Skip to main content

Advertisement

Log in

Real-Time Solar Wind Prediction Based on SDO/AIA Coronal Hole Data

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We present an empirical model based on the visible area covered by coronal holes close to the central meridian with the aim to predict the solar wind speed at 1 AU with a lead time of up to four days in advance with a time resolution of one hour. Linear prediction functions are used to relate coronal hole areas to solar wind speed. The function parameters are automatically adapted by using the information from the previous three Carrington Rotations. Thus the algorithm automatically reacts to the changes of the solar wind speed during different phases of the solar cycle. The adaptive algorithm was applied to and tested on SDO/AIA-193 Å observations and ACE measurements during the years 2011 – 2013, covering 41 Carrington Rotations. The solar wind needs on average 4.02±0.5 days to reach Earth. The algorithm produces good predictions for the 156 solar wind high-speed streams peak amplitudes with correlation coefficients of cc≈0.60. For 80 % of the peaks, the predicted arrival matches the ACE in situ measurements within a time window of 0.5 days. The same algorithm, using linear predictions, was also applied to predict the magnetic field strength in wind streams originating from coronal hole areas, but it did not give reliable predictions (cc≈0.15).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Abramenko, V., Yurchyshyn, V., Watanabe, H.: 2009, Parameters of the magnetic flux inside coronal holes. Solar Phys. 260, 43. DOI .

    Article  ADS  Google Scholar 

  • Aiouaz, T., Peter, H., Lemaire, P.: 2005, The correlation between coronal Doppler shifts and the supergranular network. Astron. Astrophys. 435, 713. DOI .

    Article  ADS  Google Scholar 

  • Altschuler, M.D., Trotter, D.E., Orrall, F.Q.: 1972, Coronal holes. Solar Phys. 26, 354. DOI .

    Article  ADS  Google Scholar 

  • Barra, V., Delouille, V., Kretzschmar, M., Hochedez, J.F.: 2009, Fast and robust segmentation of solar EUV images: Algorithm and results for solar cycle 23. Astron. Astrophys. 505, 361. DOI .

    Article  ADS  Google Scholar 

  • Cane, H.V., Richardson, I.G.: 2003, Interplanetary coronal mass ejections in the near-Earth solar wind during 1996 – 2002. J. Geophys. Res. 108, 1156. DOI .

    Article  Google Scholar 

  • Cranmer, S.R.: 2009, Coronal holes. Living Rev. Solar Phys. 6, 3. http://solarphysics.livingreviews.org/Articles/lrsp-2009-3/ .

    Article  ADS  Google Scholar 

  • Crooker, N.U., Feynman, J., Gosling, J.T.: 1977, On the high correlation between long-term averages of solar wind speed and geomagnetic activity. J. Geophys. Res. 82, 1933. DOI .

    Article  ADS  Google Scholar 

  • de Toma, G.: 2011, Evolution of coronal holes and implications for high-speed solar wind during the minimum between cycles 23 and 24. Solar Phys. 274, 195. DOI .

    Article  ADS  Google Scholar 

  • de Toma, G., Arge, C.N., Riley, P.: 2005, Observed and modeled coronal holes. In: Fleck, B., Zurbuchen, T.H., Lacoste, H. (eds.) Solar Wind 11/SOHO 16, Connecting Sun and Heliosphere, ESA SP 592, 609.

    Google Scholar 

  • Del Zanna, G., Bromage, B.J.I.: 1999, The elephant’s trunk: Spectroscopic diagnostics applied to SOHO/CDS observations of the August 1996 equatorial coronal hole. J. Geophys. Res. 104, 9753. DOI .

    Article  ADS  Google Scholar 

  • Gosling, J.T., Pizzo, V.J.: 1999, Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci. Rev. 89, 21. DOI .

    Article  ADS  Google Scholar 

  • Gressl, C., Veronig, A.M., Temmer, M., Odstrčil, D., Linker, J.A., Mikić, Z., Riley, P.: 2014, Comparative study of MHD modeling of the background solar wind. Solar Phys. 289, 1783. DOI .

    Article  ADS  Google Scholar 

  • Harvey, K.L., Recely, F.: 2002, Polar coronal holes during cycles 22 and 23. Solar Phys. 211, 31. DOI .

    Article  ADS  Google Scholar 

  • Hassler, D.M., Dammasch, I.E., Lemaire, P., Brekke, P., Curdt, W., Mason, H.E., Vial, J.C., Wilhelm, K.: 1999, Solar wind outflow and the chromospheric magnetic network. Science 283, 810. DOI .

    Article  ADS  Google Scholar 

  • Hundhausen, A.J.: 1972, Composition and dynamics of the solar wind plasma. In: Dyer, E.R., Roederer, J.G., Hundhausen, A.J. (eds.) The Interplanetary Medium: Part II of Solar-Terrestrial Physics, Reidel, Dordrecht, 1.

    Chapter  Google Scholar 

  • Jian, L.K., Russell, C.T., Luhmann, J.G., MacNeice, P.J., Odstrcil, D., Riley, P., Linker, J.A., Skoug, R.M., Steinberg, J.T.: 2011, Comparison of observations at ACE and Ulysses with Enlil model results: Stream interaction regions during Carrington rotations 2016 – 2018. Solar Phys. 273, 179. DOI .

    Article  ADS  Google Scholar 

  • Kan, J.R., Lee, L.C.: 1979, Energy coupling function and solar wind-magnetosphere dynamo. Geophys. Res. Lett. 6, 577. DOI .

    Article  ADS  Google Scholar 

  • Kirk, M.S., Pesnell, W.D., Young, C.A., Hess Webber, S.A.: 2009, Automated detection of EUV polar coronal holes during solar cycle 23. Solar Phys. 257, 99. DOI .

    Article  ADS  Google Scholar 

  • Krieger, A.S., Timothy, A.F., Roelof, E.C.: 1973, A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Phys. 29, 505. DOI .

    Article  ADS  Google Scholar 

  • Krista, L.D., Gallagher, P.T.: 2009, Automated coronal hole detection using local intensity thresholding techniques. Solar Phys. 256, 87. DOI .

    Article  ADS  Google Scholar 

  • Lee, C.O., Luhmann, J.G., Odstrcil, D., MacNeice, P.J., de Pater, I., Riley, P., Arge, C.N.: 2009, The solar wind at 1 AU during the declining phase of solar cycle 23: Comparison of 3D numerical model results with observations. Solar Phys. 254, 155. DOI .

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI .

    Article  ADS  Google Scholar 

  • Lowder, C., Qiu, J., Leamon, R., Liu, Y.: 2014, Measurements of EUV coronal holes and open magnetic flux. Astrophys. J. 783, 142. DOI .

    Article  ADS  Google Scholar 

  • Luo, B., Zhong, Q., Liu, S., Gong, J.: 2008, A new forecasting index for solar wind velocity based on EIT 284 Å observations. Solar Phys. 250, 159. DOI .

    Article  ADS  Google Scholar 

  • McComas, D.J., Bame, S.J., Barker, P.L., Delapp, D.M., Feldman, W.C., Gosling, J.T., Santiago, E., Skoug, R.M., Tokar, R.L., Riley, P., Phillips, J.L., Griffee, J.W.: 1998, An unusual coronal mass ejection: First Solar Wind Electron, Proton, Alpha Monitor (SWEPAM) results from the Advanced Composition Explorer. Geophys. Res. Lett. 25, 4289. DOI .

    Article  ADS  Google Scholar 

  • McIntosh, P.S.: 2003, Patterns and dynamics of solar magnetic fields and He I coronal holes in cycle 23. In: Wilson, A. (ed.) Solar Variability as an Input to the Earth’s Environment, ESA SP 535, 807.

    Google Scholar 

  • Munro, R.H., Withbroe, G.L.: 1972, Properties of a coronal “hole” derived from extreme-ultraviolet observations. Astrophys. J. 176, 511. DOI .

    Article  ADS  Google Scholar 

  • Neupert, W.M., Pizzo, V.: 1974, Solar coronal holes as sources of recurrent geomagnetic disturbances. J. Geophys. Res. 79, 3701. DOI .

    Article  ADS  Google Scholar 

  • Newkirk, J.G.: 1967, Structure of the solar corona. Annu. Rev. Astron. Astrophys. 5, 213. DOI .

    Article  ADS  Google Scholar 

  • Nolte, J.T., Krieger, A.S., Timothy, A.F., Gold, R.E., Roelof, G.E.C., Lazarus, A.J., Sullivan, J.D., McIntosh, P.S.: 1976, Coronal holes as sources of solar wind. Solar Phys. 46, 303. DOI .

    Article  ADS  Google Scholar 

  • Obridko, V.N., Shelting, B.D., Livshits, I.M., Asgarov, A.B.: 2009, Contrast of coronal holes and parameters of associated solar wind streams. Solar Phys. 260, 191. DOI .

    Article  ADS  Google Scholar 

  • Odstrcil, D., Pizzo, V.J.: 2009, Numerical heliospheric simulations as assisting tool for interpretation of observations by STEREO Heliospheric Imagers. Solar Phys. 259, 297. DOI .

    Article  ADS  Google Scholar 

  • Perreault, P., Akasofu, S.I.: 1978, A study of geomagnetic storms. Geophys. J. 54, 547. DOI .

    Article  ADS  Google Scholar 

  • Peter, H., Judge, P.G.: 1999, On the Doppler shifts of solar ultraviolet emission lines. Astrophys. J. 522, 1148. DOI .

    Article  ADS  Google Scholar 

  • Pötzi, W., Hirtenfellner-Polanec, W., Temmer, M.: 2013, The Kanzelhöhe online data archive. Cent. Eur. Astrophys. Bull. 37, 655.

    ADS  Google Scholar 

  • Reiss, M., Temmer, M., Rotter, T., Hofmeister, S.J., Veronig, A.M.: 2014, Identification of coronal holes and filament channels in SDO/AIA 193 Å images via geometrical classification methods. Cent. Eur. Astrophys. Bull. 38, 95.

    ADS  Google Scholar 

  • Riley, P., Linker, J.A., Lionello, R., Mikic, Z.: 2012, Corotating interaction regions during the recent solar minimum: The power and limitations of global MHD modeling. J. Atmos. Solar-Terr. Phys. 83, 1. DOI .

    Article  ADS  Google Scholar 

  • Robbins, S., Henney, C.J., Harvey, J.W.: 2006, Solar wind forecasting with coronal holes. Solar Phys. 233, 265. DOI .

    Article  ADS  Google Scholar 

  • Rotter, T., Veronig, A.M., Temmer, M., Vršnak, B.: 2012, Relation between coronal hole areas on the Sun and the solar wind parameters at 1 AU. Solar Phys. 281, 793. DOI .

    Article  ADS  Google Scholar 

  • Scholl, I.F., Habbal, S.R.: 2008, Automatic detection and classification of coronal holes and filaments based on EUV and magnetogram observations of the solar disk. Solar Phys. 248, 425. DOI .

    Article  ADS  Google Scholar 

  • Schwenn, R.: 2006, Solar wind sources and their variations over the solar cycle. Space Sci. Rev. 124, 51. DOI .

    Article  ADS  Google Scholar 

  • Siscoe, G., Crooker, N.: 1974, A theoretical relation between Dst and the solar wind merging electric field. Geophys. Res. Lett. 1, 17. DOI .

    Article  ADS  Google Scholar 

  • Smith, C.W., L’Heureux, J., Ness, N.F., Acuña, M.H., Burlaga, L.F., Scheifele, J.: 1998, The ACE magnetic fields experiment. Space Sci. Rev. 86, 613. DOI .

    Article  ADS  Google Scholar 

  • Stevens, M.L., Linker, J.A., Riley, P., Hughes, W.J.: 2012, Underestimates of magnetic flux in coupled MHD model solar wind solutions. J. Atmos. Solar-Terr. Phys. 83, 22. DOI .

    Article  ADS  Google Scholar 

  • Stone, E.C., Frandsen, A.M., Mewaldt, R.A., Christian, E.R., Margolies, D., Ormes, J.F., Snow, F.: 1998, The Advanced Composition Explorer. Space Sci. Rev. 86, 1. DOI .

    Article  ADS  Google Scholar 

  • Temmer, M., Rollett, T., Möstl, C., Veronig, A.M., Vršnak, B., Odstrčil, D.: 2011, Influence of the ambient solar wind flow on the propagation behavior of interplanetary coronal mass ejections. Astrophys. J. 743, 101. DOI .

    Article  ADS  Google Scholar 

  • Tousey, R., Sandlin, G.D., Purcell, J.D.: 1968, On some aspects of XUV spectroheliograms. In: Kiepenheuer, K.O. (ed.) Structure and Development of Solar Active Regions, IAU Symp. 35, 411.

    Chapter  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Tang, F., Arballo, J.K., Okada, M.: 1995, Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J. Geophys. Res. 100, 21717. DOI .

    Article  ADS  Google Scholar 

  • Verbanac, G., Vršnak, B., Veronig, A., Temmer, M.: 2011, Equatorial coronal holes, solar wind high-speed streams, and their geoeffectiveness. Astron. Astrophys. 526, A20. DOI .

    Article  ADS  Google Scholar 

  • Verbanac, G., Živković, S., Vršnak, B., Bandić, M., Hojsak, T.: 2013, Comparison of geoeffectiveness of coronal mass ejections and corotating interaction regions. Astron. Astrophys. 558, A85. DOI .

    Article  ADS  Google Scholar 

  • Verbeeck, C., Delouille, V., Mampaey, B., De Visscher, R.: 2014, The SPoCA-suite: Software for extraction, characterization, and tracking of active regions and coronal holes on EUV images. Astron. Astrophys. 561, A29. DOI .

    Article  ADS  Google Scholar 

  • Vršnak, B., Temmer, M., Veronig, A.M.: 2007a, Coronal holes and solar wind high-speed streams: I. Forecasting the solar wind parameters. Solar Phys. 240, 315. DOI .

    Article  ADS  Google Scholar 

  • Vršnak, B., Temmer, M., Veronig, A.M.: 2007b, Coronal holes and solar wind high-speed streams: II. Forecasting the geomagnetic effects. Solar Phys. 240, 331. DOI .

    Article  ADS  Google Scholar 

  • Wilcox, J.M.: 1968, The interplanetary magnetic field. Solar origin and terrestrial effects. Space Sci. Rev. 8, 258. DOI .

    Article  ADS  Google Scholar 

  • Xia, L.D., Marsch, E., Curdt, W.: 2003, On the outflow in an equatorial coronal hole. Astron. Astrophys. 399, L5. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the referee for the careful evaluation of the paper and the helpful comments made to improve this paper. We acknowledge the NASA/SDO and the AIA teams. We acknowledge the ACE SWEPAM and MAG instrument teams and the ACE Science Center. The research leading to these results has received funding from the European Commission Seventh Framework Programme (FP7/2007-2013) under the grant agreement FP7 No. 263252 (COMESEP). T.R., A.M.V., and M.T. acknowledge the Austrian Science Fund (FWF): P24092-N16 and V195-N16. T.R. gratefully acknowledges support from NAWI Graz and the Forschungsstipendium by the University of Graz. B.V. acknowledges financial support by the Croatian Science Foundation under the project 6212 SOLSTEL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Rotter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rotter, T., Veronig, A.M., Temmer, M. et al. Real-Time Solar Wind Prediction Based on SDO/AIA Coronal Hole Data. Sol Phys 290, 1355–1370 (2015). https://doi.org/10.1007/s11207-015-0680-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0680-5

Keywords

Navigation