Skip to main content
Log in

Three-Dimensional Evolution of Flux-Rope CMEs and Its Relation to the Local Orientation of the Heliospheric Current Sheet

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Flux ropes ejected from the Sun may change their geometrical orientation during their evolution, which directly affects their geoeffectiveness. Therefore, it is crucial to understand how solar flux ropes evolve in the heliosphere to improve our space-weather forecasting tools. We present a follow-up study of the concepts described by Isavnin, Vourlidas, and Kilpua (Solar Phys. 284, 203, 2013). We analyze 14 coronal mass ejections (CMEs), with clear flux-rope signatures, observed during the decay of Solar Cycle 23 and rise of Solar Cycle 24. First, we estimate initial orientations of the flux ropes at the origin using extreme-ultraviolet observations of post-eruption arcades and/or eruptive prominences. Then we reconstruct multi-viewpoint coronagraph observations of the CMEs from ≈ 2 to 30 R with a three-dimensional geometric representation of a flux rope to determine their geometrical parameters. Finally, we propagate the flux ropes from ≈ 30 R to 1 AU through MHD-simulated background solar wind while using in-situ measurements at 1 AU of the associated magnetic cloud as a constraint for the propagation technique. This methodology allows us to estimate the flux-rope orientation all the way from the Sun to 1 AU. We find that while the flux-ropes’ deflection occurs predominantly below 30 R, a significant amount of deflection and rotation happens between 30 R and 1 AU. We compare the flux-rope orientation to the local orientation of the heliospheric current sheet (HCS). We find that slow flux ropes tend to align with the streams of slow solar wind in the inner heliosphere. During the solar-cycle minimum the slow solar-wind channel as well as the HCS usually occupy the area in the vicinity of the solar equatorial plane, which in the past led researchers to the hypothesis that flux ropes align with the HCS. Our results show that exceptions from this rule are explained by interaction with the Parker-spiraled background magnetic field, which dominates over the magnetic interaction with the HCS in the inner heliosphere at least during solar-minimum conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The large angle spectroscopic coronagraph (LASCO). Solar Phys. 162, 357. doi: 10.1007/BF00733434 .

    Article  ADS  Google Scholar 

  • Chen, P.F.: 2011, Coronal mass ejections: Models and their observational basis. Living Rev. Solar Phys. 8(1). doi: 10.12942/lrsp-2011-1 .

  • Cid, C., Cremades, H., Aran, A., Mandrini, C., Sanahuja, B., Schmieder, B., Menvielle, M., Rodriguez, L., Saiz, E., Cerrato, Y., Dasso, S., Jacobs, C., Lathuillere, C., Zhukov, A.: 2012, Can a halo CME from the limb be geoffective? J. Geophys. Res. 117, A11102. doi: 10.1029/2012JA017536 .

    Article  ADS  Google Scholar 

  • Colaninno, R.C., Vourlidas, A., Wu, C.C.: 2013, Quantitative comparison of methods for predicting the arrival of coronal mass ejections at Earth based on multiview imaging. J. Geophys. Res. 118, 6866. doi: 10.1002/2013JA019205 .

    Article  Google Scholar 

  • Cremades, H., Bothmer, V., Tripathi, D.: 2006, Properties of structured coronal mass ejections in solar cycle 23. Adv. Space Res. 38, 461. doi: 10.1016/j.asr.2005.01.095 .

    Article  ADS  Google Scholar 

  • Delaboudinière, J.P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., Dessel, E.L.: 1995, EIT: extreme-ultraviolet imaging telescope for the SOHO mission. Solar Phys. 162, 291. doi: 10.1007/BF00733432 .

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: An overview. Solar Phys. 162, 1. doi: 10.1007/BF00733425 .

    Article  ADS  Google Scholar 

  • Forbes, T.G.: 2000, A review on the genesis of coronal mass ejections. J. Geophys. Res. 105(A10), 23153. doi: 10.1029/2000JA000005 .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Lara, A., Yashiro, S., Nunes, S., Howard, R.A.: 2003, Coronal mass ejection activity during solar cycle 23. In: Wilson, A. (ed.) Solar Variability as an Input to the Earth’s Environment SP-535, 403.

    Google Scholar 

  • Gopalswamy, N., Mäkelä, P., Xie, H., Akiyama, S., Yashiro, S.: 2009, CME interactions with coronal holes and their interplanetary consequences. J. Geophys. Res. 114, A00A22. doi: 10.1029/2008JA013686 .

    Google Scholar 

  • Gopalswamy, N., Yashiro, S., Xie, H., Akiyama, S., Mäkelä, P.: 2008, Large geomagnetic storms associated with limb halo coronal mass ejections. Adv. Geosci. 21.

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudinière, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev. 136, 67. doi: 10.1007/s11214-008-9341-4 .

    Article  ADS  Google Scholar 

  • Hu, Q., Sonnerup, B.U.Ö.: 2002, Reconstruction of magnetic clouds in the solar wind: Orientations and configurations. J. Geophys. Res. 107, 1142. doi: 10.1029/2001JA000293 .

    Article  Google Scholar 

  • Huttunen, K.E.J., Koskinen, H.E.J., Pulkkinen, T.I., Pulkkinen, A., Palmroth, M., Reeves, E.G.D., Singer, H.J.: 2002, April 2000 magnetic storm: Solar wind driver and mangetospheric response. J. Geophys. Res. 107(A12), 1440. doi: 10.1029/2001JA009154 .

    Article  Google Scholar 

  • Isavnin, A., Kilpua, E.K.J., Koskinen, H.E.J.: 2011, Grad-Shafranov reconstruction of magnetic clouds: Overview and improvements. Solar Phys. 273, 205. doi: 10.1007/s11207-011-9845-z .

    Article  ADS  Google Scholar 

  • Isavnin, A., Vourlidas, A., Kilpua, E.K.J.: 2013, Three-dimensional evolution of ejected flux ropes from the Sun (2 – 20 R) to 1 AU. Solar Phys. 284, 203. doi: 10.1007/s11207-012-0214-3 .

    Article  ADS  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., Cyr, O.C.S., Guhathakurta, M., Crhistian, E.: 2008, The STEREO mission: An introduction. Space Sci. Rev. 136, 5. doi: 10.1007/s11214-007-9277-0 .

    Article  ADS  Google Scholar 

  • Kilpua, E.K.J., Mierla, M., Rodriguez, L., Zhukov, A.N., Srivastava, N., West, M.J.: 2012, Estimating travel times of coronal mass ejections to 1 AU using multi-spacecraft coronagraph data. Solar Phys. 279, 477. doi: 10.1007/s11207-012-0005-x .

    Article  ADS  Google Scholar 

  • Linker, J.A., Mikic, Z., Biesecker, D.A., Forsyth, R.J., Gibson, S.E., Lazarus, A.J., Lecinski, A., Riley, P., Szabo, A., Thompson, B.J.: 1999, Magnetohydrodynamic modeling of the solar corona during whole Sun month. J. Geophys. Res. 104(A5), 9809. doi: 10.1029/1998JA900159 .

    Article  ADS  Google Scholar 

  • Lugaz, N., Vourlidas, A., Roussev, I.I.: 2009, Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere – application to CME-CME interaction. Ann. Geophys. 27, 3479. doi: 10.5194/angeo-27-3479-2009 .

    Article  ADS  Google Scholar 

  • Lugaz, N., Farrugia, C.J., Davies, J.A., Möstl, C., Davis, C.J., Roussev, I.I., Temmer, M.: 2012, The deflection of the two interacting coronal mass ejections of 2010 May 23 – 24 as revealed by combined in situ measurements and heliospheric imaging. Astrophys. J. 759. doi: 10.1088/0004-637X/759/1/68 .

  • Lynch, B.J., Antiochos, S.K., Li, Y., Luhmann, J.G., DeVore, C.R.: 2009, Rotation of coronal mass ejections during eruption. Astrophys. J. 697, 1918. doi: 10.1088/0004-637X/697/2/1918 .

    Article  ADS  Google Scholar 

  • Mikić, Z., Linker, J.A., Dalton, S.D., Lionello, R., Tarditi, A.: 1999, Magnetohydrodynamic modeling of the global solar corona. Phys. Plasmas 6, 2217. doi: 10.1063/1.873474 .

    Article  ADS  Google Scholar 

  • Möstl, C., Farrugia, C.J., Biernat, H.K., Leitner, M., Kilpua, E.K.J., Galvin, A.B., Luhmann, J.G.: 2009, Optimized Grad-Shafranov reconstruction of a magnetic cloud using STEREO-Wind observations. Solar Phys. 256, 427. doi: 10.1007/s11207-009-9360-7 .

    Article  ADS  Google Scholar 

  • Nieves-Chinchilla, T., Colaninno, R., Vourlidas, A., Szabo, A., Lepping, R.P., Boardsen, S.A., Anderson, B.J., Korth, H.: 2012, Remote and in situ observations of an unusual Earth-directed coronal mass ejection from multiple viewpoints. J. Geophys. Res. 117, A6. doi: 10.1029/2011JA017243 .

    Article  Google Scholar 

  • Plunkett, S.P., Thompson, B.J., St Cyr, O.C., Howard, R.A.: 2001, Solar source regions of coronal mass ejections and their geomagnetic effects. J. Atmos. Solar-Terr. Phys. 63, 389. doi: 10.1016/S1364-6826(00)00166-8 .

    Article  ADS  Google Scholar 

  • Poomvises, W., Zhang, J., Olmedo, O.: 2010, Coronal mass ejection propagation and expansion in three-dimensional space in the heliosphere based on STEREO/SECCHI observations. Astrophys. J. Lett. 717, L159. doi: 10.1088/2041-8205/717/2/L159 .

    Article  ADS  Google Scholar 

  • Riley, P.: 2007, Modeling corotating interaction regions: From the Sun to 1 AU. J. Atmos. Solar-Terr. Phys. 69, 32. doi: 10.1016/j.jastp.2006.06.008 .

    Article  ADS  Google Scholar 

  • Riley, P., Lionello, R., Linker, J.A., Mikic, Z., Luhmann, J., Wijaya, J.: 2011, Global MHD modeling of the solar corona and inner heliosphere for the whole heliospheric interval. Solar Phys. 274, 361. doi: 10.1007/s11207-010-9698-x .

    Article  ADS  Google Scholar 

  • Rodriguez, L., Mierla, M., Zhukov, A.N., West, M., Kilpua, E.: 2011, Linking of remote-sensing and in situ observations of CMEs using STEREO. Solar Phys. 270, 561. doi: 10.1007/s11207-011-9784-8 .

    Article  ADS  Google Scholar 

  • Savani, N.P., Owens, M.J., Rouillard, A.P., Forsyth, R.J., Davies, J.A.: 2010, Observational evidence of a coronal mass ejection distortion directly attributable to a structured solar wind. Astrophys. J. Lett. 714, L128. doi: 10.1088/2041-8205/714/1/L128 .

    Article  ADS  Google Scholar 

  • Shen, C., Wang, Y., Gui, B., Ye, P., Wang, S.: 2011, Kinematic evolution of a slow CME in corona viewed by STEREO-B on 8 October 2007. Solar Phys. 269, 389. doi: 10.1007/s11207-011-9715-8 .

    Article  ADS  Google Scholar 

  • Shen, C., Wang, Y., Wang, S., Liu, Y., Liu, R., Vourlidas, A., Miao, B., Ye, P., Liu, J., Zhou, Z.: 2012, Super-elastic collision of large-scale magnetized plasmoids in the heliosphere. Nat. Phys. 8, 923. doi: 10.1038/nphys2440 .

    Article  Google Scholar 

  • Thernisien, A., Vourlidas, A., Howard, R.A.: 2009, Forward modeling of coronal mass ejections using STEREO/SECCHI data. Solar Phys. 256, 111. doi: 10.1007/s11207-009-9346-5 .

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Tang, F., Akasofu, S.I., Smith, E.J.: 1988, Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978 – 1979). J. Geophys. Res. 93(A8), 8519. doi: 10.1029/JA093iA08p08519 .

    Article  ADS  Google Scholar 

  • Vourlidas, A., Colaninno, R., Noeves-Chinchilla, T., Stenborg, G.: 2011, The first observation of a rapidly rotating coronal mass ejection in the middle corona. Astrophys. J. Lett. 733, L23. doi: 10.1088/2041-8205/733/2/L23 .

    Article  ADS  Google Scholar 

  • Vourlidas, A., Lynch, B.J., Howard, R.A., Li, Y.: 2012, How many CMEs have flux ropes? Deciphering the signatures of shocks, flux ropes, and prominences in coronagraph observations of CMEs. Solar Phys. 284, 179. doi: 10.1007/s11207-012-0084-8 .

    ADS  Google Scholar 

  • Wang, Y., Shen, C., Wang, S., Ye, P.: 2004, Deflection of coronal mass ejection in the interplanetary medium. Solar Phys. 222, 329. doi: 10.1023/B:SOLA.0000043576.21942.aa .

    Article  ADS  Google Scholar 

  • Wang, Y., Chen, C., Gui, B., Shen, C., Ye, P., Wang, S.: 2011, Statistical study of coronal mass ejection source locations: Understanding CMEs viewed in coronagraphs. J. Geophys. Res. 116, A04104. doi: 10.1029/2010JA016101 .

    ADS  Google Scholar 

  • Wülser, J.P., Lemen, J.R., Tarbell, T.D., Wolfson, C.J., Cannon, J.C., Carpenter, B.A., Duncan, D.W., Gradwohl, G.S., Meyer, S.B., Moore, A.S., Navarro, R.L., Pearson, J.D., Rossi, G.R., Springer, L.A., Howard, R.A., Moses, J.D., Newmark, J.S., Delaboudinière, J.P., Artzner, G., Auchére, F., Bougnet, M., Bouyries, P., Bridou, F., Clotaire, J.Y., Colas, G., Delmotte, F., Jerome, A., Lamare, M., Mercier, R., Mullot, M., Ravet, M.F., Song, X., Bothmer, V., Deutsch, W.: 2004, EUVI: The STEREO-SECCHI extreme ultraviolet imager. In: Fineschi, S., Gummin, M.A. (eds.) Proc. SPIE 5171. doi: 10.1117/12.506877 .

    Google Scholar 

  • Yurchyshyn, V., Abramenko, V., Tripathi, D.: 2009, Rotation of white-light coronal mass ejection structures as inferred from LASCO coronagraph. Astrophys. J. 705, 426. doi: 10.1088/0004-637X/705/1/426 .

    Article  ADS  Google Scholar 

  • Yurchyshyn, V., Tripathi, D.: 2010, Relationship between Earth-directed solar eruptions and magnetic clouds at 1 AU: A brief review. Adv. Geosci. 21, 51.

    Google Scholar 

  • Yurchyshyn, V., Hu, Q., Lepping, R.P., Lynch, D.J., Krall, J.: 2007, Orientations of LASCO halo CMEs and their connection to the flux rope structure of interplanetary CMEs. Adv. Space Res. 40, 1821. doi: 10.1016/j.asr.2007.01.059 .

    Article  ADS  Google Scholar 

  • Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.C., Yashiro, S., Zhukov, A.N.: 2007, Solar and interplanetary sources of major geomagnetic storms (Dst≤−100 nT) during 1996 – 2005. J. Geophys. Res. 112, A10102. doi: 10.1029/2007JA012321 .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of AI and EK was supported by the Academy of Finland. The work of AV is supported by NASA contract S-136361-Y to the Naval Research Laboratory. LASCO was constructed by a consortium of institutions: NRL (USA), MPI für Aeronomie (Germany), LAS (France), and University of Birmingham (UK). The SECCHI data are produced by an international consortium of the NRL, LMSAL, and NASA GSFC (USA), RAL and University of Birmingham (UK), MPS (Germany), CSL (Belgium), IOTA, and IAS (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Isavnin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isavnin, A., Vourlidas, A. & Kilpua, E.K.J. Three-Dimensional Evolution of Flux-Rope CMEs and Its Relation to the Local Orientation of the Heliospheric Current Sheet. Sol Phys 289, 2141–2156 (2014). https://doi.org/10.1007/s11207-013-0468-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-013-0468-4

Keywords

Navigation