Skip to main content
Log in

Interplanetary Signatures of Unipolar Streamers and the Origin of the Slow Solar Wind

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Unipolar streamers (also known as pseudo-streamers) are coronal structures that, at least in coronagraph images, and when viewed at the correct orientation, are often indistinguishable from dipolar (or “standard”) streamers. When interpreted with the aid of a coronal magnetic field model, however, they are shown to consist of a pair of loop arcades. Whereas dipolar streamers separate coronal holes of the opposite polarity and whose cusp is the origin of the heliospheric current sheet, unipolar streamers separate coronal holes of the same polarity and are therefore not associated with a current sheet. In this study, we investigate the interplanetary signatures of unipolar streamers. Using a global MHD model of the solar corona driven by the observed photospheric magnetic field for Carrington rotation 2060, we map the ACE trajectory back to the Sun. The results suggest that ACE fortuitously traversed through a large and well-defined unipolar streamer. We also compare heliospheric model results at 1 AU with ACE in-situ measurements for Carrington rotation 2060. The results strongly suggest that the solar wind associated with unipolar streamers is slow. We also compare predictions using the original Wang–Sheeley (WS) empirically determined inverse relationship between solar wind speed and expansion factor. Because of the very low expansion factors associated with unipolar streamers, the WS model predicts high speeds, in disagreement with the observations. We discuss the implications of these results in terms of theories for the origin of the slow solar wind. Specifically, premises relying on the expansion factor of coronal flux tubes to modulate the properties of the plasma (and speed, in particular) must address the issue that while the coronal expansion factors are significantly different at dipolar and unipolar streamers, the properties of the measured solar wind are, at least qualitatively, very similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antiochos, S.K., Mikić, Z., Titov, V.S., Lionello, R., Linker, J.A.: 2011, A model for the sources of the slow solar wind. Astrophys. J. 731, 112. doi: 10.1088/0004-637X/731/2/112 .

    Article  ADS  Google Scholar 

  • Arge, C.N.: 2004, Working with the photospheric magnetic field observations from Mount Wilson, Wilcox, and Kitt Solar Observatories. AGU, Fall Meeting, SH52A-02.

  • Arge, C.N., Pizzo, V.J.: 2000, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. 105, 10465. doi: 10.1029/1999JA900262 .

    Article  ADS  Google Scholar 

  • Arge, C.N., Odstrcil, D., Pizzo, V.J., Mayer, L.R.: 2003, Improved method for specifying solar wind speed near the Sun. In: Velli, M., Bruno, R., Malara, F., Bucci, B. (eds.) Solar Wind Ten, AIP Conf. Proc. 679, 190. doi: 10.1063/1.1618574 .

    Google Scholar 

  • Cranmer, S.R.: 2010, An efficient approximation of the coronal heating rate for use in global Sun-heliosphere simulations. Astrophys. J. 710, 676. doi: 10.1088/0004-637X/710/1/676 .

    Article  ADS  Google Scholar 

  • Cranmer, S.R., van Ballegooijen, A.A., Edgar, R.J.: 2007, Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence. Astrophys. J. Suppl. 171, 520. doi: 10.1086/518001 .

    Article  ADS  Google Scholar 

  • Crooker, N.U., Huang, C., Lamassa, S.M., Larson, D.E., Kahler, S.W., Spence, H.E.: 2004a, Heliospheric plasma sheets. J. Geophys. Res. 109, 3107. doi: 10.1029/2003JA010170 .

    Article  Google Scholar 

  • Crooker, N.U., Kahler, S.W., Larson, D.E., Lin, R.P.: 2004b, Large-scale magnetic field inversions at sector boundaries. J. Geophys. Res. 109, 3108. doi: 10.1029/2003JA010278 .

    Article  Google Scholar 

  • Farrell, P.: 2011, New space weather forecasting model going operational with National Weather Service. www.bu.edu/cas/news/press-releases/cism/ .

  • Fisk, L.: 1996, Motion of the footpoints of heliospheric magnetic field lines at the Sun: Implications for recurrent energetic particle events at high heliographic latitudes. J. Geophys. Res. 101, 15547. doi: 10.1029/96JA01005 .

    Article  ADS  Google Scholar 

  • Gosling, J.T., Asbridge, J.R., Bame, S.J., Feldman, W.C.: 1978, Solar wind stream interfaces. J. Geophys. Res. 83, 1401. doi: 10.1029/JA083iA04p01401 .

    Article  ADS  Google Scholar 

  • Gosling, J.T., Asbridge, J.R., Bame, S.J., Feldman, W.C., Borrini, G., Hansen, R.T.: 1981, Coronal streamers in the solar wind at 1 AU. J. Geophys. Res. 86, 5438. doi: 10.1029/JA086iA07p05438 .

    Article  ADS  Google Scholar 

  • Hakamada, K., Akasofu, S.: 1981, A cause of solar wind speed variations observed at 1 AU. J. Geophys. Res. 86, 1290. doi: 10.1029/JA086iA03p01290 .

    Article  ADS  Google Scholar 

  • Hundhausen, A.J.: 1972, Coronal Expansion and Solar Wind, Springer, New York, 7.

    Book  Google Scholar 

  • Laming, J.M.: 2004, On collisionless electron-ion temperature equilibration in the fast solar wind. Astrophys. J. 604, 874. doi: 10.1086/382066 .

    Article  ADS  Google Scholar 

  • Lionello, R., Riley, P., Linker, J.A., Mikić, Z.: 2005, The effects of differential rotation on the magnetic structure of the solar corona: magnetohydrodynamic simulations. Astrophys. J. 625, 463. doi: 10.1086/429268 .

    Article  ADS  Google Scholar 

  • Liu, Y.C.M., Galvin, A.B., Popecki, M.A., Simunac, K.D.C., Kistler, L., Farrugia, C., Lee, M.A., Klecker, B., Bochsler, P., Luhmann, J.L., Jian, L.K., Moebius, E., Wimmer-Schweingruber, R., Wurz, P.: 2010, Proton enhancement and decreased O6+/H at the heliospheric current sheet: implications for the origin of slow solar wind. In: Twelfth International Solar Wind Conference, AIP Conf. Proc. 1216, 363. doi: 10.1063/1.3395875 .

    Google Scholar 

  • Neugebauer, M., Snyder, C.W.: 1962, Solar plasma experiment. Science 138, 1095. doi: 10.1029/2004JA010456 .

    Article  ADS  Google Scholar 

  • Neugebauer, M., Liewer, P.C., Goldstein, B.E., Zhou, X., Steinberg, J.T.: 2004, Solar wind stream interaction regions without sector boundaries. J. Geophys. Res. 109, 10102.

    Article  Google Scholar 

  • Riley, P., Linker, J.A., Mikić, Z.: 2001, An empirically-driven global MHD model of the corona and inner heliosphere. J. Geophys. Res. 106, 15889. doi: 10.1029/2000JA000121 .

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Mikić, Z., Lionello, R., Ledvina, S.A., Luhmann, J.G.: 2006, A comparison between global solar magnetohydrodynamic and potential field source surface model results. Astrophys. J. 653, 1510. doi: 10.1086/508565 .

    Article  ADS  Google Scholar 

  • Riley, P., Lionello, R., Linker, J.A., Mikic, Z., Luhmann, J., Wijaya, J.: 2011, Global MHD modeling of the solar corona and inner heliosphere for the Whole Heliosphere Interval. Solar Phys. 145. doi: 10.1007/s11207-010-9698-x .

  • Sarabhai, V.: 1963, Some consequences of nonuniformity of solar wind velocity. J. Geophys. Res. 68, 1555. doi: 10.1029/JZ068i005p01555 .

    Article  ADS  Google Scholar 

  • Sheeley, N.R., Wang, Y.M., Hawley, S.H., Brueckner, G.E., Dere, K.P., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Paswaters, S.E., Socker, D.G., St. Cyr, O.C., Wang, D., Lamy, P.L., Llebaria, A., Schwenn, R., Simnett, G.M., Plunkett, S., Biesecker, D.A.: 1997, Measurements of flow speeds in the corona between 2 and 30 R Sun. Astrophys. J. 484, 472. doi: 10.1086/304338 .

    Article  ADS  Google Scholar 

  • Sonett, C.P., Colburn, D.S.: 1965, The SI+–SI pair and interplanetary forward-reverse shock ensembles. Planet. Space Sci. 13, 675. doi: 10.1016/0032-0633(65)90046-2 .

    Article  ADS  Google Scholar 

  • Suess, S.T., Ko, Y.K., von Steiger, R., Moore, R.L.: 2009, Quiescent current sheets in the solar wind and origins of slow wind. J. Geophys. Res. 114, A04103. doi: 10.1029/2008JA013704 .

    Article  Google Scholar 

  • Uzzo, M., Ko, Y.K., Raymond, J.C., Wurz, P., Ipavich, F.M.: 2003, Elemental abundances for the 1996 streamer belt. Astrophys. J. 585, 1062. doi: 10.1086/346132 .

    Article  ADS  Google Scholar 

  • Wang, Y.M.: 1994, Two types of slow solar wind. Astrophys. J. Lett. 437, L67. doi: 10.1086/187684 .

    Article  ADS  Google Scholar 

  • Wang, Y.M., Sheeley, N.R.: 1990, Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726. doi: 10.1086/168805 .

    Article  ADS  Google Scholar 

  • Wang, Y.M., Sheeley, N.R.: 1997, The high-latitude solar wind near sunspot maximum. Geophys. Res. Lett. 24, 3141. doi: 10.1029/97GL53305 .

    Article  ADS  Google Scholar 

  • Wang, Y.M., Sheeley, N.R.: 2003, The solar wind and its magnetic sources at sunspot maximum. Astrophys. J. 587, 818. doi: 10.1086/368302 .

    Article  ADS  Google Scholar 

  • Wang, Y.M., Hawley, S.H., Sheeley, N.R.: 1996, The magnetic nature of coronal holes. Science 271, 464. doi: 10.1126/science.271.5248.464 .

    Article  ADS  Google Scholar 

  • Wang, Y.M., Sheeley, N.R., Rich, N.B.: 2007, Coronal pseudostreamers. Astrophys. J. 658, 1340. doi: 10.1086/511416 .

    Article  ADS  Google Scholar 

  • Wang, Y., Ko, Y., Grappin, R.: 2009, Slow solar wind from open regions with strong low-coronal heating. Astrophys. J. 691, 760. doi: 10.1088/0004-637X/691/1/760 .

    Article  ADS  Google Scholar 

  • Wang, Y.M., Sheeley, N.R., Phillips, J.L., Goldstein, B.E.: 1997, Solar wind stream interactions and the wind speed–expansion factor relationship. Astrophys. J. Lett. 488, L51. doi: 10.1086/310918 .

    Article  ADS  Google Scholar 

  • Wang, Y.M., Robbrecht, E., Rouillard, A.P., Sheeley, N.R., Thernisien, A.F.R.: 2010, Formation and evolution of coronal holes following the emergence of active regions. Astrophys. J. 715, 39. doi: 10.1088/0004-637X/715/1/39 .

    Article  ADS  Google Scholar 

  • Winterhalter, D., Smith, E.J., Burton, M.E., Murphy, N., McComas, D.J.: 1994, The heliospheric plasma sheet. J. Geophys. Res. 99, 6667. doi: 10.1029/93JA03481 .

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Riley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riley, P., Luhmann, J.G. Interplanetary Signatures of Unipolar Streamers and the Origin of the Slow Solar Wind. Sol Phys 277, 355–373 (2012). https://doi.org/10.1007/s11207-011-9909-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-011-9909-0

Keywords

Navigation