Skip to main content

Advertisement

Log in

Slow Solar Wind: Observations and Modeling

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

While it is certain that the fast solar wind originates from coronal holes, where and how the slow solar wind (SSW) is formed remains an outstanding question in solar physics even in the post-SOHO era. The quest for the SSW origin forms a major objective for the planned future missions such as the Solar Orbiter and Solar Probe Plus. Nonetheless, results from spacecraft data, combined with theoretical modeling, have helped to investigate many aspects of the SSW. Fundamental physical properties of the coronal plasma have been derived from spectroscopic and imaging remote-sensing data and in situ data, and these results have provided crucial insights for a deeper understanding of the origin and acceleration of the SSW. Advanced models of the SSW in coronal streamers and other structures have been developed using 3D MHD and multi-fluid equations.

However, the following questions remain open: What are the source regions and their contributions to the SSW? What is the role of the magnetic topology in the corona for the origin, acceleration and energy deposition of the SSW? What are the possible acceleration and heating mechanisms for the SSW? The aim of this review is to present insights on the SSW origin and formation gathered from the discussions at the International Space Science Institute (ISSI) by the Team entitled “Slow solar wind sources and acceleration mechanisms in the corona” held in Bern (Switzerland) in March 2014 and 2015.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • L. Abbo, E. Antonucci, M.A. Dodero, Z. Mikić, P. Riley, Slow coronal wind composition, in SOHO-17. 10 Years of SOHO and Beyond. ESA Special Publication, vol. 617 (2006), p. 17

    Google Scholar 

  • L. Abbo, E. Antonucci, Z. Mikić, J.A. Linker, P. Riley, R. Lionello, Characterization of the slow wind in the outer corona. Adv. Space Res. 46, 1400–1408 (2010a). doi:10.1016/j.asr.2010.08.008. 1008.4452

    Article  ADS  Google Scholar 

  • L. Abbo, L. Ofman, S. Giordano, Streamers study at solar minimum: combination of UV observations and numerical modeling, in Twelfth International Solar Wind Conference, vol. 1216 (2010b), pp. 387–390. doi:10.1063/1.3395883

    Google Scholar 

  • L. Abbo, R. Lionello, P. Riley, Y.M. Wang, Coronal pseudo-streamer and bipolar streamer observed by SOHO/UVCS in March 2008. ArXiv e-prints (2015). 1505.05649

  • N. Akinari, Morphological study of quiescent streamers during solar minimum by ultraviolet emission lines. Astrophys. J. 668, 1196–1209 (2007). doi:10.1086/521386

    Article  ADS  Google Scholar 

  • S.K. Antiochos, C.R. DeVore, J.T. Karpen, Z. Mikić, Structure and dynamics of the Sun’s open magnetic field. Astrophys. J. 671, 936–946 (2007). doi:10.1086/522489. 0705.4430

    Article  ADS  Google Scholar 

  • S.K. Antiochos, Z. Mikić, V.S. Titov, R. Lionello, J.A. Linker, A model for the sources of the slow solar wind. Astrophys. J. 731, 112 (2011). doi:10.1088/0004-637X/731/2/112. 1102.3704

    Article  ADS  Google Scholar 

  • S.K. Antiochos, J.A. Linker, R. Lionello, Z. Mikić, V. Titov, T.H. Zurbuchen, The structure and dynamics of the corona-heliosphere connection. Space Sci. Rev. 172, 169–185 (2012). doi:10.1007/s11214-011-9795-7

    Article  ADS  Google Scholar 

  • E. Antonucci, Wind in the solar corona: dynamics and composition. Space Sci. Rev. 124, 35–50 (2006). doi:10.1007/s11214-006-9098-6

    Article  ADS  Google Scholar 

  • E. Antonucci, L. Abbo, M.A. Dodero, Slow wind and magnetic topology in the solar minimum corona in 1996–1997. Astron. Astrophys. 435, 699–711 (2005). doi:10.1051/0004-6361:20047126

    Article  ADS  Google Scholar 

  • E. Antonucci, L. Abbo, D. Telloni, Oxygen abundance and energy deposition in the slow coronal wind. Astrophys. J. 643, 1239–1244 (2006). doi:10.1086/503186

    Article  ADS  Google Scholar 

  • E. Antonucci, L. Abbo, D. Telloni, UVCS observations of temperature and velocity profiles in coronal holes. Space Sci. Rev. 172, 5–22 (2012). doi:10.1007/s11214-010-9739-7

    Article  ADS  Google Scholar 

  • C.N. Arge, V.J. Pizzo, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. 105(10), 10465–10480 (2000). 480. doi:10.1029/1999JA000262

    Article  ADS  Google Scholar 

  • C.N. Arge, C.J. Henney, J. Koller, C.R. Compeau, S. Young, D. MacKenzie, A. Fay, J.W. Harvey, Air Force data assimilative photospheric flux transport (ADAPT) model, in Twelfth International Solar Wind Conference, AIP Conf. Proc., vol. 1216, ed. by M. Maksimovic, K. Issautier, N. Meyer-Vernet, M. Moncuquet, F. Pantellini (2010), pp. 343–346. doi:10.1063/1.3395870

    Google Scholar 

  • R.G. Athay, Radiation loss rates in Lyman-alpha for solar conditions. Astrophys. J. 308, 975–981 (1986). doi:10.1086/164565

    Article  ADS  Google Scholar 

  • S.D. Baalrud, A. Bhattacharjee, Y.M. Huang, K. Germaschewski, Hall magnetohydrodynamic reconnection in the plasmoid unstable regime. Phys. Plasmas 18(9), 092108 (2011). doi:10.1063/1.3633473. 1108.3129

    Article  ADS  Google Scholar 

  • D. Baker, L. van Driel-Gesztelyi, C.H. Mandrini, P. Démoulin, M.J. Murray, Magnetic reconnection along quasi-separatrix layers as a driver of ubiquitous active region outflows. Astrophys. J. 705, 926–935 (2009). doi:10.1088/0004-637X/705/1/926. 0909.4738

    Article  ADS  Google Scholar 

  • D. Baker, D.H. Brooks, P. Démoulin, S.L. Yardley, L. van Driel-Gesztelyi, D.M. Long, L.M. Green, FIP bias evolution in a decaying active region. Astrophys. J. 802, 104 (2015). doi:10.1088/0004-637X/802/2/104. 1501.07397

    Article  ADS  Google Scholar 

  • S.D. Bale, J.C. Kasper, G.G. Howes, E. Quataert, C. Salem, D. Sundkvist, Magnetic fluctuation power near proton temperature anisotropy instability thresholds in the solar wind. Phys. Rev. Lett. 103(21), 211101 (2009). doi:10.1103/PhysRevLett.103.211101. 0908.1274

    Article  ADS  Google Scholar 

  • S.J. Bame, D.J. McComas, B.L. Barraclough, J.L. Phillips, K.J. Sofaly, J.C. Chavez, B.E. Goldstein, R.K. Sakurai, The ULYSSES solar wind plasma experiment. Astron. Astrophys. Suppl. Ser. 92, 237–265 (1992)

    ADS  Google Scholar 

  • A.R. Barakat, R.W. Schunk, Transport equations for multicomponent anisotropic space plasmas—a review. Plasma Phys. 24, 389–418 (1982). doi:10.1088/0032-1028/24/4/004

    Article  ADS  MathSciNet  Google Scholar 

  • J.M. Beckers, E. Chipman, The profile and polarization of the coronal L\(\upalpha\) line. Sol. Phys. 34, 151–161 (1974). doi:10.1007/BF00149606

    Article  ADS  Google Scholar 

  • B. Bell, G. Noci, Intensity of the Fe XV emission line corona, the level of geomagnetic activity, and the velocity of the solar wind. J. Geophys. Res. 81, 4508–4516 (1976). doi:10.1029/JA081i025p04508

    Article  ADS  Google Scholar 

  • A. Bemporad, Spectroscopic detection of turbulence in post-CME current sheets. Astrophys. J. 689(1), 572 (2008)

    Article  ADS  Google Scholar 

  • A. Bemporad, G. Poletto, S. Suess, Y.K. Ko, N. Schwadron, H. Elliott, J. Raymond, Current sheet evolution in the aftermath of a CME event. Astrophys. J. 638(2), 1110 (2006)

    Article  ADS  Google Scholar 

  • L. Bettarini, G. Lapenta, Spontaneous non-steady magnetic reconnection within the solar environment. Astron. Astrophys. 518, A57 (2010)

    Article  ADS  Google Scholar 

  • A. Bhattacharjee, Y.M. Huang, H. Yang, B. Rogers, Fast reconnection in high-Lundquist-number plasmas due to the plasmoid instability. Phys. Plasmas 16(11), 112102 (2009). doi:10.1063/1.3264103. 0906.5599

    Article  ADS  Google Scholar 

  • J. Birn et al., Geospace environmental modeling (gem) magnetic reconnection challenge. J. Geophys. Res. 106, 3715–3719 (2001)

    Article  ADS  Google Scholar 

  • C. Boutry, E. Buchlin, J.C. Vial, S. Régnier, Flows at the edge of an active region: observation and interpretation. Astrophys. J. 752, 13 (2012). doi:10.1088/0004-637X/752/1/13. 1204.1377

    Article  ADS  Google Scholar 

  • S.I. Braginskii, Transport processes in a plasma. Rev. Plasma Phys. 1, 205 (1965)

    ADS  Google Scholar 

  • P. Brekke, O. Kjeldseth-Moe, R.A. Harrison, High-velocity flows in an active region loop system observed with the Coronal Diagnostic Spectrometer (CDS) on SOHO. Sol. Phys. 175, 511–521 (1997). doi:10.1023/A:1004950330900

    Article  ADS  Google Scholar 

  • D.H. Brooks, H.P. Warren, The coronal source of extreme-ultraviolet line profile asymmetries in solar active region outflows. Astrophys. J. Lett. 760, L5 (2012). doi:10.1088/2041-8205/760/1/L5. 1210.1274

    Article  ADS  Google Scholar 

  • D.H. Brooks, I. Ugarte-Urra, H.P. Warren, Full-Sun observations for identifying the source of the slow solar wind. Nat. Commun. 6, 5947 (2015). doi:10.1038/ncomms6947

    Article  ADS  Google Scholar 

  • R. Bruno, V. Carbone, The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 2, 4 (2005). doi:10.12942/lrsp-2005-4

    Article  ADS  Google Scholar 

  • A. Buergi, J. Geiss, Helium and minor ions in the corona and solar wind—dynamics and charge states. Sol. Phys. 103, 347–383 (1986). doi:10.1007/BF00147835

    Article  ADS  Google Scholar 

  • S.V. Bulanov, J. Sakai, S.I. Syrovatsii, Tearing-mode instability in approximately steady MHD configurations. Sov. J. Plasma Phys. 5, 157 (1979)

    ADS  Google Scholar 

  • L.F. Burlaga, A.J. Lazarus, Lognormal distributions and spectra of solar wind plasma fluctuations: wind 1995–1998. J. Geophys. Res. 105, 2357–2364 (2000). doi:10.1029/1999JA900442

    Article  ADS  Google Scholar 

  • L.F. Burlaga, N.F. Ness, Y.M. Wang, N.R. Sheeley, Heliospheric magnetic field strength and polarity from 1 to 81 AU during the ascending phase of solar cycle 23. J. Geophys. Res. Space Phys. 107, 1410 (2002). doi:10.1029/2001JA009217

    Article  ADS  Google Scholar 

  • P.A. Cassak, M.A. Shay, J.F. Drake, Scaling of Sweet-Parker reconnection with secondary islands. Phys. Plasmas 16(12), 120702 (2009). doi:10.1063/1.3274462

    Article  ADS  Google Scholar 

  • B.D.G. Chandran, T.J. Dennis, E. Quataert, S.D. Bale, Incorporating kinetic physics into a two-fluid solar-wind model with temperature anisotropy and low-frequency Alfvén-wave turbulence. Astrophys. J. 743, 197 (2011). doi:10.1088/0004-637X/743/2/197. 1110.3029

    Article  ADS  Google Scholar 

  • Y. Chen, X. Li, An ion-cyclotron resonance-driven three-fluid model of the slow wind near the Sun. Astrophys. J. Lett. 609, L41–L44 (2004). doi:10.1086/422581

    Article  ADS  Google Scholar 

  • Y. Chen, R. Esser, Y. Hu, Formation of minor-ion charge states in the fast solar wind: roles of differential flow speeds of ions of the same element. Astrophys. J. 582, 467–474 (2003). doi:10.1086/344642

    Article  ADS  Google Scholar 

  • Y. Chen, R. Esser, L. Strachan, Y. Hu, Stagnated outflow of O+5 ions in the source region of the slow solar wind at solar minimum. Astrophys. J. 602, 415–421 (2004). doi:10.1086/380960

    Article  ADS  Google Scholar 

  • O. Cohen, I.V. Sokolov, I.I. Roussev, C.N. Arge, W.B. Manchester, T.I. Gombosi, R.A. Frazin, H. Park, M.D. Butala, F. Kamalabadi, M. Velli, A semiempirical magnetohydrodynamical model of the solar wind. Astrophys. J. 654, L163–L166 (2007). doi:10.1086/511154

    Article  ADS  Google Scholar 

  • S.R. Cranmer, Coronal holes. Living Rev. Sol. Phys. 6, 3 (2009). doi:10.12942/lrsp-2009-3. 0909.2847

    Article  ADS  Google Scholar 

  • S.R. Cranmer, A.A. van Ballegooijen, On the generation, propagation, and reflection of Alfvén waves from the solar photosphere to the distant heliosphere. Astron. Astrophys. Suppl. Ser. 156, 265–293 (2005). doi:10.1086/426507. astro-ph/0410639.

    Article  ADS  Google Scholar 

  • S.R. Cranmer, G.B. Field, J.L. Kohl, Spectroscopic constraints on models of ion cyclotron resonance heating in the polar solar corona and high-speed solar wind. Astrophys. J. 518, 937–947 (1999a). doi:10.1086/307330

    Article  ADS  Google Scholar 

  • S.R. Cranmer, J.L. Kohl, G. Noci, E. Antonucci, G. Tondello, M.C.E. Huber, L. Strachan, A.V. Panasyuk, L.D. Gardner, M. Romoli, S. Fineschi, D. Dobrzycka, J.C. Raymond, P. Nicolosi, O.H.W. Siegmund, D. Spadaro, C. Benna, A. Ciaravella, S. Giordano, S.R. Habbal, M. Karovska, X. Li, R. Martin, J.G. Michels, A. Modigliani, G. Naletto, R.H. O’Neal, C. Pernechele, G. Poletto, P.L. Smith, R.M. Suleiman, An empirical model of a polar coronal hole at solar minimum. Astrophys. J. 511, 481–501 (1999b). doi:10.1086/306675

    Article  ADS  Google Scholar 

  • S.R. Cranmer, A.A. van Ballegooijen, R.J. Edgar, Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence. Astrophys. J. Suppl. Ser. 171, 520 (2007). doi:10.1086/518001. arXiv:astro-ph/0703333

    Article  ADS  Google Scholar 

  • S.R. Cranmer, A.V. Panasyuk, J.L. Kohl, Improved constraints on the preferential heating and acceleration of oxygen ions in the extended solar corona. Astrophys. J. 678, 1480–1497 (2008). doi:10.1086/586890. 0802.0144

    Article  ADS  Google Scholar 

  • S.R. Cranmer, M. Asgari-Targhi, M.P. Miralles, J.C. Raymond, L. Strachan, H. Tian, L.N. Woolsey, The role of turbulence in coronal heating and solar wind expansion. ArXiv e-prints (2014). 1412.2307

  • N.U. Crooker, J.T. Gosling, S.W. Kahler, Reducing heliospheric magnetic flux from coronal mass ejections without disconnection. J. Geophys. Res. Space Phys. 107, 1028 (2002). doi:10.1029/2001JA000236

    ADS  Google Scholar 

  • N.U. Crooker, C.L. Huang, S.M. Lamassa, D.E. Larson, S.W. Kahler, H.E. Spence, Heliospheric plasma sheets. J. Geophys. Res. Space Phys. 109, A03107 (2004). doi:10.1029/2003JA010170

    ADS  Google Scholar 

  • N.U. Crooker, E.M. Appleton, N.A. Schwadron, M.J. Owens, Suprathermal electron flux peaks at stream interfaces: signature of solar wind dynamics or tracer for open magnetic flux transport on the Sun? J. Geophys. Res. Space Phys. 115(A14), A11101 (2010). doi:10.1029/2010JA015496

    ADS  Google Scholar 

  • N.U. Crooker, S.K. Antiochos, X. Zhao, M. Neugebauer, Global network of slow solar wind. J. Geophys. Res. Space Phys. 117, A04104 (2012). doi:10.1029/2011JA017236

    ADS  Google Scholar 

  • J.L. Culhane, D.H. Brooks, L. van Driel-Gesztelyi, P. Démoulin, D. Baker, M.L. DeRosa, C.H. Mandrini, L. Zhao, T.H. Zurbuchen, Tracking solar active region outflow plasma from its source to the near-Earth environment. Sol. Phys. 289, 3799–3816 (2014). doi:10.1007/s11207-014-0551-5. 1405.2949

    Article  ADS  Google Scholar 

  • S. Cuperman, L. Ofman, M. Dryer, Thermally conductive magnetohydrodynamic flows in helmet-streamer coronal structures. Astrophys. J. 350, 846–855 (1990). doi:10.1086/168436

    Article  ADS  Google Scholar 

  • R. D’Amicis, R. Bruno, On the origin of highly Alfvénic slow solar wind. Astrophys. J. 805, 84 (2015). doi:10.1088/0004-637X/805/1/84

    Article  ADS  Google Scholar 

  • W. Daughton, V. Roytershteyn, B. Albright, H. Karimabadi, L. Yin, K.J. Bowers, Transition from collisional to kinetic regimes in large-scale reconnection layers. Phys. Rev. Lett. 103(6), 065004 (2009)

    Article  ADS  Google Scholar 

  • B. De Pontieu, S.W. McIntosh, Quasi-periodic propagating signals in the solar corona: the signature of magnetoacoustic waves or high-velocity upflows? Astrophys. J. 722, 1013–1029 (2010). doi:10.1088/0004-637X/722/2/1013. 1008.5300

    Article  ADS  Google Scholar 

  • B. De Pontieu, S.W. McIntosh, V.H. Hansteen, C.J. Schrijver, Observing the roots of solar coronal heating in the chromosphere. Astrophys. J. Lett. 701, L1–L6 (2009). doi:10.1088/0004-637X/701/1/L1. 0906.5434

    Article  ADS  Google Scholar 

  • G. Del Zanna, Flows in active region loops observed by Hinode EIS. Astron. Astrophys. 481, L49–L52 (2008). doi:10.1051/0004-6361:20079087

    Article  ADS  Google Scholar 

  • G. Del Zanna, G. Aulanier, K.L. Klein, T. Török, A single picture for solar coronal outflows and radio noise storms. Astron. Astrophys. 526, A137 (2011). doi:10.1051/0004-6361/201015231

    Article  Google Scholar 

  • G.A. Doschek, H.P. Warren, J.T. Mariska, K. Muglach, J.L. Culhane, H. Hara, T. Watanabe, Flows and nonthermal velocities in solar active regions observed with the EUV imaging spectrometer on Hinode: a tracer of active region sources of heliospheric magnetic fields? Astrophys. J. 686, 1362–1371 (2008). doi:10.1086/591724. 0807.2860

    Article  ADS  Google Scholar 

  • J.K. Edmondson, B.J. Lynch, S.K. Antiochos, C.R. de Vore, T.H. Zurbuchen, Reconnection-driven dynamics of coronal-hole boundaries. Astrophys. J. 707, 1427–1437 (2009). doi:10.1088/0004-637X/707/2/1427

    Article  ADS  Google Scholar 

  • J.K. Edmondson, S.K. Antiochos, C.R. DeVore, B.J. Lynch, T.H. Zurbuchen, Interchange reconnection and coronal hole dynamics. Astrophys. J. 714, 517–531 (2010). doi:10.1088/0004-637X/714/1/517

    Article  ADS  Google Scholar 

  • S.J. Edwards, C.E. Parnell, L.K. Harra, J.L. Culhane, D.H. Brooks, A comparison of global magnetic field skeletons and active region upflows. Sol. Phys. 291, 117–142 (2016)

    Article  ADS  Google Scholar 

  • G. Einaudi, P. Boncinelli, R.B. Dahlburg, J.T. Karpen, Formation of the slow solar wind in a coronal streamer. J. Geophys. Res. Space Phys. 1978–2012, 104(A1):521–534 (1999)

    ADS  Google Scholar 

  • G. Einaudi, S. Chibbaro, R.B. Dahlburg, M. Velli, Plasmoid formation and acceleration in the solar streamer belt. Astrophys. J. 547(2), 1167 (2001)

    Article  ADS  Google Scholar 

  • E. Endeve, E. Leer, Coronal heating and solar wind acceleration; gyrotropic electron-proton solar wind. Sol. Phys. 200, 235–250 (2001). doi:10.1023/A:1010313719194

    Article  ADS  Google Scholar 

  • E. Endeve, T.E. Holzer, E. Leer, Helmet streamers gone unstable: two-fluid magnetohydrodynamic models of the solar corona. Astrophys. J. 603, 307–321 (2004). doi:10.1086/381239

    Article  ADS  Google Scholar 

  • S. Eriksson, D. Newman, G. Lapenta, V. Angelopoulos, On the signatures of magnetic islands and multiple x-lines in the solar wind as observed by Artemis and wind. Plasma Phys. Control. Fusion 56(6), 064008 (2014)

    Article  ADS  Google Scholar 

  • R. Esser, R.J. Edgar, Differential flow speeds of ions of the same element: effects on solar wind ionization fractions. Astrophys. J. 563, 1055–1062 (2001). doi:10.1086/323987

    Article  ADS  Google Scholar 

  • G.L. Eyink, A. Lazarian, E.T. Vishniac, Fast magnetic reconnection and spontaneous stochasticity. Astrophys. J. 743, 51 (2011). doi:10.1088/0004-637X/743/1/51. 1103.1882

    Article  ADS  Google Scholar 

  • A. Fazakerley, L. Harra, L. van Driel-Gesztelyi, An investigation of the sources of Earth-directed solar wind during Carrington rotation 2053. Sol. Phys. (2015, submitted)

  • S. Fineschi, L.D. Gardner, J.L. Kohl, M. Romoli, G.C. Noci, Grating stray light analysis and control in the UVCS/SOHO, in X-Ray and Ultraviolet Spectroscopy and Polarimetry II, ed. by S. Fineschi. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 3443 (1998), pp. 67–74

    Chapter  Google Scholar 

  • L.A. Fisk, Acceleration of the solar wind as a result of the reconnection of open magnetic flux with coronal loops. J. Geophys. Res. Space Phys. 108, 1157 (2003). doi:10.1029/2002JA009284

    Article  ADS  Google Scholar 

  • L.A. Fisk, N.A. Schwadron, Origin of the solar wind: theory. Space Sci. Rev. 97, 21–33 (2001)

    Article  ADS  Google Scholar 

  • L.A. Fisk, L. Zhao, The heliospheric magnetic field and the solar wind during the solar cycle, in Universal Heliophysical Processes. IAU Symposium, vol. 257, ed. by N. Gopalswamy, D.F. Webb (2009), pp. 109–120. doi:10.1017/S1743921309029160

    Google Scholar 

  • L.A. Fisk, N.A. Schwadron, T.H. Zurbuchen, On the slow solar wind. Space Sci. Rev. 86, 51–60 (1998). doi:10.1023/A:1005015527146

    Article  ADS  Google Scholar 

  • R.A. Frazin, S.R. Cranmer, J.L. Kohl, Empirically determined anisotropic velocity distributions and outflows of O5+ ions in a coronal streamer at solar minimum. Astrophys. J. 597, 1145–1157 (2003). doi:10.1086/378558

    Article  ADS  Google Scholar 

  • H. Fu, B. Li, X. Li, Z. Huang, C. Mou, F. Jiao, L. Xia, Coronal sources and in situ properties of the solar winds sampled by ACE during 1999–2008. Sol. Phys. 290 1399–1415 (2015). doi:10.1007/s11207-015-0689-9. 1505.00407

    Article  ADS  Google Scholar 

  • J. Geiss, G. Gloeckler, R. von Steiger, Origin of the solar wind from composition data. Space Sci. Rev. 72, 49–60 (1995). doi:10.1007/BF00768753

    Article  ADS  Google Scholar 

  • G. Gloeckler, J. Geiss, H. Balsiger, P. Bedini, J.C. Cain, J. Fischer, L.A. Fisk, A.B. Galvin, F. Gliem, D.C. Hamilton, J.V. Hollweg, F.M. Ipavich, R. Joos, S. Livi, R.A. Lundgren, U. Mall, J.F. McKenzie, K.W. Ogilvie, F. Ottens, W. Rieck, E.O. von Tums, R. Steiger, W. Weiss, B. Wilken, The solar wind ion composition spectrometer. Astron. Astrophys. Suppl. Ser. 92, 267–289 (1992)

    ADS  Google Scholar 

  • V.H. Hansteen, E. Leer, Coronal heating, densities, and temperatures and solar wind acceleration. J. Geophys. Res. 100(21), 21577–21594 (1995). doi:10.1029/95JA02300

    Article  ADS  Google Scholar 

  • V.H. Hansteen, M. Velli, Solar wind models from the chromosphere to 1 AU. Space Sci. Rev. 172, 89–121 (2012). doi:10.1007/s11214-012-9887-z

    Article  ADS  Google Scholar 

  • V.H. Hansteen, H. Hara, B. De Pontieu, M. Carlsson, On redshifts and blueshifts in the transition region and corona. Astrophys. J. 718, 1070–1078 (2010). doi:10.1088/0004-637X/718/2/1070. 1001.4769

    Article  ADS  Google Scholar 

  • L.K. Harra, T. Sakao, C.H. Mandrini, H. Hara, S. Imada, P.R. Young, L. van Driel-Gesztelyi, D. Baker, Outflows at the edges of active regions: contribution to solar wind formation? Astrophys. J. Lett. 676, L147–L150 (2008). doi:10.1086/587485

    Article  ADS  Google Scholar 

  • J.S. He, E. Marsch, C.Y. Tu, L.J. Guo, H. Tian, Intermittent outflows at the edge of an active region—a possible source of the solar wind? Astron. Astrophys. 516, A14 (2010). doi:10.1051/0004-6361/200913712

    Article  ADS  Google Scholar 

  • J.V. Hollweg, P.A. Isenberg, Generation of the fast solar wind: a review with emphasis on the resonant cyclotron interaction. J. Geophys. Res. Space Phys. 107, 1147 (2002). doi:10.1029/2001JA000270

    Article  ADS  Google Scholar 

  • Y.M. Huang, A. Bhattacharjee, Scaling laws of resistive magnetohydrodynamic reconnection in the high-Lundquist-number, plasmoid-unstable regime. Phys. Plasmas 17(6), 062104 (2010). doi:10.1063/1.3420208. 1003.5951

    Article  ADS  Google Scholar 

  • A.J. Hundhausen, Coronal Expansion and Solar Wind. Physics and Chemistry in Space, vol. 5 (1972). doi:10.1007/978-3-642-65414-5

    Google Scholar 

  • H. Ji, W. Daughton, Phase diagram for magnetic reconnection in heliophysical, astrophysical, and laboratory plasmas. Phys. Plasmas 18(11), 111207 (2011). doi:10.1063/1.3647505. 1109.0756

    Article  ADS  Google Scholar 

  • F. Jiao, L. Xia, B. Li, Z. Huang, X. Li, K. Chandrashekhar, C. Mou, H. Fu, Sources of quasi-periodic propagating disturbances above a solar polar coronal hole. Astrophys. J. Lett. 809, L17 (2015). doi:10.1088/2041-8205/809/1/L17. 1507.08440

    Article  ADS  Google Scholar 

  • S.I. Jones, J.M. Davila, Localized plasma density enhancements observed in STEREO COR1. Astrophys. J. 701, 1906–1910 (2009). doi:10.1088/0004-637X/701/2/1906

    Article  ADS  Google Scholar 

  • H. Karimabadi, W. Daughton, K.B. Quest, Antiparallel versus component merging at the magnetopause: current bifurcation and intermittent reconnection. J. Geophys. Res. Space Phys. 110(A3), A03213 (2005) (1978–2012)

    ADS  Google Scholar 

  • H. Karimabadi, W. Daughton, J. Scudder, Multi-scale structure of the electron diffusion region. Geophys. Res. Lett. 34(13), L13104 (2007)

    Article  ADS  Google Scholar 

  • J.C. Kasper, M.L. Stevens, K.E. Korreck, B.A. Maruca, K.K. Kiefer, N.A. Schwadron, S.T. Lepri, Evolution of the relationships between helium abundance, minor ion charge state, and solar wind speed over the solar cycle. Astrophys. J. 745, 162 (2012). doi:10.1088/0004-637X/745/2/162

    Article  ADS  Google Scholar 

  • J.C. Kasper, B.A. Maruca, M.L. Stevens, A. Zaslavsky, Sensitive test for ion-cyclotron resonant heating in the solar wind. Phys. Rev. Lett. 110(9), 091102 (2013). doi:10.1103/PhysRevLett.110.091102

    Article  ADS  Google Scholar 

  • J.A. Klimchuk, The role of type II spicules in the upper solar atmosphere. J. Geophys. Res. Space Phys. 117, A12102 (2012). doi:10.1029/2012JA018170. 1207.7048

    ADS  Google Scholar 

  • D. Knoll, L. Chacón, Magnetic reconnection in the two-dimensional Kelvin-Helmholtz instability. Phys. Rev. Lett. 88(21), 215003 (2002)

    Article  ADS  Google Scholar 

  • Y.K. Ko, L.A. Fisk, G. Gloeckler, J. Geiss, Limitations on suprathermal tails of electrons in the lower solar corona. Geophys. Res. Lett. 23, 2785–2788 (1996). doi:10.1029/96GL02449

    Article  ADS  Google Scholar 

  • Y.K. Ko, L.A. Fisk, J. Geiss, G. Gloeckler, M. Guhathakurta, An empirical study of the electron temperature and heavy ion velocities in the South polar coronal hole. Sol. Phys. 171, 345–361 (1997)

    Article  ADS  Google Scholar 

  • Y.K. Ko, J. Geiss, G. Gloeckler, On the differential ion velocity in the inner solar corona and the observed solar wind ionic charge states. J. Geophys. Res. 103(14), 14539–14546 (1998). doi:10.1029/98JA00763

    Article  ADS  Google Scholar 

  • Y.K. Ko, J.C. Raymond, J. Li, A. Ciaravella, J. Michels, S. Fineschi, R. Wu, Solar and heliospheric observatory ultraviolet coronagraph spectrometer and Yohkoh Soft X-ray telescope observations of the high-temperature corona above an active region complex. Astrophys. J. 578, 979–995 (2002). doi:10.1086/342616

    Article  ADS  Google Scholar 

  • Y.K. Ko, J. Li, P. Riley, J.C. Raymond, Large-scale coronal density and abundance structures and their association with magnetic field structure. Astrophys. J. 683, 1168–1179 (2008). doi:10.1086/589873

    Article  ADS  Google Scholar 

  • Y.K. Ko, K. Muglach, Y.M. Wang, P.R. Young, S.T. Lepri, Temporal evolution of solar wind ion composition and their source coronal holes during the declining phase of cycle 23. I. low-latitude extension of polar coronal holes. Astrophys. J. 787, 121 (2014). doi:10.1088/0004-637X/787/2/121

    Article  ADS  Google Scholar 

  • J.L. Kohl, G. Noci, E. Antonucci, G. Tondello, M.C.E. Huber, L.D. Gardner, P. Nicolosi, L. Strachan, S. Fineschi, J.C. Raymond, M. Romoli, D. Spadaro, A. Panasyuk, O.H.W. Siegmund, C. Benna, A. Ciaravella, S.R. Cranmer, S. Giordano, M. Karovska, R. Martin, J. Michels, A. Modigliani, G. Naletto, C. Pernechele, G. Poletto, P.L. Smith, First results from the SOHO ultraviolet coronagraph spectrometer. Sol. Phys. 175, 613–644 (1997). doi:10.1023/A:1004903206467

    Article  ADS  Google Scholar 

  • J.L. Kohl, G. Noci, E. Antonucci, G. Tondello, M.C.E. Huber, S.R. Cranmer, L. Strachan, A.V. Panasyuk, L.D. Gardner, M. Romoli, S. Fineschi, D. Dobrzycka, J.C. Raymond, P. Nicolosi, O.H.W. Siegmund, D. Spadaro, C. Benna, A. Ciaravella, S. Giordano, S.R. Habbal, M. Karovska, X. Li, R. Martin, J.G. Michels, A. Modigliani, G. Naletto, R.H. O’Neal, C. Pernechele, G. Poletto, P.L. Smith, R.M. Suleiman, UVCS/SOHO empirical determinations of anisotropic velocity distributions in the solar corona. Astrophys. J. Lett. 501, L127–L131 (1998). doi:10.1086/311434

    Article  ADS  Google Scholar 

  • J.L. Kohl, G. Noci, S.R. Cranmer, J.C. Raymond, Ultraviolet spectroscopy of the extended solar corona. Astron. Astrophys. Rev. 13, 31–157 (2006). doi:10.1007/s00159-005-0026-7

    Article  ADS  Google Scholar 

  • R.A. Kopp, T.E. Holzer, Dynamics of coronal hole regions I. Steady polytropic f lows with multiple critical points. Sol. Phys. 49, 43–56 (1976). doi:10.1007/BF00221484

    Article  ADS  Google Scholar 

  • V.A. Kovalenko, Energy balance of the corona and the origin of quasi-stationary high-speed solar wind streams. Sol. Phys. 73, 383–403 (1981). doi:10.1007/BF00151689

    Article  ADS  Google Scholar 

  • J.M. Laming, A unified picture of the first ionization potential and inverse first ionization potential effects. Astrophys. J. 614, 1063–1072 (2004). doi:10.1086/423780. astro-ph/0405230

    Article  ADS  Google Scholar 

  • J.M. Laming, Non-WKB models of the first ionization potential effect: implications for solar coronal heating and the coronal helium and neon abundances. Astrophys. J. 695, 954–969 (2009). doi:10.1088/0004-637X/695/2/954. 0901.3350

    Article  ADS  Google Scholar 

  • J.M. Laming, The FIP and inverse FIP effects in solar and stellar coronae. Living Rev. Sol. Phys. 12, 2 (2015). doi:10.1007/lrsp-2015-2. 1504.08325

    Article  ADS  Google Scholar 

  • J.M. Laming, S.T. Lepri, Ion charge states in the fast solar wind: new data analysis and theoretical refinements. Astrophys. J. 660, 1642–1652 (2007). doi:10.1086/513505. astro-ph/0702131

    Article  ADS  Google Scholar 

  • E. Landi, P. Testa, The temperature of quiescent streamers during solar cycles 23 and 24. Astrophys. J. 787, 33 (2014). doi:10.1088/0004-637X/787/1/33

    Article  ADS  Google Scholar 

  • E. Landi, R.L. Alexander, J.R. Gruesbeck, J.A. Gilbert, S.T. Lepri, W.B. Manchester, T.H. Zurbuchen, Carbon ionization stages as a diagnostic of the solar wind. Astrophys. J. 744, 100 (2012a). doi:10.1088/0004-637X/744/2/100

    Article  ADS  Google Scholar 

  • E. Landi, J.R. Gruesbeck, S.T. Lepri, T.H. Zurbuchen, New solar wind diagnostic using both in situ and spectroscopic measurements. Astrophys. J. 750, 159 (2012b). doi:10.1088/0004-637X/750/2/159

    Article  ADS  Google Scholar 

  • E. Landi, J.R. Gruesbeck, S.T. Lepri, T.H. Zurbuchen, L.A. Fisk, Charge state evolution in the solar wind II. Plasma charge state composition in the inner corona and accelerating fast solar wind. Astrophys. J. 761, 48 (2012c). doi:10.1088/0004-637X/761/1/48

    Article  ADS  Google Scholar 

  • E. Landi, J.R. Gruesbeck, S.T. Lepri, T.H. Zurbuchen, L.A. Fisk, Charge state evolution in the solar wind. Radiative losses in fast solar wind plasmas. Astrophys. J. Lett. 758, L21 (2012d). doi:10.1088/2041-8205/758/1/L21

    Article  ADS  Google Scholar 

  • G. Lapenta, Self-feeding turbulent magnetic reconnection on macroscopic scales. Phys. Rev. Lett. 100(23), 235001 (2008). doi:10.1103/PhysRevLett.100.235001. 0805.0426

    Article  ADS  MathSciNet  Google Scholar 

  • G. Lapenta, D. Knoll, Effect of a converging flow at the streamer cusp on the genesis of the slow solar wind. Astrophys. J. 624, 1049–1056 (2005a)

    Article  ADS  Google Scholar 

  • G. Lapenta, D. Knoll, Effect of a converging flow at the streamer cusp on the genesis of the slow solar wind. Astrophys. J. 624(2), 1049 (2005b)

    Article  ADS  Google Scholar 

  • G. Lapenta, A. Lazarian, Achieving fast reconnection in resistive MHD models via turbulent means. Nonlinear Process. Geophys. 19, 251–263 (2012). doi:10.5194/npg-19-251-2012. 1110.0089

    Article  ADS  Google Scholar 

  • G. Lapenta, A.L. Restante, Blob formation and acceleration in the solar wind: role of converging flows and viscosity. Ann. Geophys. 26, 3049–3060 (2008). doi:10.5194/angeo-26-3049-2008. 0710.2702

    Article  ADS  Google Scholar 

  • A. Lazarian, E.T. Vishniac, Reconnection in a weakly stochastic field. Astrophys. J. 517, 700 (1999). doi:10.1086/307233. arXiv:astro-ph/9811037

    Article  ADS  Google Scholar 

  • G. Le Chat, K. Issautier, N. Meyer-Vernet, The solar wind energy flux. Sol. Phys. 279, 197–205 (2012). doi:10.1007/s11207-012-9967-y. 1203.1316

    Article  ADS  Google Scholar 

  • E. Leer, T.E. Holzer, Energy addition in the solar wind. J. Geophys. Res. 85, 4681–4688 (1980). doi:10.1029/JA085iA09p04681

    Article  ADS  Google Scholar 

  • E. Leer, T.E. Holzer, T. Fla, Acceleration of the solar wind. Space Sci. Rev. 33, 161–200 (1982). doi:10.1007/BF00213253

    Article  ADS  Google Scholar 

  • S.T. Lepri, E. Landi, T.H. Zurbuchen, Solar wind heavy ions over solar cycle 23: ACE/SWICS measurements. Astrophys. J. 768, 94 (2013). doi:10.1088/0004-637X/768/1/94

    Article  ADS  Google Scholar 

  • R.H. Levine, M.D. Altschuler, J.W. Harvey, Solar sources of the interplanetary magnetic field and solar wind. J. Geophys. Res. 82, 1061–1065 (1977). doi:10.1029/JA082i007p01061

    Article  ADS  Google Scholar 

  • X. Li, R. Esser, S.R. Habbal, Y.Q. Hu, Influence of heavy ions on the high-speed solar wind. J. Geophys. Res. 102(17), 17419–17432 (1997). doi:10.1029/97JA01448

    Article  ADS  Google Scholar 

  • J. Li, J.C. Raymond, L.W. Acton, J.L. Kohl, M. Romoli, G. Noci, G. Naletto, Physical structure of a coronal streamer in the closed-field region as observed from UVCS/SOHO and SXT/Yohkoh. Astrophys. J. 506, 431–438 (1998). doi:10.1086/306244

    Article  ADS  Google Scholar 

  • B. Li, X. Li, Y.Q. Hu, S.R. Habbal, A two-dimensional Alfvén wave-driven solar wind model with proton temperature anisotropy. J. Geophys. Res. Space Phys. 109, A07103 (2004). doi:10.1029/2003JA010313

    ADS  Google Scholar 

  • B. Li, X. Li, N. Labrosse, A global 2.5-dimensional three fluid solar wind model with alpha particles. J. Geophys. Res. Space Phys. 111, A08106 (2006). doi:10.1029/2005JA011303

    ADS  Google Scholar 

  • B. Li, L.D. Xia, Y. Chen, Solar winds along curved magnetic field lines. Astron. Astrophys. 529, A148 (2011). doi:10.1051/0004-6361/201116668. 1103.5211

    Article  ADS  Google Scholar 

  • Ø. Lie-Svendsen, V.H. Hansteen, E. Leer, T.E. Holzer, The effect of transition region heating on the solar wind from coronal holes. Astrophys. J. 566, 562–576 (2002). doi:10.1086/337990

    Article  ADS  Google Scholar 

  • P.C. Liewer, M. Neugebauer, T. Zurbuchen, Characteristics of active-region sources of solar wind near solar maximum. Sol. Phys. 223, 209–229 (2004). doi:10.1007/s11207-004-1105-z

    Article  ADS  Google Scholar 

  • J.A. Linker, G. van Hoven, D.D. Schnack, A three-dimensional simulation of a coronal streamer. Geophys. Res. Lett. 17, 2281–2284 (1990). doi:10.1029/GL017i013p02281

    Article  ADS  Google Scholar 

  • J.A. Linker, R. Lionello, Z. Mikić, V.S. Titov, S.K. Antiochos, The evolution of open magnetic flux driven by photospheric dynamics. Astrophys. J. 731, 110 (2011). doi:10.1088/0004-637X/731/2/110

    Article  ADS  Google Scholar 

  • R. Lionello, J.A. Linker, Z. Mikić, Including the transition region in models of the large-scale solar corona. Astrophys. J. 546, 542–551 (2001). doi:10.1086/318254

    Article  ADS  Google Scholar 

  • R. Lionello, P. Riley, J.A. Linker, Z. Mikić, The effects of differential rotation on the magnetic structure of the solar corona: magnetohydrodynamic simulations. Astrophys. J. 625, 463 (2005). doi:10.1086/429268

    Article  ADS  Google Scholar 

  • R. Lionello, J.A. Linker, Z. Mikić, Multispectral emission of the Sun during the first whole Sun month: magnetohydrodynamic simulations. Astrophys. J. 690, 902–912 (2009). doi:10.1088/0004-637X/690/1/902

    Article  ADS  Google Scholar 

  • R. Lionello, M. Velli, J.A. Linker, Z. Mikić, Integrating physics-based coronal heating and solar wind acceleration in a global MHD model, in American Institute of Physics Conference Series, ed. by G.P. Zank, J. Borovsky, R. Bruno, J. Cirtain, S. Cranmer, H. Elliott, J. Giacalone, W. Gonzalez, G. Li, E. Marsch, E. Moebius, N. Pogorelov, J. Spann, O. Verkhoglyadova. American Institute of Physics Conference Series, vol. 1539 (2013), pp. 30–33. doi:10.1063/1.4810982

    Google Scholar 

  • N.F. Loureiro, A.A. Schekochihin, S.C. Cowley, Instability of current sheets and formation of plasmoid chains. Phys. Plasmas 14(10), 100703 (2007). doi:10.1063/1.2783986. arXiv:astro-ph/0703631

    Article  ADS  Google Scholar 

  • M.S. Madjarska, T. Wiegelmann, Coronal hole boundaries evolution at small scales. I. EIT 195 Å and TRACE 171 Å view. Astron. Astrophys. 503, 991–997 (2009). doi:10.1051/0004-6361/200912066. 0906.2556

    Article  ADS  Google Scholar 

  • M.S. Madjarska, J.G. Doyle, L. van Driel-Gesztelyi, Evidence of magnetic reconnection along coronal hole boundaries. Astrophys. J. Lett. 603, L57–L59 (2004). doi:10.1086/383030

    Article  ADS  Google Scholar 

  • M.S. Madjarska, Z. Huang, J.G. Doyle, S. Subramanian, Coronal hole boundaries evolution at small scales. III. EIS and SUMER views. Astron. Astrophys. 545, A67 (2012). doi:10.1051/0004-6361/201219516. 1207.1281

    Article  ADS  Google Scholar 

  • C.H. Mandrini, F.A. Nuevo, A.M. Vásquez, P. Démoulin, L. van Driel-Gesztelyi, D. Baker, J.L. Culhane, G.D. Cristiani, M. Pick, How can active region plasma escape into the solar wind from below a closed helmet streamer? Sol. Phys. 289, 4151–4171 (2014). doi:10.1007/s11207-014-0582-y. 1409.7369

    Article  ADS  Google Scholar 

  • Y.G. Maneva, L. Ofman, A. Viñas, Relative drifts and temperature anisotropies of protons and \(\alpha \) particles in the expanding solar wind: 2.5D hybrid simulations. Astron. Astrophys. 578, A85 (2015). doi:10.1051/0004-6361/201424401. 1410.3358

    Article  ADS  Google Scholar 

  • S. Markidis, P. Henri, G. Lapenta, A. Divin, M. Goldman, D. Newman, S. Eriksson, Collisionless magnetic reconnection in a plasmoid chain. Nonlinear Process. Geophys. 19(1), 145–153 (2012)

    Article  ADS  Google Scholar 

  • S. Markidis, P. Henri, G. Lapenta, A. Divin, M. Goldman, D. Newman, E. Laure, Kinetic simulations of plasmoid chain dynamics. Phys. Plasmas 20(8), 082105 (2013) (1994-present)

    Article  ADS  Google Scholar 

  • D. Marocchi, E. Antonucci, S. Giordano, Oxygen abundance in coronal streamers during solar minimum. Ann. Geophys. 19, 135–145 (2001). doi:10.5194/angeo-19-135-2001

    Article  ADS  Google Scholar 

  • E. Marsch, Kinetic physics of the solar wind plasma, in Physics of the Inner Heliosphere II, ed. by R. Schwenn, E. Marsch (Springer, Berlin, 1991), pp. 45–133

    Chapter  Google Scholar 

  • B.A. Maruca, J.C. Kasper, S.D. Bale, What are the relative roles of heating and cooling in generating solar wind temperature anisotropies? Phys. Rev. Lett. 107(20), 201101 (2011). doi:10.1103/PhysRevLett.107.201101

    Article  ADS  Google Scholar 

  • B.A. Maruca, J.C. Kasper, S.P. Gary, Instability-driven limits on helium temperature anisotropy in the solar wind: observations and linear Vlasov analysis. Astrophys. J. 748, 137 (2012). doi:10.1088/0004-637X/748/2/137

    Article  ADS  Google Scholar 

  • W. Matthaeus, S. Lamkin, Turbulent magnetic reconnection. Phys. Fluids 29(8), 2513–2534 (1986). doi:10.1063/1.866004

    Article  ADS  Google Scholar 

  • D.J. McComas, S.J. Bame, B.L. Barraclough, W.C. Feldman, H.O. Funsten, J.T. Gosling, P. Riley, R. Skoug, A. Balogh, R. Forsyth, B.E. Goldstein, M. Neugebauer, Ulysses’ return to the slow solar wind. Geophys. Res. Lett. 25, 1–4 (1998). doi:10.1029/97GL03444

    Article  ADS  Google Scholar 

  • D.J. McComas, R.W. Ebert, H.A. Elliott, B.E. Goldstein, J.T. Gosling, N.A. Schwadron, R.M. Skoug, Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett. 35, L18103 (2008). doi:10.1029/2008GL034896

    Article  ADS  Google Scholar 

  • Z. Mikić, J.A. Linker, R. Lionello, P. Riley, V. Titov, Predicting the structure of the solar corona for the total solar eclipse of March 29, in Solar and Stellar Physics Through Eclipses, ed. by O. Demircan, S.O. Selam, B. Albayrak. Astronomical Society of the Pacific Conference Series, vol. 370 (2007), p. 299. 2006

    Google Scholar 

  • R.H. Munro, B.V. Jackson, Physical properties of a polar coronal hole from 2 to 5 solar radii. Astrophys. J. 213, 874 (1977). doi:10.1086/155220

    Article  ADS  Google Scholar 

  • V.M. Nakariakov, L. Ofman, T.D. Arber, Nonlinear dissipative spherical Alfvén waves in solar coronal holes. Astron. Astrophys. 353, 741–748 (2000)

    ADS  Google Scholar 

  • M. Neugebauer, P.C. Liewer, E.J. Smith, R.M. Skoug, T.H. Zurbuchen, Sources of the solar wind at solar activity maximum. J. Geophys. Res. Space Phys. 107, 1488 (2002). doi:10.1029/2001JA000306

    ADS  Google Scholar 

  • M. Neugebauer, P.C. Liewer, B.E. Goldstein, X. Zhou, J.T. Steinberg, Solar wind stream interaction regions without sector boundaries. J. Geophys. Res. Space Phys. 109, A10102 (2004). doi:10.1029/2004JA010456

    Article  ADS  Google Scholar 

  • G. Noci, E. Gavryuseva, Plasma Outflows in Coronal Streamers. Astrophys. J. Lett. 658, L63–L66 (2007). doi:10.1086/513506

    Article  ADS  Google Scholar 

  • G. Noci, J.L. Kohl, G.L. Withbroe, Solar wind diagnostics from Doppler-enhanced scattering. Astrophys. J. 315, 706–715 (1987). doi:10.1086/165172

    Article  ADS  Google Scholar 

  • G. Noci, J.L. Kohl, E. Antonucci, G. Tondello, M.C.E. Huber, S. Fineschi, L.D. Gardner, C.M. Korendyke, P. Nicolosi, M. Romoli, D. Spadaro, L. Maccari, J.C. Raymond, O.H.W. Siegmund, C. Benna, A. Ciaravella, S. Giordano, J. Michels, A. Modigliani, G. Naletto, A. Panasyuk, C. Pernechele, G. Poletto, P.L. Smith, L. Strachan, The quiescent corona and slow solar wind, in Fifth SOHO Workshop: The Corona and Solar Wind Near Minimum Activity, ed. by A. Wilson. ESA Special Publication, vol. 404 (1997a), p. 75

    Google Scholar 

  • G. Noci, J.L. Kohl, E. Antonucci, G. Tondello, M.C.E. Huber, S. Fineschi, L.D. Gardner, G. Naletto, P. Nicolosi, J.C. Raymond, M. Romoli, D. Spadaro, O.H.W. Siegmund, C. Benna, A. Ciaravella, S. Giordano, J. Michels, A. Modigliani, A. Panasyuk, C. Pernechele, G. Poletto, P.L. Smith, L. Strachan, First results from UVCS/SOHO. Adv. Space Res. 20, 2219–2230 (1997b). doi:10.1016/S0273-1177(97)00895-8

    Article  ADS  Google Scholar 

  • L. Ofman, Source regions of the slow solar wind in coronal streamers. Geophys. Res. Lett. 27, 2885–2888 (2000). doi:10.1029/2000GL000097

    Article  ADS  Google Scholar 

  • L. Ofman, The origin of the slow solar wind in coronal streamers. Adv. Space Res. 33, 681–688 (2004a). doi:10.1016/S0273-1177(03)00235-7

    Article  ADS  Google Scholar 

  • L. Ofman, Three-fluid model of the heating and acceleration of the fast solar wind. J. Geophys. Res. Space Phys. 109, A07102 (2004b). doi:10.1029/2003JA010221

    ADS  Google Scholar 

  • L. Ofman, Wave modeling of the solar wind. Living Rev. Sol. Phys. 7, 4 (2010). doi:10.12942/lrsp-2010-4

    Article  ADS  Google Scholar 

  • L. Ofman, J.M. Davila, Do first results from SOHO UVCS indicate that the solar wind is accelerated by solitary waves? Astrophys. J. Lett. 476, L51–L54 (1997). doi:10.1086/310491

    Article  ADS  Google Scholar 

  • L. Ofman, J.M. Davila, Solar wind acceleration by large-amplitude nonlinear waves: parametric study. J. Geophys. Res. 103(A10), 23677–23690 (1998)

    Article  ADS  Google Scholar 

  • L. Ofman, M. Kramar, Modeling the slow solar wind during the solar minimum, in SOHO-23: Understanding a Peculiar Solar Minimum, ed. by S.R. Cranmer, J.T. Hoeksema, J.L. Kohl. Astronomical Society of the Pacific Conference Series, vol. 428 (2010), p. 321. 1004.4847

    Google Scholar 

  • L. Ofman, X.L. Chen, P.J. Morrison, R.S. Steinolfson, Resistive tearing mode instability with shear flow and viscosity. Phys. Fluids, B Plasma Phys. 3, 1364–1373 (1991). doi:10.1063/1.859701

    Article  Google Scholar 

  • L. Ofman, P. Morrison, R. Steinolfson, Nonlinear evolution of resistive tearing mode instability with shear flow and viscosity. Phys. Fluids, B Plasma Phys. 5(2), 376–387 (1993) (1989–1993)

    Article  Google Scholar 

  • L. Ofman, M. Romoli, G. Poletto, G. Noci, J.L. Kohl, Ultraviolet coronagraph spectrometer observations of density fluctuations in the solar wind. Astrophys. J. Lett. 491, L111–L114 (1997). doi:10.1086/311067

    Article  ADS  Google Scholar 

  • L. Ofman, L. Abbo, S. Giordano, Multi-fluid model of a streamer at solar minimum and comparison with observations. Astrophys. J. 734, 30 (2011). doi:10.1088/0004-637X/734/1/30

    Article  ADS  Google Scholar 

  • L. Ofman, T.J. Wang, J.M. Davila, Slow magnetosonic waves and fast flows in active region loops. Astrophys. J. 754, 111 (2012). doi:10.1088/0004-637X/754/2/111. 1205.5732

    Article  ADS  Google Scholar 

  • L. Ofman, L. Abbo, S. Giordano, Observations and models of slow solar wind with Mg9+ ions in quiescent streamers. Astrophys. J. 762, 18 (2013). doi:10.1088/0004-637X/762/1/18. 1211.1524

    Article  ADS  Google Scholar 

  • L. Ofman, A.F. Viñas, Y. Maneva, Two-dimensional hybrid models of H+–He++ expanding solar wind plasma heating. J. Geophys. Res. Space Phys. 119, 4223–4238 (2014). doi:10.1002/2013JA019590

    Article  ADS  Google Scholar 

  • L. Ofman, E. Provornikova, L. Abbo, S. Giordano, Three-dimensional multi-fluid model of a coronal streamer belt with a tilted magnetic dipole. Ann. Geophys. 33, 47–53 (2015). doi:10.5194/angeo-33-47-2015

    Article  ADS  Google Scholar 

  • S.P. Owocki, J.D. Scudder, The effect of a non-Maxwellian electron distribution on oxygen and iron ionization balances in the solar corona. Astrophys. J. 270, 758–768 (1983). doi:10.1086/161167

    Article  ADS  Google Scholar 

  • S.P. Owocki, T.E. Holzer, A.J. Hundhausen, The solar wind ionization state as a coronal temperature diagnostic. Astrophys. J. 275, 354–366 (1983). doi:10.1086/161538

    Article  ADS  Google Scholar 

  • N. Ozak, L. Ofman, A.F. Viñas, Ion heating in inhomogeneous expanding solar wind plasma: the role of parallel and oblique ion-cyclotron waves. Astrophys. J. 799, 77 (2015). doi:10.1088/0004-637X/799/1/77. 1407.4622

    Article  ADS  Google Scholar 

  • E.N. Parker, Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 62, 509–520 (1957). doi:10.1029/JZ062i004p00509

    Article  ADS  Google Scholar 

  • E.N. Parker, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664 (1958). doi:10.1086/146579

    Article  ADS  Google Scholar 

  • H. Peter, Element fractionation in the solar chromosphere driven by ionization-diffusion processes. Astron. Astrophys. 335, 691–702 (1998)

    ADS  Google Scholar 

  • H.E. Petschek, Magnetic field annihilation. NASA Special Publication, vol. 50 (1964), p. 425

    Google Scholar 

  • R.F. Pinto, A.S. Brun, A.P. Rouillard, Flux-tube geometry and wind speed during an activity cycle. ArXiv e-prints (2016). 1603.09251

  • V. Pizzo, A three-dimensional model of corotating streams in the solar wind I. Theoretical foundations. J. Geophys. Res. 83, 5563–5572 (1978). doi:10.1029/JA083iA12p05563

    Article  ADS  Google Scholar 

  • G. Poletto, S.T. Suess, D.A. Biesecker, R. Esser, G. Gloeckler, Y.K. Ko, T.H. Zurbuchen, Low-latitude solar wind during the Fall 1998 SOHO-Ulysses quadrature. J. Geophys. Res. Space Phys. 107, 1300 (2002). doi:10.1029/2001JA000275

    Article  ADS  Google Scholar 

  • E. Priest, T. Forbes, Magnetic Reconnection: MHD Theory and Applications (Cambridge University Press, Cambridge, 2000)

    Book  MATH  Google Scholar 

  • A.F. Rappazzo, M. Velli, G. Einaudi, R.B. Dahlburg, Diamagnetic and expansion effects on the observable properties of the slow solar wind in a coronal streamer. Astrophys. J. 633, 474–488 (2005). doi:10.1086/431916. 1002.3325

    Article  ADS  Google Scholar 

  • A.F. Rappazzo, W.H. Matthaeus, D. Ruffolo, S. Servidio, M. Velli, Interchange reconnection in a turbulent corona. Astrophys. J. Lett. 758, L14 (2012). doi:10.1088/2041-8205/758/1/L14. 1209.1388

    Article  ADS  Google Scholar 

  • J.C. Raymond, J.L. Kohl, G. Noci, E. Antonucci, G. Tondello, M.C.E. Huber, L.D. Gardner, P. Nicolosi, S. Fineschi, M. Romoli, D. Spadaro, O.H.W. Siegmund, C. Benna, A. Ciaravella, S. Cranmer, S. Giordano, M. Karovska, R. Martin, J. Michels, A. Modigliani, G. Naletto, A. Panasyuk, C. Pernechele, G. Poletto, P.L. Smith, R.M. Suleiman, L. Strachan, Composition of coronal streamers from the SOHO ultraviolet coronagraph spectrometer. Sol. Phys. 175, 645–665 (1997). doi:10.1023/A:1004948423169

    Article  ADS  Google Scholar 

  • J.C. Raymond, J.E. Mazur, F. Allegrini, E. Antonucci, G. Del Zanna, S. Giordano, G. Ho, Y.K. Ko, E. Landi, A. Lazarus, S. Parenti, G. Poletto, A. Reinard, J. Rodriguez-Pacheco, L. Teriaca, P. Wurz, L. Zangrilli, Coronal and solar wind elemental abundances, in Joint SOHO/ACE Workshop “Solar and Galactic Composition”, ed. by R.F. Wimmer-Schweingruber. American Institute of Physics Conference Series, vol. 598 (2001), pp. 49–57. doi:10.1063/1.1433978

    Google Scholar 

  • P. Riley, J.G. Luhmann, Interplanetary signatures of unipolar streamers and the origin of the slow solar wind. Sol. Phys. 277, 355–373 (2012). doi:10.1007/s11207-011-9909-0

    Article  ADS  Google Scholar 

  • P. Riley, J.A. Linker, Z. Mikić, An empirically-driven global MHD model of the corona and inner heliosphere. J. Geophys. Res. 106, 15889 (2001). doi:10.1029/2000JA000121

    Article  ADS  Google Scholar 

  • P. Riley, J.A. Linker, Z. Mikić, D. Odstrcil, T.H. Zurbuchen, D. Lario, R.P. Lepping, Using an MHD simulation to interpret the global context of a coronal mass ejection observed by two spacecraft. J. Geophys. Res. 108, 1272 (2003)

    Article  Google Scholar 

  • P. Riley, J.A. Linker, Z. Mikić, R. Lionello, S.A. Ledvina, J.G. Luhmann, A comparison between global solar magnetohydrodynamic and potential field source surface model results. Astrophys. J. 653, 1510 (2006). doi:10.1086/508565

    Article  ADS  Google Scholar 

  • P. Riley, R. Lionello, Z. Mikić, J. Linker, E. Clark, J. Lin, Y.K. Ko, “Bursty” reconnection following solar eruptions: MHD simulations and comparison with observations. Astrophys. J. 655, 591–597 (2007). doi:10.1086/509913

    Article  ADS  Google Scholar 

  • P. Riley, R. Lionello, Z. Mikić, J. Linker, Using global simulations to relate the three-part structure of coronal mass ejections to in situ signatures. Astrophys. J. 672, 1221–1227 (2008). doi:10.1086/523893

    Article  ADS  Google Scholar 

  • T. Sakao, R. Kano, N. Narukage, J. Kotoku, T. Bando, E.E. DeLuca, L.L. Lundquist, S. Tsuneta, L.K. Harra, Y. Katsukawa, M. Kubo, H. Hara, K. Matsuzaki, M. Shimojo, J.A. Bookbinder, L. Golub, K.E. Korreck, Y. Su, K. Shibasaki, T. Shimizu, I. Nakatani, Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind. Science 318, 1585–1588 (2007). doi:10.1126/science.1147292

    Article  ADS  Google Scholar 

  • R. Samtaney, N.F. Loureiro, D.A. Uzdensky, A.A. Schekochihin, S.C. Cowley, Formation of plasmoid chains in magnetic reconnection. Phys. Rev. Lett. 103(10), 105004 (2009). doi:10.1103/PhysRevLett.103.105004. 0903.0542

    Article  ADS  Google Scholar 

  • C.J. Schrijver, A.M. Title, A.A. van Ballegooijen, H.J. Hagenaar, R.A. Shine, Sustaining the quiet photospheric network: the balance of flux emergence, fragmentation, merging, and cancellation. Astrophys. J. 487, 424–436 (1997)

    Article  ADS  Google Scholar 

  • N.A. Schwadron, L.A. Fisk, T.H. Zurbuchen, Elemental fractionation in the slow solar wind. Astrophys. J. 521, 859–867 (1999). doi:10.1086/307575

    Article  ADS  Google Scholar 

  • N.A. Schwadron, C.W. Smith, H.E. Spence, J.C. Kasper, K. Korreck, M.L. Stevens, B.A. Maruca, K.K. Kiefer, S.T. Lepri, D. McComas, Coronal electron temperature from the solar wind scaling law throughout the space age. Astrophys. J. 739, 9 (2011). doi:10.1088/0004-637X/739/1/9

    Article  ADS  Google Scholar 

  • R. Schwenn, Solar wind sources and their variations over the solar cycle. Space Sci. Rev. 124, 51–76 (2006). doi:10.1007/s11214-006-9099-5

    Article  ADS  Google Scholar 

  • P. Shearer, R. von Steiger, J.M. Raines, S.T. Lepri, J.W. Thomas, J.A. Gilbert, E. Landi, T.H. Zurbuchen, The solar wind neon abundance observed with ACE/SWICS and Ulysses/SWICS. Astrophys. J. 789, 60 (2014). doi:10.1088/0004-637X/789/1/60

    Article  ADS  Google Scholar 

  • N.R. Sheeley, Y.M. Wang, S.H. Hawley, G.E. Brueckner, K.P. Dere, R.A. Howard, M.J. Koomen, C.M. Korendyke, D.J. Michels, S.E. Paswaters, D.G. Socker, O.C. St. Cyr, D. Wang, P.L. Lamy, A. Llebaria, R. Schwenn, G.M. Simnett, S. Plunkett, D.A. Biesecker, Measurements of flow speeds in the corona between \(2\mbox{ and }30~\mbox{R}_{\odot }\). Astrophys. J. 484, 472–478 (1997)

    Article  ADS  Google Scholar 

  • N.R. Sheeley Jr., D.D.H. Lee, K.P. Casto, Y.M. Wang, N.B. Rich, The structure of streamer blobs. Astrophys. J. 694, 1471 (2009). doi:10.1088/0004-637X/694/2/1471

    Article  ADS  Google Scholar 

  • M. Skender, G. Lapenta, On the instability of a quasiequilibrium current sheet and the onset of impulsive bursty reconnection. Phys. Plasmas 17, 022905 (2010)

    Article  ADS  Google Scholar 

  • V. Slemzin, L. Harra, A. Urnov, S. Kuzin, F. Goryaev, D. Berghmans, Signatures of slow solar wind streams from active regions in the inner corona. Sol. Phys. 286, 157–184 (2013). doi:10.1007/s11207-012-0004-y. 1203.6756

    Article  ADS  Google Scholar 

  • H.Q. Song, Y. Chen, K. Liu, S.W. Feng, L.D. Xia, Quasi-periodic releases of streamer blobs and velocity variability of the slow solar wind near the Sun. Sol. Phys. 258, 129–140 (2009). doi:10.1007/s11207-009-9411-0. 0907.0819

    Article  ADS  Google Scholar 

  • D. Spadaro, R. Susino, R. Ventura, A. Vourlidas, E. Landi, Physical parameters of a mid-latitude streamer during the declining phase of the solar cycle. Astron. Astrophys. 475, 707–715 (2007). doi:10.1051/0004-6361:20077873

    Article  ADS  Google Scholar 

  • L. Strachan, R. Suleiman, A.V. Panasyuk, D.A. Biesecker, J.L. Kohl, Empirical densities, kinetic temperatures, and outflow velocities in the equatorial streamer belt at solar minimum. Astrophys. J. 571, 1008–1014 (2002). doi:10.1086/339984

    Article  ADS  Google Scholar 

  • L. Strachan, A.V. Panasyuk, J.L. Kohl, P. Lamy, The evolution of plasma parameters on a coronal source surface at \(2.3~\mbox{R}_{\odot }\) during solar minimum. Astrophys. J. 745, 51 (2012). doi:10.1088/0004-637X/745/1/51. 1111.1206

    Article  ADS  Google Scholar 

  • S. Subramanian, M.S. Madjarska, J.G. Doyle, Coronal hole boundaries evolution at small scales. II. XRT view. Can small-scale outflows at CHBs be a source of the slow solar wind. Astron. Astrophys. 516, A50 (2010). doi:10.1051/0004-6361/200913624. 1002.1675

    Article  ADS  Google Scholar 

  • S.T. Suess, Models of coronal hole flows. Space Sci. Rev. 23, 159–200 (1979). doi:10.1007/BF00173809

    Article  ADS  Google Scholar 

  • S.T. Suess, A.H. Wang, S.T. Wu, Volumetric heating in coronal streamers. J. Geophys. Res. 101(19), 19957–19966 (1996). doi:10.1029/96JA01458

    Article  ADS  Google Scholar 

  • S.T. Suess, A.H. Wang, S.T. Wu, S.F. Nerney, Streamer evaporation. Space Sci. Rev. 87, 323–326 (1999). doi:10.1023/A:1005149929192

    Article  ADS  Google Scholar 

  • S.T. Suess, Y.K. von Ko, R. Steiger, R.L. Moore, Quiescent current sheets in the solar wind and origins of slow wind. J. Geophys. Res. Space Phys. 114, A04103 (2009). doi:10.1029/2008JA013704

    ADS  Google Scholar 

  • R. Susino, R. Ventura, D. Spadaro, A. Vourlidas, E. Landi, Physical parameters along the boundaries of a mid-latitude streamer and in its adjacent regions. Astron. Astrophys. 488, 303–310 (2008). doi:10.1051/0004-6361:200809713

    Article  ADS  Google Scholar 

  • T.K. Suzuki, Coronal heating and acceleration of the high/low-speed solar wind by fast/slow MHD shock trains. Mon. Not. R. Astron. Soc. 349, 1227–1239 (2004)

    Article  ADS  Google Scholar 

  • P.A. Sweet, The neutral point theory of solar flares, in Electromagnetic Phenomena in Cosmical Physics, ed. by B. Lehnert. IAU Symposium, vol. 6 (1958), p. 123

    Google Scholar 

  • L. Teriaca, D. Banerjee, J.G. Doyle, SUMER observations of Doppler shift in the quiet Sun and in an active region. Astron. Astrophys. 349, 636–648 (1999)

    ADS  Google Scholar 

  • H. Tian, S.W. McIntosh, B. De Pontieu, The spectroscopic signature of quasi-periodic upflows in active region timeseries. Astrophys. J. Lett. 727, L37 (2011). doi:10.1088/2041-8205/727/2/L37. 1012.5112

    Article  ADS  Google Scholar 

  • H. Tian, S.W. McIntosh, T. Wang, L. Ofman, B. De Pontieu, D.E. Innes, H. Peter, Persistent Doppler shift oscillations observed with Hinode/EIS in the solar corona: spectroscopic signatures of Alfvénic waves and recurring upflows. Astrophys. J. 759, 144 (2012). doi:10.1088/0004-637X/759/2/144. 1209.5286

    Article  ADS  Google Scholar 

  • A.F. Timothy, A.S. Krieger, G.S. Vaiana, The structure and evolution of coronal holes. Sol. Phys. 42, 135–156 (1975). doi:10.1007/BF00153291

    Article  ADS  Google Scholar 

  • V.S. Titov, G. Hornig, P. Démoulin, Theory of magnetic connectivity in the solar corona. J. Geophys. Res. Space Phys. 107, 1164 (2002). doi:10.1029/2001JA000278

    ADS  Google Scholar 

  • V.S. Titov, Z. Mikić, J.A. Linker, R. Lionello, S.K. Antiochos, Magnetic topology of coronal hole linkages. Astrophys. J. 731, 111 (2011). doi:10.1088/0004-637X/731/2/111. 1011.0009

    Article  ADS  Google Scholar 

  • V.S. Titov, Z. Mikic, T. Török, J.A. Linker, O. Panasenco, 2010 August 1–2 sympathetic eruptions I. Magnetic topology of the source-surface background field. Astrophys. J. 759, 70 (2012). doi:10.1088/0004-637X/759/1/70. 1209.5797

    Article  ADS  Google Scholar 

  • I. Ugarte-Urra, H.P. Warren, Temporal variability of active region outflows. Astrophys. J. 730, 37 (2011). doi:10.1088/0004-637X/730/1/37. 1008.4730

    Article  ADS  Google Scholar 

  • D.A. Uzdensky, D.A. Loureiro, A.A. Schekochihin, Fast magnetic reconnection in the plasmoid-dominated regime. Phys. Rev. Lett. 105, 235,002 (2010)

    Article  Google Scholar 

  • M. Uzzo, Y.K. Ko, J.C. Raymond, P. Wurz, F.M. Ipavich, Elemental abundances for the 1996 streamer belt. Astrophys. J. 585, 1062–1072 (2003). doi:10.1086/346132

    Article  ADS  Google Scholar 

  • B. van der Holst, I.V. Sokolov, X. Meng, M. Jin, W.B. Manchester IV., G. Tóth, T.I. Gombosi, Alfvén wave solar model (AWSoM): coronal heating. Astrophys. J. 782, 81 (2014). doi:10.1088/0004-637X/782/2/81. 1311.4093

    Article  ADS  Google Scholar 

  • L. van Driel-Gesztelyi, J.L. Culhane, D. Baker, P. Démoulin, C.H. Mandrini, M.L. DeRosa, A.P. Rouillard, A. Opitz, G. Stenborg, A. Vourlidas, D.H. Brooks, Magnetic topology of active regions and coronal holes: implications for coronal outflows and the solar wind. Sol. Phys. 281, 237–262 (2012). doi:10.1007/s11207-012-0076-8

    Article  ADS  Google Scholar 

  • E. Verwichte, M. Marsh, C. Foullon, T. Van Doorsselaere, I. De Moortel, A.W. Hood, V.M. Nakariakov, Periodic spectral line asymmetries in solar coronal structures from slow magnetoacoustic waves. Astrophys. J. 724, L194–L198 (2010). doi:10.1088/2041-8205/724/2/L194

    Article  ADS  Google Scholar 

  • N.M. Viall, A. Vourlidas, Periodic density structures and the origin of the slow solar wind. Astrophys. J. 807, 176 (2015). doi:10.1088/0004-637X/807/2/176

    Article  ADS  Google Scholar 

  • R. von Steiger, The Solar Wind Throughout the Solar Cycle (Praxis Publishing, Chichester, 2008), p. 41. doi:10.1007/978-3-540-74302-63

    Google Scholar 

  • R. von Steiger, J. Geiss, Supply of fractionated gases to the corona. Astron. Astrophys. 225, 222–238 (1989)

    ADS  Google Scholar 

  • R. von Steiger, T.H. Zurbuchen, Polar coronal holes during the past solar cycle: Ulysses observations. J. Geophys. Res. Space Phys. 116, A01105 (2011). doi:10.1029/2010JA015835

    ADS  Google Scholar 

  • R. von Steiger, T.H. Zurbuchen, Solar metallicity derived from in situ solar wind composition. Astrophys. J. 816, 13 (2016). doi:10.3847/0004-637X/816/1/13

    Article  ADS  Google Scholar 

  • R. von Steiger, N.A. Schwadron, L.A. Fisk, J. Geiss, G. Gloeckler, S. Hefti, B. Wilken, R.F. Wimmer-Schweingruber, T.H. Zurbuchen, Composition of quasi-stationary solar wind flows from Ulysses/Solar Wind Ion Composition Spectrometer. J. Geophys. Res. 105, 27217–27238 (2000). doi:10.1029/1999JA000358

    Article  ADS  Google Scholar 

  • R. von Steiger, T.H. Zurbuchen, D.J. McComas, Oxygen flux in the solar wind: Ulysses observations. Geophys. Res. Lett. 37, L22101 (2010). doi:10.1029/2010GL045389

    ADS  Google Scholar 

  • W. Wan, G. Lapenta, Evolutions of non-steady-state magnetic reconnection. Phys. Plasmas 15(10), 102302 (2008a) (1994-present)

    Article  ADS  Google Scholar 

  • W. Wan, G. Lapenta, Micro-macro coupling in plasma self-organization processes during island coalescence. Phys. Rev. Lett. 100(3), 035004 (2008b)

    Article  ADS  Google Scholar 

  • Y.M. Wang, On the relative constancy of the solar wind mass flux at 1 AU. Astrophys. J. Lett. 715, L121–L127 (2010). doi:10.1088/2041-8205/715/2/L121

    Article  ADS  Google Scholar 

  • Y.M. Wang, N.R. Sheeley Jr., Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726–732 (1990). doi:10.1086/168805

    Article  ADS  Google Scholar 

  • Y.M. Wang, N.R. Sheeley Jr., J.H. Walters, G.E. Brueckner, R.A. Howard, D.J. Michels, P.L. Lamy, R. Schwenn, G.M. Simnett, Origin of streamer material in the outer corona. Astrophys. J. Lett. 498, L165–L168 (1998). doi:10.1086/311321

    Article  ADS  Google Scholar 

  • Y.M. Wang, N.R. Sheeley, D.G. Socker, R.A. Howard, N.B. Rich, The dynamical nature of coronal streamers. J. Geophys. Res. 105, 25133–25142 (2000). doi:10.1029/2000JA000149

    Article  ADS  Google Scholar 

  • Y.M. Wang, J.B. Biersteker, N.R. Sheeley Jr., S. Koutchmy, J. Mouette, M. Druckmüller, The solar eclipse of 2006 and the origin of raylike features in the white-light corona. Astrophys. J. 660, 882–892 (2007b). doi:10.1086/512480

    Article  ADS  Google Scholar 

  • Y.M. Wang, N.R. Sheeley Jr., N.B. Rich, Coronal pseudostreamers. Astrophys. J. 658, 1340–1348 (2007b). doi:10.1086/511416

    Article  ADS  Google Scholar 

  • T.J. Wang, L. Ofman, J.M. Davila, Propagating slow magnetoacoustic waves in coronal loops observed by Hinode/EIS. Astrophys. J. 696, 1448–1460 (2009a). doi:10.1088/0004-637X/696/2/1448. 0902.4480

    Article  ADS  Google Scholar 

  • Y.M. Wang, Y.K. Ko, R. Grappin, Slow solar wind from open regions with strong low-coronal heating. Astrophys. J. 691, 760–769 (2009b). doi:10.1088/0004-637X/691/1/760

    Article  ADS  Google Scholar 

  • Y.M. Wang, R. Grappin, E. Robbrecht, N.R. Sheeley Jr., On the nature of the solar wind from coronal pseudostreamers. Astrophys. J. 749, 182 (2012). doi:10.1088/0004-637X/749/2/182

    Article  ADS  Google Scholar 

  • T. Wang, L. Ofman, J.M. Davila, Three-dimensional magnetohydrodynamic modeling of propagating disturbances in fan-like coronal loops. Astrophys. J. Lett. 775, L23 (2013). doi:10.1088/2041-8205/775/1/L23. 1308.0282

    Article  ADS  Google Scholar 

  • H.P. Warren, I. Ugarte-Urra, P.R. Young, G. Stenborg, The temperature dependence of solar active region outflows. Astrophys. J. 727, 58 (2011). doi:10.1088/0004-637X/727/1/58. 1008.2696

    Article  ADS  Google Scholar 

  • M.J. Weberg, T.H. Zurbuchen, S.T. Lepri, ACE/SWICS observations of heavy ion dropouts within the solar wind. Astrophys. J. 760, 30 (2012). doi:10.1088/0004-637X/760/1/30

    Article  ADS  Google Scholar 

  • M.J. Weberg, S.T. Lepri, T.H. Zurbuchen, Coronal sources, elemental fractionation, and release mechanisms of heavy ion dropouts in the solar wind. Astrophys. J. 801, 99 (2015). doi:10.1088/0004-637X/801/2/99

    Article  ADS  Google Scholar 

  • K.P. Wenzel, R.G. Marsden, D.E. Page, E.J. Smith, The ULYSSES mission. Astron. Astrophys. Suppl. Ser. 92, 207 (1992)

    ADS  Google Scholar 

  • K.G. Widing, U. Feldman, On the rate of abundance modifications versus time in active region plasmas. Astrophys. J. 555, 426–434 (2001). doi:10.1086/321482

    Article  ADS  Google Scholar 

  • G.L. Withbroe, The temperature structure, mass, and energy flow in the corona and inner solar wind. Astrophys. J. 325, 442–467 (1988). doi:10.1086/166015

    Article  ADS  Google Scholar 

  • G.L. Withbroe, J.L. Kohl, H. Weiser, R.H. Munro, Probing the solar wind acceleration region using spectroscopic techniques. Space Sci. Rev. 33, 17–52 (1982). doi:10.1007/BF00213247

    Article  ADS  Google Scholar 

  • L. Zhao, E. Landi, Polar and equatorial coronal hole winds at solar minima: from the heliosphere to the inner corona. Astrophys. J. 781, 110 (2014). doi:10.1088/0004-637X/781/2/110

    Article  ADS  Google Scholar 

  • L. Zhao, T.H. Zurbuchen, L.A. Fisk, Global distribution of the solar wind during solar cycle 23: ACE observations. Geophys. Res. Lett. 36, L14104 (2009). doi:10.1029/2009GL039181

    Article  ADS  Google Scholar 

  • J.B. Zirker (ed.), Coronal Holes and High Speed Wind Streams: A Monograph from Skylab Solar Workshop I (1977)

    Google Scholar 

  • T.H. Zurbuchen, Heliospheric physics: linking the Sun to the magnetosphere. Space Sci. Rev. 124, 77–90 (2006). doi:10.1007/s11214-006-9130-x

    Article  ADS  Google Scholar 

  • T.H. Zurbuchen, R. von Steiger, J. Gruesbeck, E. Landi, S.T. Lepri, L. Zhao, V. Hansteen, Sources of solar wind at solar minimum: constraints from composition data. Space Sci. Rev. 172, 41–55 (2012). doi:10.1007/s11214-012-9881-5

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This review has arisen from the discussions at the International Space Science Institute (ISSI) by the Team entitled “Slow solar wind sources and acceleration mechanisms in the corona” held in Bern in March 2014–2015, and we acknowledge ISSI support for the meetings. We would like to thank the referees for many helpful comments that helped to improve this review. LA acknowledges Ester Antonucci for her support and motivation in this topic and Giancarlo Noci for his input and comments during the revision of this paper. The research of LA has been funded through the contract I/023/09/0 between the National Institute for Astrophysics (INAF) and the Italian Space Agency (ASI). LO would like to acknowledge support by NSF grant ATM AGS-1059838 and NASA Cooperative Agreement grant NNG11PL10A to CUA. YKK, LS and YMW would like to acknowledge support by the Chief of Naval Research and NASA grant NNH10AO82I. BL is supported by the National Natural Science Foundation of China (41174154, 41274176, and 41474149).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Ofman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbo, L., Ofman, L., Antiochos, S.K. et al. Slow Solar Wind: Observations and Modeling. Space Sci Rev 201, 55–108 (2016). https://doi.org/10.1007/s11214-016-0264-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-016-0264-1

Keywords

Navigation