Skip to main content
Log in

A New Method for Polar Field Interpolation

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The photospheric magnetic field in the Sun’s polar region is not well observed compared to the low-latitude regions. Data are periodically missing due to the Sun’s tilt angle, and the noise level is high due to the projection effect on the line-of-sight (LOS) measurement. However, the large-scale characteristics of the polar magnetic field data are known to be important for global modeling. This report describes a new method for interpolating the photospheric field in polar regions that has been tested on MDI synoptic maps (1996 – 2009). This technique, based on a two-dimensional spatial/temporal interpolation and a simple version of the flux transport model, uses a multi-year series of well-observed, smoothed north (south) pole observations from each September (March) to interpolate for missing pixels at any time of interest. It is refined by using a spatial smoothing scheme to seamlessly incorporate this filled-in data into the original observation starting from lower latitudes. For recent observations, an extrapolated polar field correction is required. Scaling the average flux density from the prior observations of slightly lower latitudes is found to be a good proxy of the future polar field. This new method has several advantages over some existing methods. It is demonstrated to improve the results of global models such as the Wang–Sheeley–Arge (WSA) model and MHD simulation, especially during the sunspot minimum phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arge, C.N., Pizzo, V.J.: 2000, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. 105, 10465.

    Article  ADS  Google Scholar 

  • Arge, C.N., Luhmann, J.G., Odstrčil, D., Schrijver, C.J., Li, Y.: 2004, Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME. J. Atmos. Solar-Terr. Phys. 66, 1295.

    Article  ADS  Google Scholar 

  • Berger, T.E., Lites, B.W.: 2003, Weak-field magnetogram calibration using Advanced Stokes Polarimeter flux density maps – II. SOHO/MDI full-disk mode calibration. Solar Phys. 213, 213.

    Article  ADS  Google Scholar 

  • Hayashi, K.: 2005, Magnetohydrodynamic simulations of the solar corona and solar wind using a boundary treatment to limit solar wind mass flux. Astrophys. J. Suppl. 161, 480.

    Article  ADS  Google Scholar 

  • Hayashi, K., Zhao, X., Liu, Y.: 2008, MHD simulations of the global solar corona around the Halloween event in 2003 using the synchronic frame format of the solar photospheric magnetic field. J. Geophys. Res. 113, 7104.

    Article  Google Scholar 

  • Hoeksema, J.T.: 1984, Structure and evolution of the large scale solar and heliospheric magnetic fields. Ph.D. thesis, Stanford University.

  • King, J.H., Papitashvili, N.E.: 2005, Solar wind spatial scales in and comparisons of hourly wind and ACE plasma and magnetic field data. J. Geophys. Res. 110, 2104.

    Article  Google Scholar 

  • Linker, J.A., Mikić, Z., Biesecker, D.A., Forsyth, R.J., Gibson, S.E., Lazarus, A.J., Lecinski, A., Riley, P., Szabo, A., Thompson, B.J.: 1999, Magnetohydrodynamic modeling of the solar corona during Whole Sun Month. J. Geophys. Res. 104, 9809.

    Article  ADS  Google Scholar 

  • Liu, Y., Zhao, X., Hoeksema, J.T.: 2004, Correction of offset in MDI/SOHO magnetograms. Solar Phys. 219, 39.

    Article  ADS  Google Scholar 

  • Liu, Y., Hoeksema, J.T., Zhao, X., Larson, R.M.: 2007, MDI synoptic charts of magnetic field: Interpolation of polar fields. Bull. Am. Astron. Soc. 38, 129.

    ADS  Google Scholar 

  • Luhmann, J.G., Lee, C.O., Li, Y., Arge, C.N., Galvin, A.B., Simunac, K., Russell, C.T., Howard, R.A., Petrie, G.: 2009, Solar wind sources in the late declining phase of cycle 23: Effects of the weak solar polar field on high speed streams. Solar Phys. 256, 285.

    Article  ADS  Google Scholar 

  • Meunier, N.: 2005, Magnetic network dynamics: Activity level, feature size and anchoring depth. Astron. Astrophys. 436, 1075.

    Article  ADS  Google Scholar 

  • Neugebauer, M., Forsyth, R.J., Galvin, A.B., Harvey, K.L., Hoeksema, J.T., Lazarus, A.J., Lepping, R.P., Linker, J.A., Mikić, Z., Steinberg, J.T., von Steiger, R., Wang, Y.M., Wimmer-Schweingruber, R.F.: 1998, Spatial structure of the solar wind and comparisons with solar data and models. J. Geophys. Res. 103, 14587.

    Article  ADS  Google Scholar 

  • Owens, M.J., Spence, H.E., McGregor, S., Huges, W.J., Quinn, J.M., Arge, C.N., Riley, P., Linker, J., Odstricil, D.: 2008, Metrics for solar wind prediction models: comparison of empirical, hybrid and physics-based schemes with 8 years of L1 observations. Space Weather 6, S08001.

    Article  Google Scholar 

  • Riley, P., Linker, J., Mikić, Z., Lionello, R.: 2001, MHD modeling of the solar corona and inner heliosphere: Comparison with observations. In: Song, P., Singer, H.J., Siscoe, G.L. (eds.) Space Weather, AGU Geophys. Monogr. 125, 159.

    Chapter  Google Scholar 

  • Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I., Team, M.E.: 1995, The Solar oscillations investigation – Michelson Doppler Imager. Solar Phys. 162, 129.

    Article  ADS  Google Scholar 

  • Schrijver, C.J., DeRosa, M.L.: 2003, Photospheric and heliospheric magnetic fields. Solar Phys. 212, 165.

    Article  ADS  Google Scholar 

  • Svalgaard, L., Duvall, T.L. Jr., Scherrer, P.H.: 1978, The strength of the Sun’s polar fields. Solar Phys. 58, 225.

    Article  ADS  Google Scholar 

  • Tran, T., Bertello, L., Ulrich, R.K., Evans, S.: 2005, Magnetic fields from SOHO MDI converted to the Mount Wilson 150 foot solar tower scale. Astrophys. J. Suppl. 156, 295.

    Article  ADS  Google Scholar 

  • Wang, Y.M., Sheeley, N.R. Jr.: 1988, The solar origin of long-term variations of the interplanetary magnetic field strength. J. Geophys. Res. 93, 11227.

    Article  ADS  Google Scholar 

  • Wang, Y.M., Sheeley, N.R. Jr.: 1990, Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726.

    Article  ADS  Google Scholar 

  • Wang, Y.M., Sheeley, N.R. Jr.: 1992, On potential field models of the solar corona. Astrophys. J. 392, 310.

    Article  ADS  Google Scholar 

  • Zhao, X., Hoeksema, J.T., Scherrer, P.H.: 1999, Changes of the boot-shaped coronal hole boundary during Whole Sun Month near sunspot minimum. J. Geophys. Res. 104, 9735.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Liu, Y., Hoeksema, J.T. et al. A New Method for Polar Field Interpolation. Sol Phys 270, 9–22 (2011). https://doi.org/10.1007/s11207-011-9751-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-011-9751-4

Keywords

Navigation