Skip to main content
Log in

Comparative Study of MHD Modeling of the Background Solar Wind

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Knowledge about the background solar wind plays a crucial role in the framework of space-weather forecasting. In-situ measurements of the background solar wind are only available for a few points in the heliosphere where spacecraft are located, therefore we have to rely on heliospheric models to derive the distribution of solar-wind parameters in interplanetary space. We test the performance of different solar-wind models, namely Magnetohydrodynamic Algorithm outside a Sphere/ENLIL (MAS/ENLIL), Wang–Sheeley–Arge/ENLIL (WSA/ENLIL), and MAS/MAS, by comparing model results with in-situ measurements from spacecraft located at 1 AU distance to the Sun (ACE, Wind). To exclude the influence of interplanetary coronal mass ejections (ICMEs), we chose the year 2007 as a time period with low solar activity for our comparison. We found that the general structure of the background solar wind is well reproduced by all models. The best model results were obtained for the parameter solar-wind speed. However, the predicted arrival times of high-speed solar-wind streams have typical uncertainties of the order of about one day. Comparison of model runs with synoptic magnetic maps from different observatories revealed that the choice of the synoptic map significantly affects the model performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Notes

  1. The offset in the temperature values is probably caused by a scaling factor used in the model to scale the output from internal values to physical quantities. When requesting model runs on the CCMC homepage, the scaling factor cannot be modified by the user.

References

  • Arge, C.N., Pizzo, V.J.: 2000, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. 105, 10465 – 10480. doi: 10.1029/1999JA900262 .

    Article  ADS  Google Scholar 

  • Baker, D.N., Li, X., Turner, N., Allen, J.H., Bargatze, L.F., Blake, J.B., Sheldon, R.B., Spence, H.E., Belian, R.D., Reeves, G.D., Kanekal, S.G., Klecker, B., Lepping, R.P., Ogilvie, K., Mewaldt, R.A., Onsager, T., Singer, H.J., Rostoker, G.: 1997, Recurrent geomagnetic storms and relativistic electron enhancements in the outer magnetosphere: ISTP coordinated measurements. J. Geophys. Res. 102, 14141 – 14148. doi: 10.1029/97JA00565 .

    Article  ADS  Google Scholar 

  • Crooker, N.U., Cliver, E.W.: 1994, Postmodern view of M-regions. J. Geophys. Res. 99, 23383. doi: 10.1029/94JA02093 .

    Article  ADS  Google Scholar 

  • Gloeckler, G., Balsiger, H., Bürgi, A., Bochsler, P., Fisk, L.A., Galvin, A.B., Geiss, J., Gliem, F., Hamilton, D.C., Holzer, T.E., Hovestadt, D., Ipavich, F.M., Kirsch, E., Lundgren, R.A., Ogilvie, K.W., Sheldon, R.B., Wilken, B.: 1995, The solar wind and suprathermal ion composition investigation on the Wind spacecraft. Space Sci. Rev. 71, 79 – 124. doi: 10.1007/BF00751327 .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Lara, A., Lepping, R.P., Kaiser, M.L., Berdichevsky, D., St. Cyr, O.C.: 2000, Interplanetary acceleration of coronal mass ejections. Geophys. Res. Lett. 27, 145 – 148. doi: 10.1029/1999GL003639 .

    Article  ADS  Google Scholar 

  • Jian, L.K., Russell, C.T., Luhmann, J.G., MacNeice, P.J., Odstrcil, D., Riley, P., Linker, J.A., Skoug, R.M., Steinberg, J.T.: 2011, Comparison of observations at ACE and Ulysses with Enlil model results: stream interaction regions during Carrington rotations 2016 – 2018. Solar Phys. 273, 179 – 203. doi: 10.1007/s11207-011-9858-7 .

    ADS  Google Scholar 

  • Lee, C.O., Luhmann, J.G., Odstrcil, D., MacNeice, P.J., de Pater, I., Riley, P., Arge, C.N.: 2009, The solar wind at 1 AU during the declining phase of solar cycle 23: comparison of 3D numerical model results with observations. Solar Phys. 254, 155 – 183. doi: 10.1007/s11207-008-9280-y .

    ADS  Google Scholar 

  • Levine, R.H., Altschuler, M.D., Harvey, J.W.: 1977, Solar sources of the interplanetary magnetic field and solar wind. J. Geophys. Res. 82, 1061 – 1065. doi: 10.1029/JA082i007p01061 .

    Article  ADS  Google Scholar 

  • Linker, J.A., Mikić, Z., Biesecker, D.A., Forsyth, R.J., Gibson, S.E., Lazarus, A.J., Lecinski, A., Riley, P., Szabo, A., Thompson, B.J.: 1999, Magnetohydrodynamic modeling of the solar corona during whole Sun month. J. Geophys. Res. 104, 9809 – 9830. doi: 10.1029/1998JA900159 .

    Article  ADS  Google Scholar 

  • Lionello, R., Linker, J.A., Mikić, Z.: 2009, Multispectral emission of the Sun during the first whole Sun month: magnetohydrodynamic simulations. Astrophys. J. 690, 902 – 912. doi: 10.1088/0004-637X/690/1/902 .

    Article  ADS  Google Scholar 

  • McComas, D.J., Bame, S.J., Barker, P., Feldman, W.C., Phillips, J.L., Riley, P., Griffee, J.W.: 1998, Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer. Space Sci. Rev. 86, 563 – 612. doi: 10.1023/A:1005040232597 .

    ADS  Google Scholar 

  • Mikić, Z., Linker, J.A., Schnack, D.D., Lionello, R., Tarditi, A.: 1999, Magnetohydrodynamic modeling of the global solar corona. Phys. Plasmas 6, 2217 – 2224. doi: 10.1063/1.873474 .

    Article  ADS  Google Scholar 

  • Odstrčil, D.: 2003, Modeling 3-D solar wind structure. Adv. Space Res. 32, 497 – 506. doi: 10.1016/S0273-1177(03)00332-6 .

    Article  ADS  Google Scholar 

  • Odstrčil, D., Linker, J.A., Lionello, R., Mikic, Z., Riley, P., Pizzo, V.J., Luhmann, J.G.: 2002, Merging of coronal and heliospheric numerical two-dimensional MHD models. J. Geophys. Res. 107, 1493. doi: 10.1029/2002JA009334 .

    Article  Google Scholar 

  • Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J.D., Sittler, E.C. Jr., Torbert, R.B., Bodet, D., Needell, G., Lazarus, A.J., Steinberg, J.T., Tappan, J.H., Mavretic, A., Gergin, E.: 1995, SWE, a comprehensive plasma instrument for the Wind spacecraft. Space Sci. Rev. 71, 55 – 77. doi: 10.1007/BF00751326 .

    ADS  Google Scholar 

  • Owens, M.J., Spence, H.E., McGregor, S., Hughes, W.J., Quinn, J.M., Arge, C.N., Riley, P., Linker, J., Odstrcil, D.: 2008, Metrics for solar wind prediction models: comparison of empirical, hybrid, and physics-based schemes with 8 years of L1 observations. Space Weather 6, 8001. doi: 10.1029/2007SW000380 .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2010, Geoeffectiveness of ICMEs during 1996 – 2009. AGU Fall Meeting Abs., C8.

  • Riley, P., Linker, J.A., Mikić, Z.: 2001, An empirically-driven global MHD model of the solar corona and inner heliosphere. J. Geophys. Res. 106, 15889 – 15902. doi: 10.1029/2000JA000121 .

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Lionello, R., Mikic, Z.: 2012, Corotating interaction regions during the recent solar minimum: the power and limitations of global MHD modeling. J. Atmos. Solar-Terr. Phys. 83, 1 – 10. doi: 10.1016/j.jastp.2011.12.013 .

    Article  ADS  Google Scholar 

  • Rotter, T., Veronig, A.M., Temmer, M., Vršnak, B.: 2012, Relation between coronal hole areas on the Sun and the solar wind parameters at 1 AU. Solar Phys. 281, 793 – 813. doi: 10.1007/s11207-012-0101-y .

    ADS  Google Scholar 

  • Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442 – 455. doi: 10.1007/BF00146478 .

    ADS  Google Scholar 

  • Smith, C.W., L’Heureux, J., Ness, N.F., Acuña, M.H., Burlaga, L.F., Scheifele, J.: 1998, The ACE magnetic fields experiment. Space Sci. Rev. 86, 613 – 632. doi: 10.1023/A:1005092216668 .

    ADS  Google Scholar 

  • Stevens, M.L., Linker, J.A., Riley, P., Hughes, W.J.: 2012, Underestimates of magnetic flux in coupled MHD model solar wind solutions. J. Atmos. Solar-Terr. Phys. 83, 22 – 31. doi: 10.1016/j.jastp.2012.02.005 .

    Article  ADS  Google Scholar 

  • Stone, E.C., Frandsen, A.M., Mewaldt, R.A., Christian, E.R., Margolies, D., Ormes, J.F., Snow, F.: 1998, The Advanced Composition Explorer. Space Sci. Rev. 86, 1 – 22. doi: 10.1023/A:1005082526237 .

    ADS  Google Scholar 

  • Temmer, M., Rollett, T., Möstl, C., Veronig, A.M., Vršnak, B., Odstrčil, D.: 2011, Influence of the ambient solar wind flow on the propagation behavior of interplanetary coronal mass ejections. Astrophys. J. 743, 101. doi: 10.1088/0004-637X/743/2/101 .

    Article  ADS  Google Scholar 

  • Tóth, G., Sokolov, I.V., Gombosi, T.I., Chesney, D.R., Clauer, C.R., de Zeeuw, D.L., Hansen, K.C., Kane, K.J., Manchester, W.B., Oehmke, R.C., Powell, K.G., Ridley, A.J., Roussev, I.I., Stout, Q.F., Volberg, O., Wolf, R.A., Sazykin, S., Chan, A., Yu, B., Kóta, J.: 2005, Space weather modeling framework: a new tool for the space science community. J. Geophys. Res. 110, 12226. doi: 10.1029/2005JA011126 .

    Article  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Guarnieri, F.L., Gopalswamy, N., Grande, M., Kamide, Y., Kasahara, Y., Lu, G., Mann, I., McPherron, R., Soraas, F., Vasyliunas, V.: 2006, Corotating solar wind streams and recurrent geomagnetic activity: a review. J. Geophys. Res. 111, A07S01. doi: 10.1029/2005JA011273 .

    Google Scholar 

  • Vršnak, B., Temmer, M., Veronig, A.M.: 2007, Coronal holes and solar wind high-speed streams: I. Forecasting the solar wind parameters. Solar Phys. 240, 315 – 330. doi: 10.1007/s11207-007-0285-8 .

    ADS  Google Scholar 

  • Wall, J.V., Jenkins, C.R.: 2003, Practical Statistics for Astronomers, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Wang, Y., Sheeley, N.R. Jr.: 1990, Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726 – 732. doi: 10.1086/168805 .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the use of Wind data provided by the solar-wind experiment teams at GSFC. We thank the ACE/SWEPAM and MAG instrument team and the ACE Science Center for providing the ACE data. Simulation results for the ENLIL model have been provided by the Community Coordinated Modeling Center at Goddard Space Flight Center through their public Runs on Request system ( ccmc.gsfc.nasa.gov ). The model runs for the MAS model were carried out by Predictive Science Inc. ( www.predsci.com/portal/home.php ). The research leading to these results has received funding from the European Commission FP7 Project COMESEP (project n 263252, comesep.aeronomy.be ) and from the European Commission’s Seventh Framework Programme (FP7/2007 – 2013) under the grant agreement eHeroes (project n 284461, www.eheroes.eu ). M. Temmer acknowledges the Austrian Science Fund (FWF): FWF V195-N16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gressl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gressl, C., Veronig, A.M., Temmer, M. et al. Comparative Study of MHD Modeling of the Background Solar Wind. Sol Phys 289, 1783–1801 (2014). https://doi.org/10.1007/s11207-013-0421-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-013-0421-6

Keywords

Navigation