google Scholar 

  • K.M. Thieme, E. Marsch, R. Schwenn, Spatial structures in high-speed streams as signatures of fine structures in coronal holes. Ann. Geophys. 8, 713–723 (1990)

    ADS  Google Scholar 

  • B.J. Thompson, S.E. Gibson, P.C. Schroeder, D.F. Webb, C.N. Arge, M.M. Bisi, G. de Toma, B.A. Emery, A.B. Galvin, D.A. Haber, B.V. Jackson, E.A. Jensen, R.J. Leamon, J. Lei, P.K. Manoharan, M.L. Mays, P.S. McIntosh, G.J.D. Petrie, S.P. Plunkett, L. Qian, P. Riley, S.T. Suess, M. Tokumaru, B.T. Welsch, T.N. Woods, A snapshot of the Sun near solar minimum: The Whole Heliosphere Interval. Sol. Phys. 274, 29–56 (2011)

    Article  ADS  Google Scholar 

  • J. Threlfall, I. De Moortel, S.W. McIntosh, C. Bethge, First comparison of wave observations from CoMP and AIA/SDO. Astron. Astrophys. 556, A124 (2013)

    Article  Google Scholar 

  • H. Tian, E.E. DeLuca, S.R. Cranmer, B. De Pontieu, H. Peter, J. Martínez-Sykora, L. Golub, S. McKillop, K.K. Reeves, M.P. Miralles, P. McCauley, S. Saar, P. Testa, M. Weber, N. Murphy, J. Lemen, A. Title, P. Boerner, N. Hurlburt, T.D. Tarbell, J.P. Wuelser, L. Kleint, C. Kankelborg, S. Jaeggli, M. Carlsson, V. Hansteen, S.W. McIntosh, Prevalence of small-scale jets from the networks of the solar transition region and chromosphere. Science 346, 1255711 (2014)

    Article  Google Scholar 

  • A.M. Title, C.J. Schrijver, The Sun’s magnetic carpet, in Tenth Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, ed. by R. Donahue, J. Bookbinder. ASP Conf. Ser., vol. 154 (ASP, San Francisco, 1998), pp. 345–358

    Google Scholar 

  • S. Tomczyk, G.L. Card, T. Darnell, D.F. Elmore, R. Lull, P.G. Nelson, K.V. Streander, J. Burkepile, R. Casini, P.G. Judge, An instrument to measure coronal emission line polarization. Sol. Phys. 247, 411–428 (2008)

    Article  ADS  Google Scholar 

  • S. Tomczyk, E. Landi, J.T. Burkepile, R. Casini, E.E. DeLuca, Y. Fan, S.E. Gibson, H. Lin, S.W. McIntosh, S.C. Solomon, G. de Toma, A.G. de Wijn, J. Zhang, Scientific objectives and capabilities of the coronal solar magnetism observatory. J. Geophys. Res. 121, 7470–7487 (2016)

    Article  Google Scholar 

  • G. Tóth, I.V. Sokolov, T.I. Gombosi, D.R. Chesney, C.R. Clauer, D.L. De Zeeuw, K.C. Hansen, K.J. Kane, W.B. Manchester, R.C. Oehmke, K.G. Powell, A.J. Ridley, I.I. Roussev, Q.F. Stout, O. Volberg, R.A. Wolf, S. Sazykin, A. Chan, B. Yu, J. Kóta, Space weather modeling framework: A new tool for the space science community. J. Geophys. Res. 110, A12226 (2005)

    Article  ADS  Google Scholar 

  • P.J. Tracy, J.C. Kasper, J.M. Raines, P. Shearer, J.A. Gilbert, T.H. Zurbuchen, Constraining solar wind heating processes by kinetic properties of heavy ions. Phys. Rev. Lett. 116, 255101 (2016)

    Article  ADS  Google Scholar 

  • A. Tritschler, T.R. Rimmele, S. Berukoff, R. Casini, J.R. Kuhn, H. Lin, M.P. Rast, J.P. McMullin, W. Schmidt, F. Wöger, D.K. Inouye (the DKIST Team), Solar telescope: High-resolution observing of the dynamic Sun. Astron. Nachr. 337, 1064–1069 (2016)

    Article  ADS  Google Scholar 

  • B.T. Tsurutani, W.D. Gonzalez, A.L.C. Gonzalez, F.L. Guarnieri, N. Gopalswamy, M. Grande, Y. Kamide, Y. Kasahara, G. Lu, I. Mann, R. McPherron, F. Soraas, V. Vasyliunas, Corotating solar wind streams and recurrent geomagnetic activity: A review. J. Geophys. Res. 111, A07S01 (2006)

    ADS  Google Scholar 

  • Y. Uchida, A mechanism for the acceleration of solar chromospheric spicules. Publ. Astron. Soc. Jpn. 21, 128–140 (1969)

    ADS  Google Scholar 

  • A.V. Usmanov, M.L. Goldstein, W.H. Matthaeus, Three-dimensional magnetohydrodynamic modeling of the solar wind including pickup protons and turbulence transport. Astrophys. J. 754, 40 (2012)

    Article  ADS  Google Scholar 

  • A.V. Usmanov, M.L. Goldstein, W.H. Matthaeus, A four-fluid MHD model of the solar wind/interstellar medium interaction with turbulence transport and pickup protons as separate fluid. Astrophys. J. 820, 17 (2016)

    Article  ADS  Google Scholar 

  • A. Vaivads, A. Retinò, J. Soucek, Y.V. Khotyaintsev, F. Valentini, C.P. Escoubet, O. Alexandrova, M. André, S.D. Bale, M. Balikhin, D. Burgess, E. Camporeale, D. Caprioli, C.H.K. Chen, E. Clacey, C.M. Cully, J. De Keyser, J.P. Eastwood, A.N. Fazakerley, S. Eriksson, M.L. Goldstein, D.B. Graham, S. Haaland, M. Hoshino, H. Ji, H. Karimabadi, H. Kucharek, B. Lavraud, F. Marcucci, W.H. Matthaeus, T.E. Moore, R. Nakamura, Y. Narita, Z. Nemecek, C. Norgren, H. Opgenoorth, M. Palmroth, D. Perrone, J.-L. Pinçon, P. Rathsman, H. Rothkaehl, F. Sahraoui, S. Servidio, L. Sorriso-Valvo, R. Vainio, Z. Vörös, R.F. Wimmer-Schweingruber, Turbulence heating observer: Satellite mission proposal. J. Plasma Phys. 82, 905820501 (2016)

    Article  Google Scholar 

  • A.A. van Ballegooijen, Cascade of magnetic energy as a mechanism of coronal heating. Astrophys. J. 311, 1001–1014 (1986)

    Article  ADS  Google Scholar 

  • A.A. van Ballegooijen, M. Asgari-Targhi, Direct and inverse cascades in the acceleration region of the fast solar wind. Astrophys. J. 835, 10 (2017)

    Article  ADS  Google Scholar 

  • A.A. van Ballegooijen, M. Asgari-Targhi, S.R. Cranmer, E. DeLuca, Heating of the solar chromosphere and corona by Alfvén wave turbulence. Astrophys. J. 736, 3 (2011)

    Article  ADS  Google Scholar 

  • A.A. van Ballegooijen, M. Asgari-Targhi, M.A. Berger, On the relationship between photospheric footpoint motions and coronal heating in solar active regions. Astrophys. J. 787, 87 (2014)

    Article  ADS  Google Scholar 

  • B. van der Holst, I.V. Sokolov, X. Meng, M. Jin, W.B. Manchester, G. Tóth, T.I. Gombosi, Alfvén Wave Solar Model (AWSoM): Coronal heating. Astrophys. J. 782, 81 (2014)

    Article  ADS  Google Scholar 

  • T. Van Doorsselaere, P. Antolin, D. Yuan, V. Reznikova, N. Magyar, Forward modelling of optically thin coronal plasma with the FoMo model. Front. Astron. Space Sci. 3, 4 (2016)

    ADS  Google Scholar 

  • M. Velli, Solar wind acceleration: Mechanisms and scaling laws, in Twelfth International Solar Wind Conference, ed. by M. Maksimovic, K. Issautier, N. Meyer-Vernet, M. Moncuquet. AIP Conf. Proc., vol. 1216 (AIP, New York, 2010), pp. 14–19

    Google Scholar 

  • M. Velli, R. Grappin, A. Mangeney, Waves from the Sun. Geophys. Astrophys. Fluid Dyn. 62, 101–121 (1991)

    Article  ADS  Google Scholar 

  • S.N. Venkata, B.R. Prasad, R.K. Nalla, J. Singh, Scatter studies for visible emission line coronagraph on board Aditya-L1 mission. J. Astron. Telesc. Instrum. Syst. 3, 014002 (2017)

    Article  ADS  Google Scholar 

  • G. Verbanac, B. Vršnak, S. Živković, T. Hojsak, A.M. Veronig, M. Temmer, Solar wind high-speed streams and related geomagnetic activity in the declining phase of solar cycle 23. Astron. Astrophys. 533, A49 (2011)

    Article  ADS  Google Scholar 

  • D. Verscharen, C.H.K. Chen, R.T. Wicks, On kinetic slow modes, fluid slow modes, and pressure-balanced structures in the solar wind. Astrophys. J. 840, 106 (2017)

    Article  ADS  Google Scholar 

  • N.M. Viall, A. Vourlidas, Periodic density structures and the origin of the slow solar wind. Astrophys. J. 807, 176 (2015)

    Article  ADS  Google Scholar 

  • R. von Steiger, N.A. Schwadron, L.A. Fisk, J. Geiss, G. Gloeckler, S. Hefti, B. Wilken, R.F. Wimmer-Schweingruber, T.H. Zurbuchen, Composition of quasi-stationary solar wind flows from Ulysses/solar wind ion composition spectrometer. J. Geophys. Res. 105, 27217–27238 (2000)

    Article  ADS  Google Scholar 

  • B. Vršnak, T. Žic, T.V. Falkenberg, C. Möstl, S. Vennerstrom, D. Vrbanec, The role of aerodynamic drag in propagation of interplanetary coronal mass ejections. Astron. Astrophys. 512, A43 (2010)

    Article  Google Scholar 

  • Y.-M. Wang, Cyclic magnetic variations of the Sun, in Tenth Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, ed. by R. Donahue, J. Bookbinder. ASP Conf. Ser., vol. 154 (ASP, San Francisco, 1998), pp. 131–151

    Google Scholar 

  • Y.-M. Wang, Role of the coronal Alfvén speed in modulating the solar-wind helium abundance. Astrophys. J. Lett. 833, L21 (2016)

    Article  ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley, Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726–732 (1990)

    Article  ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley, Sources of the solar wind at Ulysses during 1990–2006. Astrophys. J. 653, 708–718 (2006)

    Article  ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley, D.G. Socker, R.A. Howard, N.B. Rich, The dynamical nature of coronal streamers. J. Geophys. Res. 105, 25133–25142 (2000)

    Article  ADS  Google Scholar 

  • Y. Wang, C. Shen, S. Wang, P. Ye, Deflection of coronal mass ejection in the interplanetary medium. Sol. Phys. 222, 329–343 (2004)

    Article  ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley, N.B. Rich, Coronal pseudostreamers. Astrophys. J. 658, 1340–1348 (2007)

    Article  ADS  Google Scholar 

  • Y.-M. Wang, Y.-K. Ko, R. Grappin, Slow solar wind from open regions with strong low-coronal heating. Astrophys. J. 691, 760–769 (2009)

    Article  ADS  Google Scholar 

  • Y.-M. Wang, R. Grappin, E. Robbrecht, N.R. Sheeley, On the nature of the solar wind from coronal pseudostreamers. Astrophys. J. 749, 182 (2012)

    Article  ADS  Google Scholar 

  • M. Weinzierl, A.R. Yeates, D.H. Mackay, C.J. Henney, C.N. Arge, A new technique for the photospheric driving of non-potential solar coronal magnetic field simulations. Astrophys. J. 823, 55 (2016)

    Article  ADS  Google Scholar 

  • J.M. Wilcox, The interplanetary magnetic field: Solar origin and terrestrial effects. Space Sci. Rev. 8, 258–328 (1968)

    Article  ADS  Google Scholar 

  • L.N. Woolsey, S.R. Cranmer, Turbulence-driven coronal heating and improvements to empirical forecasting of the solar wind. Astrophys. J. 787, 160 (2014)

    Article  ADS  Google Scholar 

  • M.S. Yalim, N. Pogorelov, Y. Liu, A data-driven MHD model of the global solar corona within Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS). J. Phys. Conf. Ser. 837, 012015 (2017)

    Article  Google Scholar 

  • L. Yang, J. He, H. Peter, C.-Y. Tu, W. Chen, L. Zhang, E. Marsch, L. Wang, X. Feng, L. Yan, Injection of plasma into the nascent solar wind via reconnection driven by supergranular advection. Astrophys. J. 770, 6 (2013)

    Article  ADS  Google Scholar 

  • A.R. Yeates, Coronal magnetic field evolution from 1996 to 2012: Continuous non-potential simulations. Sol. Phys. 289, 631–648 (2014)

    Article  ADS  Google Scholar 

  • L. Zangrilli, G. Poletto, Evolution of active region outflows throughout an active region lifetime. Astron. Astrophys. 594, A40 (2016)

    Article  ADS  Google Scholar 

  • J. Zhang, I.G. Richardson, D.F. Webb, N. Gopalswamy, E. Huttunen, J.C. Kasper, N.V. Nitta, W. Poomvises, B.J. Thompson, C.-C. Wu, S. Yashiro, A.N. Zhukov, Solar and interplanetary sources of major geomagnetic storms (\(\mbox{Dst} \leq -100\) nT) during 1996–2005. J. Geophys. Res. 112, A10102 (2007)

    Article  ADS  Google Scholar 

  • X. Zhao, J.T. Hoeksema, Prediction of the interplanetary magnetic field strength. J. Geophys. Res. 100, 19–33 (1995)

    Article  ADS  Google Scholar 

  • L. Zhao, S.E. Gibson, L.A. Fisk, Association of solar wind proton flux extremes with pseusostreamers. J. Geophys. Res. 118, 2834–2841 (2013)

    Article  Google Scholar 

  • Y. Zhou, X. Feng, Numerical study of the propagation characteristics of coronal mass ejections in a structured ambient solar wind. J. Geophys. Res. 122, 1451–1462 (2017)

    Google Scholar 

  • I. Zouganelis, M. Maksimovic, N. Meyer-Vernet, H. Lamy, K. Issautier, A transonic collisionless model of the solar wind. Astrophys. J. 606, 542–554 (2004)

    Article  ADS  Google Scholar 

  • T.H. Zurbuchen, R. von Steiger, J. Gruesbeck, E. Landi, S.T. Lepri, L. Zhao, V. Hansteen, Sources of solar wind at solar minimum: Constraints from composition data. Space Sci. Rev. 172, 41–55 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ruedi von Steiger, André Balogh, Dan Baker, Tamás Gombosi, Hannu Koskinen, and Astrid Veronig for convening the fantastic 2016 ISSI workshop on the scientific foundations of space weather. SRC’s work was supported by NASA grants NNX15AW33G and NNX16AG87G, NSF grants 1540094 (SHINE) and 1613207 (AAG), and start-up funds from the Department of Astrophysical and Planetary Sciences at the University of Colorado Boulder. PR’s work was supported through a grant from NASA’s Living With a Star (LWS) Program. The National Center for Atmospheric Research (NCAR) is supported by the National Science Foundation. This research made extensive use of NASA’s Astrophysics Data System (ADS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. Cranmer.

Additional information

The Scientific Foundation of Space Weather

Edited by Rudolf von Steiger, Daniel Baker, André Balogh, Tamás Gombosi, Hannu Koskinen and Astrid Veronig

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cranmer, S.R., Gibson, S.E. & Riley, P. Origins of the Ambient Solar Wind: Implications for Space Weather. Space Sci Rev 212, 1345–1384 (2017). https://doi.org/10.1007/s11214-017-0416-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-017-0416-y

Keywords

Navigation