Skip to main content
Log in

A generator of families of two-step numerical methods with free parameters and minimal phase-lag

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

This research work is oriented in the behaviour of oscillating systems. In order to study such problems, we deal with the solution of ordinary second order differential equations. A generator of families of numerical methods is developed in our effort to solve equations of that type. The families created have constant coefficients and free parameters. We calculate the free parameters taking into consideration the condition of minimal phase-lag. The new methods are applied to the problem of the time independent Schrödinger equation and their results are presented. We also examine the properties of stability and minimum local truncation error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

LTE:

Local truncation error

References

  1. A.D. Raptis, A.C. Allison, Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)

    Article  Google Scholar 

  2. A.D. Raptis, Two-step methods for the numerical solution of the Schrödinger equation. Computing 28, 373–378 (1982)

    Article  Google Scholar 

  3. L. Brusa, L. Nigro, A one-step method for direct integration of structural dynamic equations. Int. J. Numer. Meth. Eng. 15, 685–699 (1980)

    Article  Google Scholar 

  4. P.J. van der Houwen, B.P. Sommeijer, Predictor corrector methods for periodic second order initial-value problems. IMA J. Numer. Anal. 7, 407–422 (1987)

    Article  Google Scholar 

  5. J.P. Coleman, Numerical methods for \(y^{\prime \prime }=f(x, y)\) via rational approximations for the cosine. IMA J. Numer. Anal. 9, 145–165 (1989)

    Article  Google Scholar 

  6. I. Prigogine, S. Rice (eds.), Advances in Chemical Physics Vol. 93: New, Methods in Computational Quantum Mechanics (Wiley, New York, 1997)

    Google Scholar 

  7. G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand, Toronto, 1950)

    Google Scholar 

  8. T.E. Simos, J. Vigo-Aguiar, A modified phase-fitted Runge–Kutta, method for the numerical solution of the Schrödinger equation. J. Math. Chem. 30(1), 121–131 (2001)

    Article  CAS  Google Scholar 

  9. K. Tselios, T.E. Simos, Runge–Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. J. Comput. Appl. Math. 175(1), 173–181 (2005)

    Article  Google Scholar 

  10. Z.A. Anastassi, T.E. Simos, An optimized Runge–Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175(1), 1–9 (2005)

    Article  Google Scholar 

  11. D.F. Papadopoulos, T.E. Simos, A new methodology for the construction of optimized Runge–Kutta–Nyström methods. Int. J. Mod. Phys. C 22(6), 623–634 (2011)

    Article  Google Scholar 

  12. D.F. Papadopoulos, T.E. Simos, A modified Runge–Kutta–Nyström method by using phase lag properties for the numerical solution of orbital problems. Appl. Math. Inf. Sci. 7(2), 433–437 (2013)

    Article  Google Scholar 

  13. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Exponentially fitted symplectic Runge–Kutta–Nyström methods. Appl. Math. Inf. Sci. 7(1), 81–85 (2013)

    Article  Google Scholar 

  14. A.A. Kosti, Z.A. Anastassi, T.E. Simos, Construction of an optimized explicit Runge–Kutta–Nyström method for the numerical solution of oscillatory initial value problems. Comput. Math. Appl. 61(11), 3381–3390 (2011)

    Article  Google Scholar 

  15. Z. Kalogiratou, Th Monovasilis, G. Psihoyios, T.E. Simos, Runge–Kutta type methods with special properties for the numerical integration of ordinary differential equations. Phys. Rep. Rev. Sect. Phys. Lett. 536(3), 75–146 (2014)

    Google Scholar 

  16. Z. Kalogiratou, Th Monovasilis, T.E. Simos, A fourth order modified trigonometrically-fitted symplectic Runge–Kutta–Nyström method. Comput. Phys. Commun. 185(12), 3151–3155 (2014)

    Article  CAS  Google Scholar 

  17. A.A. Kosti, Z.A. Anastassi, T.E. Simos, An optimized explicit Runge–Kutta method with increased phase-lag order for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 47(1), 315–330 (2010)

    Article  CAS  Google Scholar 

  18. Z. Kalogiratou, T.E. Simos, Construction of trigonometrically and exponentially fitted Runge–Kutta–Nyström methods for the numerical solution of the Schrödinger equation and related problems a method of 8th algebraic order. J. Math. Chem. 31(2), 211–232 (2002)

    Article  CAS  Google Scholar 

  19. T.E. Simos, A fourth algebraic order exponentially-fitted Runge–Kutta method for the numerical solution of the Schrödinger equation. IMA J. Numer. Anal. 21(4), 919–931 (2001)

    Article  Google Scholar 

  20. T.E. Simos, Exponentially-fitted Runge–Kutta–Nyström method for the numerical solution of initial-value problems with oscillating solutions. Appl. Math. Lett. 15(2), 217–225 (2002)

    Article  Google Scholar 

  21. C. Tsitouras, T.E. Simos, Optimized Runge–Kutta pairs for problems with oscillating solutions. J. Comput. Appl. Math. 147(2), 397–409 (2002)

    Article  Google Scholar 

  22. Z.A. Anastassi, T.E. Simos, Trigonometrically fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 281–293 (2005)

    Article  CAS  Google Scholar 

  23. Z.A. Anastassi, T.E. Simos, A family of exponentially-fitted Runge–Kutta methods with exponential order up to three for the numerical solution of the Schrödinger equation. J. Math. Chem. 41(1), 79–100 (2007)

    Article  CAS  Google Scholar 

  24. J.D. Lambert, I.A. Watson, Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  Google Scholar 

  25. G.D. Quinlan, S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits. Astron. J. 100, 1694–1700 (1990)

    Article  Google Scholar 

  26. H. Ramos, Z. Kalogiratou, T. Monovasilis, T.E. Simos, An optimized two-step hybrid block method for solving general second order initial-value problems. Numer. Algorithms 72, 1089–1102 (2016)

    Article  Google Scholar 

  27. Ch. Tsitouras, I.T. Famelis, T.E. Simos, On modified Runge–Kutta trees and methods. Comput. Math. Appl. 62(4), 2101–2111 (2011)

    Article  Google Scholar 

  28. http://burtleburtle.net/bob/math/multistep.html

  29. G. Avdelas, A. Konguetsof, T.E. Simos, A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 1. Development of the basic method. J. Math. Chem. 29(4), 281–291 (2001)

    Article  CAS  Google Scholar 

  30. M.M. Chawla, P.S. Rao, An explicit sixth order method with phase-lag of order eight for \(y^{\prime \prime }=f(t, y)\). J. Comput. Appl. Math. 17, 363–368 (1987)

    Google Scholar 

  31. M.M. Chawla, P.S. Rao, An Numerov type method with minimal phase-lag for the integration of second order periodic initial-value problems II Explicit Method. J. Comput. Appl. Math. 15, 329–337 (1986)

    Article  Google Scholar 

  32. T.E. Simos, P.S. Williams, A finite difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79, 189–205 (1997)

    Article  Google Scholar 

  33. A.D. Raptis, T.E. Simos, A four-step phase-fitted method for the numerical integrationof second order initial-value problem. BIT 31, 160–168 (1991)

    Article  Google Scholar 

  34. G. Avdelas, A. Konguetsof, T.E. Simos, A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 2: Development of the generator; optimization of the generator and numerical results. J. Math. Chem. 29(4), 293–305 (2001)

    Article  CAS  Google Scholar 

  35. T.E. Simos, J. Vigo-Aguiar, Symmetric eighth algebraic order methods with minimal phase-lag for the numerical solution of the Schrödinger equation. J. Math. Chem. 31(2), 135–144 (2002)

    Article  CAS  Google Scholar 

  36. A. Konguetsof, T.E. Simos, A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 93–106 (2003)

    Article  Google Scholar 

  37. T.E. Simos, I.T. Famelis, C. Tsitouras, Zero dissipative explicit Numerov-Type methods for second order IVPs with oscillating solutions. Numer. Algorithms 34(1), 27–40 (2003)

    Article  Google Scholar 

  38. D.P. Sakas, T.E. Simos, Multiderivative methods of eighth algrebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation. J. Comput. Appl. Math. 175(1), 161–172 (2005)

    Article  Google Scholar 

  39. T.E. Simos, Optimizing a class of linear multi-step methods for the approximate solution of the radial Schrödinger equation and related problems with respect to phase-lag. Cent. Eur. J. Phys. 9(6), 1518–1535 (2011)

    Google Scholar 

  40. D.P. Sakas, T.E. Simos, A family of multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 317–331 (2005)

    Article  CAS  Google Scholar 

  41. H. Van de Vyver, Phase-fitted and amplification-fitted two-step hybrid methods for \(y^{\prime \prime }=f(x, y)\). J. Comput. Appl. Math. 209(1), 33–53 (2007)

    Article  Google Scholar 

  42. H. Van de Vyver, An explicit Numerov-type method for second-order differential equations with oscillating solutions. Comput. Math. Appl. 53, 1339–1348 (2007)

    Article  Google Scholar 

  43. T.E. Simos, A new Numerov-type method for the numerical solution of the Schrödinger equation. J. Math. Chem. 46(3), 981–1007 (2009)

    Article  CAS  Google Scholar 

  44. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, A New symmetric eight-step predictor–corrector method for the numerical solution of the radial Schrödinger equation and related orbital problems. Int. J. Mod. Phys. C 22(2), 133–153 (2011)

    Article  Google Scholar 

  45. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, A symmetric eight-step predictor–corrector method for the numerical solution of the radial Schrödinger equation and related IVPs with oscillating solutions. Comput. Phys. Commun. 182(8), 1626–1637 (2011)

    Article  CAS  Google Scholar 

  46. T.E. Simos, Optimizing a hybrid two-step method for the numerical solution of the Schrödinger equation and related problems with respect to phase-lag. J. Appl. Math. Article ID 420387 (2012)

  47. T.E. Simos, A two-step method with vanished phase-lag and its first two derivatives for the numerical solution of the Schrödinger equation. J. Math. Chem. 49(10), 2486–2518 (2011)

    Article  CAS  Google Scholar 

  48. I. Alolyan, T.E. Simos, A family of high-order multistep methods with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 62(10), 3756–3774 (2011)

    Article  Google Scholar 

  49. I. Alolyan, T.E. Simos, A new four-step hybrid type method with vanished phase-lag and its first derivatives for each level for the approximate integration of the Schrödinger equation. J. Math. Chem. 51, 2542–2571 (2013)

    Article  CAS  Google Scholar 

  50. I. Alolyan, T.E. Simos, A Runge–Kutta type four-step method with vanished phase-lag and its first and second derivatives for each level for the numerical integration of the Schrödinger equation. J. Math. Chem. 52, 917–947 (2014)

    Article  CAS  Google Scholar 

  51. I. Alolyan, T.E. Simos, Efficient low computational cost hybrid explicit four-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53, 1808–1834 (2015)

    Article  CAS  Google Scholar 

  52. I. Alolyan, T.E. Simos, Family of symmetric linear six-step methods with vanished phase-lag and its derivatives and their application to the radial Schrödinger equation and related problems. J. Math. Chem. 54, 466–502 (2016)

    Article  CAS  Google Scholar 

  53. I. Alolyan, T.E. Simos, A family of two stages tenth algebraic order symmetric six-step methods with vanished phase-lag and its first derivatives for the numerical solution of the radial Schrödinger equation and related problems. J. Math. Chem. 54, 1835 (2016)

  54. I. Alolyan, T.E. Simos, A new two stages tenth algebraic order symmetric six-step method with vanished phase-lag and its first and second derivatives for the solution of the radial Schrödinger equation and related problems. J. Math. Chem. 55, 105 (2017)

  55. I. Alolyan, Z.A. Anastassi, T.E. Simos, A new family of symmetric linear four-step methods for the efficient integration of the Schrödinger equation and related oscillatory problems. Appl. Math. Comput. 218(9), 5370–5382 (2012)

    Google Scholar 

  56. Z.A. Anastassi, T.E. Simos, A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems. J. Comput. Appl. Math. 236(16), 3880–3889 (2012)

    Article  Google Scholar 

  57. G.A. Panopoulos, T.E. Simos, An optimized symmetric 8-step semi-embedded predictor–corrector method for IVPs with oscillating solutions. Appl. Math. Inf. Sci. 7(1), 73–80 (2013)

    Article  Google Scholar 

  58. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, A new eight-step symmetric embedded predictor–corrector method (EPCM) for orbital problems and related IVPs with oscillatory solutions. Astron. J. 45(3), Article Number: 75 (2013). doi:10.1088/0004-6256/145/3/75

  59. T.E. Simos, New high order multiderivative explicit four-step methods with vanished phase-lag and its derivatives for the approximate solution of the Schrödinger equation. Part I: Construction and theoretical analysis. J. Math. Chem. 51(1), 194–226 (2013)

    Article  CAS  Google Scholar 

  60. T.E. Simos, On the explicit four-step methods with vanished phase-lag and its first derivative. Appl. Math. Inf. Sci. 8(2), 447–458 (2014)

    Article  Google Scholar 

  61. G.A. Panopoulos, T.E. Simos, A new optimized symmetric embedded predictor–corrector method (EPCM) for initial-value problems with oscillatory solutions. Appl. Math. Inf. Sci. 8(2), 703–713 (2014)

    Article  Google Scholar 

  62. T.E. Simos, An explicit four-step method with vanished phase-lag and its first and second derivatives. J. Math. Chem. 52(3), 833–855 (2014)

    Article  CAS  Google Scholar 

  63. T.E. Simos, An explicit linear six-step method with vanished phase-lag and its first derivative. J. Math. Chem. 52(7), 1895–1920 (2014)

    Article  CAS  Google Scholar 

  64. T.E. Simos, A new explicit hybrid four-step method with vanished phase-lag and its derivatives. J. Math. Chem. 52(7), 1690–1716 (2014)

    Article  CAS  Google Scholar 

  65. I. Alolyan, T.E. Simos, A family of explicit linear six-step methods with vanished phase-lag and its first derivative. J. Math. Chem. 52(8), 2087–2118 (2014)

    Article  CAS  Google Scholar 

  66. I. Alolyan, T.E. Simos, A hybrid type four-step method with vanished phase-lag and its first, second and third derivatives for each level for the numerical integration of the Schrödinger equation. J. Math. Chem. 52(9), 2334–2379 (2014)

    Article  CAS  Google Scholar 

  67. T.E. Simos, Multistage symmetric two-step P-stable method with vanished phase-lag and its derivatives. Appl. Comput. Math. 14(3), 296–315 (2015)

    Google Scholar 

  68. F. Hui, T.E. Simos, Four stages symmetric two-step P-stable method with vanished phase-lag and its first, second, third and fourth derivatives. Appl. Comput. Math. 15(2), 220–238 (2016)

    Google Scholar 

  69. I. Alolyan, T.E. Simos, A family of embedded explicit six-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrödinger equation: development and theoretical analysis. J. Math. Chem. 54(5), 1159–1186 (2016)

    Article  CAS  Google Scholar 

  70. M. Liang, T.E. Simos, A new four stages symmetric two-step method with vanished phase-lag and its first derivative for the numerical integration of the Schrödinger equation. J. Math. Chem. 54(5), 1187–1211 (2016)

    Article  CAS  Google Scholar 

  71. I. Alolyan, T.E. Simos, An implicit symmetric linear six-step methods with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the radial Schrödinger equation and related problems. J. Math. Chem. 54(4), 1010–1040 (2016)

    Article  CAS  Google Scholar 

  72. Z. Zhou, T.E. Simos, A new two stage symmetric two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 54(2), 442–465 (2016)

    Article  CAS  Google Scholar 

  73. F. Hui, T.E. Simos, A new family of two stage symmetric two-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(10), 2191–2213 (2015)

    Article  CAS  Google Scholar 

  74. I. Alolyan, T.E. Simos, A high algebraic order multistage explicit four-step method with vanished phase-lag and its first, second, third, fourth and fifth derivatives for the numerical solution of the Schrödinger equation. J. Math. Chem. 53(8), 1915–1942 (2015)

    Article  CAS  Google Scholar 

  75. I. Alolyan, T.E. Simos, A high algebraic order predictor–corrector explicit method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 53(7), 1495–1522 (2015)

    Article  CAS  Google Scholar 

  76. K. Mu, T.E. Simos, A Runge–Kutta type implicit high algebraic order two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of coupled differential equations arising from the Schrödinger equation. J. Math. Chem. 53(5), 1239–1256 (2015)

    Article  CAS  Google Scholar 

  77. I. Alolyan, T.E. Simos, A predictor–corrector explicit four-step method with vanished phase-lag and its first, second and third derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(2), 685–717 (2015)

    Article  CAS  Google Scholar 

  78. I. Alolyan, T.E. Simos, A new eight algebraic order embedded explicit six-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the Schrödinger equation. J. Math. Chem. 54(8), 1696–1727 (2016)

    Article  CAS  Google Scholar 

  79. T.E. Simos, A new explicit four-step method with vanished phase-lag and its first and second derivatives. J. Math. Chem. 53(1), 402–429 (2015)

    Article  CAS  Google Scholar 

  80. G.A. Panopoulos, T.E. Simos, An eight-step semi-embedded predictor–corrector method for orbital problems and related IVPs with oscillatory solutions for which the frequency is unknown. J. Comput. Appl. Math. 290, 1–15 (2015)

    Article  Google Scholar 

  81. K. Tselios, T.E. Simos, Symplectic methods for the numerical solution of the radial Shrödinger equation. J. Math. Chem. 34(1–2), 83–94 (2003)

    Article  CAS  Google Scholar 

  82. K. Tselios, T.E. Simos, Symplectic methods of fifth order for the numerical solution of the radial Shrodinger equation. J. Math. Chem. 35(1), 55–63 (2004)

    Article  CAS  Google Scholar 

  83. T. Monovasilis, T.E. Simos, New second-order exponentially and trigonometrically fitted symplectic integrators for the numerical solution of the time-independent Schrödinger equation. J. Math. Chem. 42(3), 535–545 (2007)

    Article  CAS  Google Scholar 

  84. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 37(3), 263–270 (2005)

    Article  CAS  Google Scholar 

  85. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 40(3), 257–267 (2006)

    Article  CAS  Google Scholar 

  86. Z. Kalogiratou, T. Monovasilis, T.E. Simos, Symplectic integrators for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 83–92 (2003)

    Article  Google Scholar 

  87. T.E. Simos, Closed Newton–Cotes trigonometrically-fitted formulae of high-order for long-time integration of orbital problems. Appl. Math. Lett. 22(10), 1616–1621 (2009)

    Article  Google Scholar 

  88. Z. Kalogiratou, T.E. Simos, Newton–Cotes formulae for long-time integration. J. Comput. Appl. Math. 158(1), 75–82 (2003)

    Article  Google Scholar 

  89. T.E. Simos, High order closed Newton–Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Appl. Math. Comput. 209(1), 137–151 (2009)

    Google Scholar 

  90. T.E. Simos, Closed Newton–Cotes trigonometrically-fitted formulae for the solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 787–801 (2008)

    CAS  Google Scholar 

  91. T.E. Simos, Closed Newton–Cotes trigonometrically-fitted formulae of high order for the numerical integration of the Schrödinger equation. J. Math. Chem. 44(2), 483–499 (2008)

    Article  CAS  Google Scholar 

  92. T.E. Simos, High-order closed Newton–Cotes trigonometrically-fitted formulae for long-time integration of orbital problems. Comput. Phys. Commun. 178(3), 199–207 (2008)

    Article  CAS  Google Scholar 

  93. T.E. Simos, Closed Newton–Cotes trigonometrically-fitted formulae for numerical integration of the Schrödinger equation. Comput. Lett. 3(1), 45–57 (2007)

    Article  Google Scholar 

  94. T.E. Simos, Closed Newton–Cotes trigonometrically-fitted formulae for long-time integration of orbital problems. RevMexAA 42(2), 167–177 (2006)

    Google Scholar 

  95. T.E. Simos, Closed Newton–Cotes trigonometrically-fitted formulae for long-time integration. Int. J. Mod. Phys. C 14(8), 1061–1074 (2003)

    Article  Google Scholar 

  96. T.E. Simos, New closed Newton–Cotes type formulae as multilayer symplectic integrators. J. Chem. Phys. 133(10), Article Number: 104108 (2010)

  97. T.E. Simos, New stable Closed Newton–Cotes trigonometrically-fitted formulae for long-time integration. Abstr. Appl. Anal. Article Number: 182536 (2012). doi:10.1155/2012/182536

  98. T.E. Simos, High order closed Newton–Cotes exponentially and trigonometrically fitted formulae as multilayer symplectic integrators and their application to the radial Schrödinger equation. J. Math. Chem. 50(5), 1224–1261 (2012)

    Article  CAS  Google Scholar 

  99. T.E. Simos, Accurately closed Newton–Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Int. J. Modern Phys. C (2013). doi:10.1142/S0129183113500149

  100. T.E. Simos, New open modified Newton Cotes type formulae as multilayer symplectic integrators. Appl. Math. Model. 37(4), 1983–1991 (2013)

    Article  Google Scholar 

  101. G. Vanden Berghe, M. Van Daele, Exponentially fitted open Newton Cotes differential methods as multilayer symplectic integrators. J. Chem. Phys. 132, 204107 (2010)

    Article  CAS  Google Scholar 

  102. Z. Kalogiratou, T. Monovasilis, T.E. Simos, A fifth-order symplectic trigonometrically fitted partitioned Runge–Kutta method, in International Conference on Numerical Analysis and Applied Mathematics, SEP 16–20, 2007 Corfu, GREECE, Numerical Analysis and Applied Mathematics. AIP Conference Proceedings, vol. 936, pp. 313–317 (2007)

  103. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Families of third and fourth algebraic order trigonometrically fitted symplectic methods for the numerical integration of Hamiltonian systems. Comput. Phys. Commun. 177(10), 757–763 (2007)

    Article  CAS  Google Scholar 

  104. T. Monovasilis, T.E. Simos, Symplectic methods for the numerical integration of the Schrödinger equation. Comput. Mater. Sci. 38(3), 526–532 (2007)

    Article  CAS  Google Scholar 

  105. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Computation of the eigenvalues of the Schrödinger equation by symplectic and trigonometrically fitted symplectic partitioned Runge–Kutta methods. Phys. Lett. A 372(5), 569–573 (2008)

    Article  CAS  Google Scholar 

  106. Z. Kalogiratou, T. Monovasilis, T.E. Simos, New modified Runge–Kutta-Nyström methods for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 60(6), 1639–1647 (2010)

    Article  Google Scholar 

  107. T. Monovasilis, Z. Kalogiratou, T.E. Simos, A family of trigonometrically fitted partitioned Runge–Kutta symplectic methods. Appl. Math. Comput. 209(1), 91–96 (2009)

    Google Scholar 

  108. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Two new phase-fitted symplectic partitioned Runge–Kutta methods. Int. J. Mod. Phys. C 22(12), 1343–1355 (2011)

    Article  Google Scholar 

  109. K. Tselios, T.E. Simos, Optimized fifth order symplectic integrators for orbital problems. Rev. Mex. Astron. Astrofis. 49(1), 11–24 (2013)

    Google Scholar 

  110. Z. Kalogiratou, T. Monovasilis, H. Ramos, T.E. Simos, A new approach on the construction of trigonometrically fitted two-step hybrid methods. J. Comput. Appl. Math. 303, 146–155 (2016)

    Article  Google Scholar 

  111. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Symplectic partitioned Runge–Kutta methods with minimal phase-lag. Comput. Phys. Commun. 181(7), 1251–1254 (2010)

    Article  CAS  Google Scholar 

  112. L.G. Ixaru, M. Rizea, A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)

    Article  Google Scholar 

  113. A.D. Raptis, A.C. Allison, Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)

    Article  Google Scholar 

  114. J. Vigo-Aguiar, T.E. Simos, Family of twelve steps exponential fitting symmetric multistep methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 32(3), 257–270 (2002)

    Article  CAS  Google Scholar 

  115. G. Psihoyios, T.E. Simos, Trigonometrically fitted predictor–corrector methods for IVPs with oscillating solutions. J. Comput. Appl. Math. 158(1), 135–144 (2003)

    Article  Google Scholar 

  116. G. Psihoyios, T.E. Simos, A fourth algebraic order trigonometrically fitted predictor–corrector scheme for IVPs with oscillating solutions. J. Comput. Appl. Math. 175(1), 137–147 (2005)

    Article  Google Scholar 

  117. T.E. Simos, Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution. Appl. Math. Lett. 17(5), 601–607 (2004)

    Article  Google Scholar 

  118. T.E. Simos, Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation. Acta Appl. Math. 110(3), 1331–1352 (2010)

    Article  Google Scholar 

  119. G. Avdelas, E. Kefalidis, T.E. Simos, New P-stable eighth algebraic order exponentially-fitted methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 31(4), 371–404 (2002)

    Article  CAS  Google Scholar 

  120. T.E. Simos, A family of trigonometrically-fitted symmetric methods for the efficient solution of the Schrödinger equation and related problems. J. Math. Chem. 34(1–2), 39–58 (2003)

    Article  CAS  Google Scholar 

  121. T.E. Simos, Exponentially—fitted multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 36(1), 13–27 (2004)

    Article  CAS  Google Scholar 

  122. T.E. Simos, A four-step exponentially fitted method for the numerical solution of the Schrödinger equation. J. Math. Chem. 40(3), 305–318 (2006)

    Article  CAS  Google Scholar 

  123. H. Van de Vyver, A trigonometrically fitted explicit hybrid method for the numerical integration of orbital problems. Appl. Math. Comput. 189(1), 178–185 (2007)

    Google Scholar 

  124. T.E. Simos, A family of four-step trigonometrically-fitted methods and its application to the Schrodinger equation. J. Math. Chem. 44(2), 447–466 (2009)

    Article  CAS  Google Scholar 

  125. Z.A. Anastassi, T.E. Simos, A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem. 45(4), 1102–1129 (2009)

    Article  CAS  Google Scholar 

  126. G. Psihoyios, T.E. Simos, Sixth algebraic order trigonometrically fitted predictor–corrector methods for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 37(3), 295–316 (2005)

    Article  CAS  Google Scholar 

  127. G. Psihoyios, T.E. Simos, The numerical solution of the radial Schrödinger equation via a trigonometrically fitted family of seventh algebraic order predictor–corrector methods. J. Math. Chem. 40(3), 269–293 (2006)

    Article  CAS  Google Scholar 

  128. Z. Wang, P-stable linear symmetric multistep methods for periodic initial-value problems. Comput. Phys. Commun. 171(3), 162–174 (2005)

    Article  CAS  Google Scholar 

  129. T.E. Simos, A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical solution of the Schrödinger equation. J. Math. Chem. 27(4), 343–356 (2000)

    Article  CAS  Google Scholar 

  130. Z.A. Anastassi, T.E. Simos, A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem. 45(4), 1102–1129 (2009)

    Article  CAS  Google Scholar 

  131. C. Tang, W. Wang, H. Yan, Z. Chen, High-order predictor–corrector of exponential fitting for the N-body problems. J. Comput. Phys. 214(2), 505–520 (2006)

    Article  CAS  Google Scholar 

  132. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, Two optimized symmetric eight-step implicit methods for initial-value problems with oscillating solutions. J. Math. Chem. 46(2), 604–620 (2009)

    Article  CAS  Google Scholar 

  133. S. Stavroyiannis, T.E. Simos, Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs. Appl. Numer. Math. 59(10), 2467–2474 (2009)

    Article  Google Scholar 

  134. S. Stavroyiannis, T.E. Simos, A nonlinear explicit two-step fourth algebraic order method of order infinity for linear periodic initial value problems. Comput. Phys. Commun. 181(8), 1362–1368 (2010)

    Article  CAS  Google Scholar 

  135. Z.A. Anastassi, T.E. Simos, Numerical multistep methods for the efficient solution of quantum mechanics and related problems. Phys. Rep. 482, 1–240 (2009)

    Article  CAS  Google Scholar 

  136. R. Vujasin, M. Sencanski, J. Radic-Peric, M. Peric, A comparison of various variational approaches for solving the one-dimensional vibrational Schrödinger equation. MATCH Commun. Math. Comput. Chem. 63(2), 363–378 (2010)

    CAS  Google Scholar 

  137. T.E. Simos, P.S. Williams, On finite difference methods for the solution of the Schrödinger equation. Comput. Chem. 23, 513–554 (1999)

    Article  CAS  Google Scholar 

  138. L.G. Ixaru, M. Rizea, Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)

    Article  CAS  Google Scholar 

  139. J. Vigo-Aguiar, T.E. Simos, Review of multistep methods for the numerical solution of the radial Schrödinger equation. Int. J. Quantum Chem. 103(3), 278–290 (2005)

    Article  CAS  Google Scholar 

  140. T.E. Simos, G. Psihoyios, Special issue: The International Conference on Computational Methods in Sciences and Engineering 2004—Preface. J. Comput. Appl. Math. 191(2), 165–165 (2006)

  141. T.E. Simos, G. Psihoyios, Special issue–Selected Papers of the International Conference on Computational Methods in sciences and Engineering (ICCMSE 2003) Kastoria, Greece, 12–16 September 2003—Preface. J. Comput. Appl. Math. 175(1), 9 (2005)

  142. T.E. Simos, J. Vigo-Aguiar, Special Issue—Selected Papers from the Conference on Computational and Mathematical Methods for Science and Engineering (CMMSE-2002)—Alicante University, Spain, 20–25 September 2002—Preface. J. Comput. Appl. Math. 158(1), 9 (2003)

  143. T.E. Simos, C. Tsitouras, I. Gutman, Preface for the special issue numerical methods in chemistry. MATCH Commun. Math. Comput. Chem. 60(3), 695 (2008)

  144. T.E. Simos, I. Gutman, Papers presented on the International Conference on Computational Methods in Sciences and Engineering (Castoria, Greece, September 12–16, 2003). MATCH Commun. Math. Comput. Chem 53, A3–A4 (2005)

  145. J.R. Dormand, M.E.A. El-Mikkawy, P.J. Prince, Families of Runge–Kutta–Nyström formulae. IMA J. Numer. Anal. 7, 235–250 (1987)

    Article  Google Scholar 

  146. J.R. Dormand, P.J. Prince, A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  Google Scholar 

  147. J.M. Franco, M. Palacios, J. Comput. Appl. Math. 30, 1 (1990)

    Article  Google Scholar 

  148. J.D. Lambert, Numerical Methods for Ordinary Differential Systems, The Initial Value Problem (Wiley, New York, 1991)

    Google Scholar 

  149. E. Stiefel, D.G. Bettis, Stabilization of Cowell’s method. Numer. Math. 13, 154–175 (1969)

    Article  Google Scholar 

  150. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, Two new optimized eight-step symmetric methods for the efficient solution of the Schrödinger equation and related problems. MATCH Commun. Math. Comput. Chem. 60, 773–785 (2008)

    CAS  Google Scholar 

  151. T.E. Simos, P.S. Williams, Bessel and Neumann fitted methods for the numerical solution of the radial Schrödinger equation. Comput. Chem. 21, 175–179 (1977)

    Article  Google Scholar 

  152. T. Lyche, Chebyshevian multistep methods for ordinary differential eqations. Numer. Math. 19, 65–75 (1972)

    Article  Google Scholar 

  153. R.M. Thomas, Phase properties of high order almost P-stable formulae. BIT 24, 225–238 (1984)

    Article  Google Scholar 

  154. Z.A. Anastassi, T.E. Simos, A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems. J. Comput. Appl. Math. 236, 3880–3889 (2012)

    Article  Google Scholar 

  155. G.A. Panopoulos, T.E. Simos, A new optimized symmetric 8-step semi-embedded predictor–corrector method for the numerical solution of the radial Schrödinger equation and related orbital problems. J. Math. Chem. 51(7), 1914–1937 (2013)

    Article  CAS  Google Scholar 

  156. T.E. Simos, New high order multiderivative explicit four-step methods with vanished phase-lag and its derivatives for the approximate solution of the Schrödinger equation. Part I: Construction and theoretical analysis. J. Math. Chem. 51(1), 194–226 (2013)

    Article  CAS  Google Scholar 

  157. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Construction of exponentially fitted symplectic Runge–Kutta–Nyström methods from partitioned Runge–Kutta methods. Mediterr. J. Math. 13(4), 2271–2285 (2016)

    Article  Google Scholar 

  158. A. Konguetsof, T.E. Simos, An exponentially-fitted and trigonometrically-fitted method for the numerical solution of periodic initial-value problems. Comput. Math. Appl. 45(1-3), 547–554 Article Number: PII S0898-1221(02)00354-1 (2003)

  159. A. Konguetsof, A new two-step hybrid method for the numerical solution of the Schrödinger equation. J. Math. Chem. 47, 871–890 (2010)

    Article  CAS  Google Scholar 

  160. A. Konguetsof, Two-step high order hybrid explicit method for the numerical solution of the Schrödinger equation. J. Math. Chem. 48, 224–252 (2010)

    Article  CAS  Google Scholar 

  161. A. Konguetsof, A hybrid method with phase-lag and derivatives equal to zero for the numerical integration the Schrödinger equation. J. Math. Chem. 49, 1330–1356 (2011)

    Article  CAS  Google Scholar 

  162. A.D. Raptis, J.R. Cash, A variable step method for the numerical integration of the one-dimensional Schrödinger equation. Comput. Phys. Commun. 36, 113–119 (1985)

    Article  CAS  Google Scholar 

  163. A.C. Allison, The numerical solution of coupled differential equations arising from the Schrödinger equation. J. Comput. Phys. 6, 378–391 (1970)

    Article  Google Scholar 

  164. R.B. Bernstein, A. Dalgarno, H. Massey, I.C. Percival, Thermal scattering of atoms by homonuclear diatomic molecules. Proc. R. Soc. Ser. A 274, 427–442 (1963)

    Article  CAS  Google Scholar 

  165. R.B. Bernstein, Quantum mechanical (phase shift) analysis of differential elastic scattering of molecular beams. J. Chem. Phys. 33, 795–804 (1960)

    Article  CAS  Google Scholar 

  166. T.E. Simos, Exponentially fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation and related problems. Comput. Mater. Sci. 18, 315–332 (2000)

    Article  Google Scholar 

  167. Mu Kenan, T.E. Simos, A Runge–Kutta type implicit high algebraic order two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of coupled differential equations arising from the Schrödinger equation. J. Math. Chem. 53, 1239–1256 (2015)

    Article  CAS  Google Scholar 

  168. T.E. Simos, M. Liang, A new four stages symmetric two-step method with vanished phase-lag and its first derivative for the numerical integration of the Schrödinger equation. J. Math. Chem. 54(5), 1187–1211 (2016)

    Article  CAS  Google Scholar 

  169. X. Xi, T.E. Simos, A new high algebraic order four stages symmetric two-step method with vanished phase-lag and its first and second derivatives for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 54(7), 1417–1439 (2016)

    Article  CAS  Google Scholar 

  170. F. Hui, T.E. Simos, Hybrid high algebraic order two-step method with vanished phase-lag and its first and second derivatives. MATCH Commun. Math. Comput. Chem. 73, 619–648 (2015)

    Google Scholar 

  171. Z. Zhou, T.E. Simos, A new two stage symmetric two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 54, 442–465 (2016)

    Article  CAS  Google Scholar 

  172. F. Hui, T.E. Simos, Four stages symmetric two-step P-stable method with vanished phase-lag and its first, second, third and fourth derivatives. Appl. Comput. Math. 15(2), 220–238 (2016)

    Google Scholar 

  173. W. Zhang, T.E. Simos, A high-order two-step phase-fitted method for the numerical solution of the Schrödinger equation. Mediterr. J. Math. 13(6), 5177–5194 (2016)

    Article  Google Scholar 

  174. L. Zhang, T.E. Simos, An efficient numerical method for the solution of the Schrödinger equation. Adv. Math. Phys. Article ID 8181927, 20 pages (2016). doi:10.1155/2016/8181927

  175. H. Ning, T.E. Simos, A low computational cost eight algebraic order hybrid method with vanished phase-lag and its first, second, third and fourth derivatives for the approximate solution of the Schrödinger equation. J. Math. Chem. 53(6), 1295–1312 (2015)

    Article  CAS  Google Scholar 

  176. Z. Wang, T.E. Simos, An economical eighth-order method for the approximation of the solution of the Schrödinger equation. J. Math. Chem. 55, 717–733 (2017)

    Article  CAS  Google Scholar 

  177. L.G. Ixaru, M. Rizea, A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum ofenergies. Comput. Phys. Commun. 19, 23–27 (1980)

    Article  Google Scholar 

  178. L.G. Ixaru, Numerical Methods for Differential Equations and Applications (Reidel, Dordrecht, 1984)

    Google Scholar 

Download references

Acknowledgements

The author wishes to thank the anonymous referee and the Editor-in-Chief of the Journal for their careful reading of the manuscript and their fruitful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Konguetsof.

Appendix

Appendix

1.1 Proof for \(A_0\)

For \(b=3\) we obtain

$$\begin{aligned} A_{0_3}=-2+v^2-\frac{1}{12} v^4 +\frac{5}{6} a_3 v^6 +\frac{5}{3} a_3 a_2 v^8 + \frac{10}{3} a_3 a_2 a_1 v^{10} \end{aligned}$$
(73)

We assume that the formula is true for the value \(b=k\)

$$\begin{aligned} A_{0_k}=-2+v^2-\frac{1}{12} v^4 +\frac{5}{3} \displaystyle \sum _{q=3}^{k+2} \left( 2^{q-4} v^{2q} \displaystyle \prod _{i=k-q+3}^{k} a_i \right) \end{aligned}$$
(74)

For \(b=k+1\)

$$\begin{aligned} A_{0_{k+1}}&=-2+v^2-\frac{1}{12} v^4 +\frac{5}{3} \displaystyle \sum _{q=3}^{(k+1)+2} \left( 2^{q-4} v^{2q} \prod _{i=(k+1)-q+3}^{k+1} a_i \right) \nonumber \\&=-2+v^2-\frac{1}{12} v^4 +\frac{5}{3} \left( \displaystyle \sum _{q=3}^{k+2} \left( 2^{q-4} v^{2q} \displaystyle \prod _{i=k-q+4}^{k+1} a_i \right) +2^{k-1} v^{2(k+3)} \displaystyle \prod _{i=1}^{k+1} a_i \right) \end{aligned}$$
(75)

If \(A_{0_k}\) is written as follows

$$\begin{aligned} A_{0_k}=\Omega _0 +\frac{5}{3} \displaystyle \sum _{q=3}^{k+2} \left( \Omega _1 \displaystyle \prod _{i=k-q+3}^{k} a_i \right) \end{aligned}$$
(76)

then \(A_{0_{k+1}}\) is written in the following way

$$\begin{aligned} A_{0_{k+1}}= & {} \Omega _0 +\frac{5}{3} \left( \sum _{q=3}^{k+2} \left( \Omega _1 a_{k+1} \prod _{i=k-q+4}^{k} a_i \right) + \Omega _2 a_1 a_2 \ldots a_{k+1} \right) , \nonumber \\= & {} \Omega _0 +\frac{5}{3} \left( a_{k+1} \sum _{q=3}^{k+2} \left( \Omega _1 \prod _{i=k-q+4}^{k} a_i \right) + \Omega _2 \Theta \right) \end{aligned}$$
(77)

where \(\Omega _0(v)=-2+v^2-\frac{1}{12} v^4 \), \(\Omega _1(q)=2^{q-4} v^{2q}\), \(\Omega _2(k+3)= 2^{k-1} v^{2(k+3)}\) and \(\Theta = a_1 a_2\ldots a_{k+1}\). When the meter in \(\prod _{i=k-q+4}^{k} a_i \) decreases then the value of product is equal to 1.

We easily notice that

$$\begin{aligned} A_{0_{k+1}}=A_{0_k}+ (a_{k+1}-1) \Psi _1 +\Psi _2, \end{aligned}$$
(78)

where \(\Psi _1=\frac{5}{3} \sum _{q=3}^{k+2} \left( \Omega _1 \prod _{i=k-q+3}^{k} a_i \right) \) and \(\Psi _2=\Omega _2 \times \Theta \)

1.2 Proof for the formula of the free parameters \(a_i\)

For \(b=5\) and \(i=5 \Rightarrow a_5=-\frac{1}{480}\), which is true.

We assume that the formula is true for \(i=k\)

$$\begin{aligned} a_{b-k}=- \frac{1}{364+4 \displaystyle \sum \nolimits _{j=3}^{k-2} (17+4j)} \end{aligned}$$
(79)

We will prove the formula for \(i=k+1\)

$$\begin{aligned} a_{b-k-1}= & {} - \frac{1}{364+4 \displaystyle \sum \nolimits _{j=3}^{k+1-2} (17+4j)} \nonumber \\= & {} - \frac{1}{364+4 \displaystyle \sum \nolimits _{j=3}^{k-1} (17+4j)} \nonumber \\= & {} - \frac{1}{364+4 \displaystyle \sum \nolimits _{j=3}^{k-2} \left[ 17+4j \right] +4(17+4(k-1))} \nonumber \\\end{aligned}$$
(80)
$$\begin{aligned} aden_{b-(k+1)}-aden_{b-k}= & {} 4(17+4(k-1)), \end{aligned}$$
(81)
$$\begin{aligned} \frac{1}{aden_{b-(k+1)}}= & {} \frac{1}{aden_{b-k}+4(17+4(k-1))} \end{aligned}$$
(82)

with \(aden_i\) being the denominator of the free parameter \(a_i\). Everytime we add the quantity \(17+4(k-1)\) to the denominator of a parameter \(a_i\) we obtain the denominator of the next parameter.

1.3 Proof for the local truncation error

For \(b=2\) we obtain

$$\begin{aligned} LTE_3=\frac{1}{239{,}500{,}800} q^{(12)}(t), \end{aligned}$$
(83)

which is true.

For \(b=k-1\) we assume the formula is

$$\begin{aligned} LTE_k=\frac{q^{(2k+6)}(t)}{239{,}500{,}800 \displaystyle \prod \nolimits _{j=3}^{k-1} \left[ 182 + 58 (j-3) + 4 (j-3) (j-4) \right] } \end{aligned}$$
(84)

In order to prove the formula for \(b=k\)

$$\begin{aligned} LTE_{k+1}= & {} \frac{q^{(2k+8)}(t)}{239{,}500{,}800 \displaystyle \prod \nolimits _{j=3}^{k} \left[ 182 + 58 (j-3) + 4 (j-3) (j-4) \right] }\nonumber \\\Leftrightarrow & {} LTE_{k+1}=\frac{q^{(2k+8)}(t)}{den_{k+1}} \Leftrightarrow LTE_{k+1}=\frac{q^{(2k+8)}(t)}{den_{k} \times Z(k)}, \end{aligned}$$
(85)

where \(den_i\) is the denominator in \(LTE_{i}\) and \(Z(k)=2(91+29(k-3)+2(k-3)(k-4))\), we will differentiate twice and divide by Z(k)

$$\begin{aligned} (LTE_k)''= & {} \frac{1}{Z(k)} \left( \frac{q^{(2k+6)}(t)}{den_k} \right) ''\nonumber \\\Rightarrow & {} \frac{q^{(2k+8)}(t)}{A ( 182 + 58 (k-3) + 4 (k-3) (k-4) ) \displaystyle \prod \nolimits _{j=3}^{k-1} \left[ 182 + 58 (j-3) + 4 (j-3) (j-4) \right] } \nonumber \\= & {} \frac{q^{(2k+8)}(t)}{A \displaystyle \prod _{j=3}^{k} \left[ 182 + 58 (j-3) + 4 (j-3) (j-4) \right] }, A=23{,}9500{,}800 \end{aligned}$$
(86)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konguetsof, A. A generator of families of two-step numerical methods with free parameters and minimal phase-lag. J Math Chem 55, 1808–1832 (2017). https://doi.org/10.1007/s10910-017-0762-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-017-0762-8

Keywords

Navigation