Skip to main content
Log in

A hybrid method with phase-lag and derivatives equal to zero for the numerical integration of the Schrödinger equation

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A family of hybrid methods with algebraic order eight is proposed, with phase-lag and its first four derivatives eliminated. We investigate the behavior of the new algorithm and the property of the local truncation error and a comparison with other methods leads to conclusions and remarks about its accuracy and stability. The newly created method, as well as another Numerov-type methods, are applied to the resonance problem of the radial Schrödinger equation. The eigenenergies approximations, which are obtained prove the superiority of the new two-step method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LTE:

Local Truncation Error

References

  1. Capper S.D., Moore D.R.: On high order MIRK schemes and Hermite-Birkhoff interpolants. JNAIAM J. Numer. Anal. Ind. Appl. Math. 1(1), 27–47 (2006)

    Google Scholar 

  2. Cash J.R., Girdlestone S.: Variable step Runge–Kutta–Nyström methods for the numerical solution of reversible systems. JNAIAM J. Numer. Anal. Ind. Appl. Math. 1(1), 59–80 (2006)

    Google Scholar 

  3. Calvo M., Montijano J.I., Laburta M.P., Rández L.: On the long time error of first integrals for some RK numerical integrators. JNAIAM J. Numer. Anal. Ind. Appl. Math. 4, 77–86 (2009)

    Google Scholar 

  4. Simos T.E.: A fourth algebraic order exponentially-fitted Runge–Kutta method for the numerical solution of the Schrödinger equation. IMA J. Numer. Anal. 21(4), 919–931 (2001)

    Article  Google Scholar 

  5. Simos T.E.: Exponentially-fitted Runge–Kutta–Nyström method for the numerical solution of initial-value problems with oscillating solutions. Appl. Math. Lett. 15(2), 217–225 (2002)

    Article  Google Scholar 

  6. Kalogiratou Z., Simos T.E.: Construction of trigonometrically and exponentially fitted Runge– Kutta–Nyström methods for the numerical solution of the Schrödinger equation and related problems a method of 8th algebraic order. J. Math. Chem. 31(2), 211–232 (2002)

    Article  CAS  Google Scholar 

  7. Anastassi Z.A., Simos T.E.: Trigonometrically fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 281–293 (2005)

    Article  CAS  Google Scholar 

  8. Kalogiratou Z., Monovasilis T., Simos T.E.: New modified Runge–Kutta–Nyström methods for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 60(6), 1639–1647 (2010)

    Article  Google Scholar 

  9. Kalogiratou Z., Monovasilis T., Simos T.E.: Computation of the eigenvalues of the Schrödinger equation by exponentially-fitted Runge–Kutta–Nyström methods. Comput. Phys. Commun. 180(2), 167–176 (2009)

    Article  CAS  Google Scholar 

  10. Monovasilis T., Kalogiratou Z., Simos T.E.: A family of trigonometrically fitted partitioned Runge–Kutta symplectic methods. Appl. Math. Comput. 209(1), 91–96 (2009)

    Article  Google Scholar 

  11. Anastassi Z.A., Simos T.E.: A family of exponentially-fitted Runge–Kutta methods with exponential order up to three for the numerical solution of the Schrödinger equation. J. Math. Chem. 41(1), 79–100 (2007)

    Article  CAS  Google Scholar 

  12. Simos T.E., Dimas E., Sideridis A.B.: A Runge–Kutta–Nyström method for the numerical-integration of special 2nd-order periodic initial-value problems. J. Comput. Appl. Math. 51(3), 317–326 (1994)

    Article  Google Scholar 

  13. Tselios K., Simos T.E.: Runge–Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. J. Comput. Appl. Math. 175(1), 173–181 (2005)

    Article  Google Scholar 

  14. Anastassi Z.A., Simos T.E.: An optimized Runge–Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175(1), 1–9 (2005)

    Article  Google Scholar 

  15. Sideridis A.B., Simos T.E.: A low-order embedded Runge–Kutta Method for periodic initial-value problems. J. Comput. Appl. Math. 44(2), 235–244 (1992)

    Article  Google Scholar 

  16. Simos T.E.: A Runge–Kutta Fehlberg method with phase-lag of order infinity for initial value problems with oscillating solution. Comput. Math. Appl. 25, 95–101 (1993)

    Article  Google Scholar 

  17. Simos T.E.: Runge–Kutta interpolants with minimal phase-lag. Comput. Math. Appl. 26, 43–49 (1993)

    Article  Google Scholar 

  18. Simos T.E.: Runge–Kutta–Nyström interpolants for the numerical integration of special second-order periodic initial-value problems. Comput. Math. Appl. 26, 7–15 (1993)

    Article  Google Scholar 

  19. Simos T.E.: A high-order predictor-corrector method for periodic IVPs. Appl. Math. Lett. 6(5), 9–12 (1993)

    Article  Google Scholar 

  20. Simos T.E.: An explicit high-order predictor-corrector method for periodic initial-value problems. Math. Models Methods Appl. Sci. 5(2), 159–166 (1995)

    Article  Google Scholar 

  21. Avdelas G., Simos T.E.: Block Runge–Kutta methods for periodic initial-value problems. Comput. Math. Appl. 31, 69–83 (1996)

    Article  Google Scholar 

  22. Avdelas G., Simos T.E.: Embedded methods for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 31, 85–102 (1996)

    Article  Google Scholar 

  23. Simos T.E.: A modified Runge–Kutta method for the numerical solution of ODE’s with oscillation solutions. Appl. Math. Lett. 9(6), 61–66 (1996)

    Article  Google Scholar 

  24. Simos T.E.: Some embedded modified Runge–Kutta methods for the numerical solution of some specific Schrödinger equations. J. Math. Chem. 24(1–3), 23–37 (1998)

    Article  CAS  Google Scholar 

  25. Simos T.E., Vigo-Aguiar J.: A modified phase-fitted Runge–Kutta method for the numerical solution of the Schrödinger equation. J. Math. Chem. 30(1), 121–131 (2001)

    Article  CAS  Google Scholar 

  26. Simos T.E., Williams P.S.: A new Runge–Kutta–Nyström method with phase-Lag of order infinity for the numerical solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 45, 123–137 (2002)

    CAS  Google Scholar 

  27. Tsitouras Ch., Simos T.E.: Optimized Runge–Kutta pairs for problems with oscillating solutions. J. Comput. Appl. Math. 147(2), 397–409 (2002)

    Article  Google Scholar 

  28. Tselios K., Simos T.E.: Optimized Runge–Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. Phys. Lett. A 363(1–2), 38–47 (2007)

    Article  CAS  Google Scholar 

  29. Kosti A.A., Anastassi Z.A., Simos T.E.: An optimized explicit Runge–Kutta method with increased phase-lag order for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 47(1), 315–330 (2010)

    Article  CAS  Google Scholar 

  30. Papadopoulos D.F., Anastassi Z.A., Simos T.E.: A modified phase-fitted and amplification-fitted Runge–Kutta–Nyström method for the numerical solution of the radial Schrödinger equation. J. Mol. Model. 16(8), 1339–1346 (2010)

    Article  CAS  Google Scholar 

  31. Triantafyllidis T.V., Anastassi Z.A., Simos T.E.: Two optimized Runge–Kutta methods for the solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 753–771 (2008)

    CAS  Google Scholar 

  32. Papadopoulos D.F., Anastassi Z.A., Simos T.E.: An optimized Runge–Kutta–Nyström method for the numerical solution of the Schrödinger equation and related problems. MATCH Commun. Math. Comput. Chem. 64(2), 551–566 (2010)

    Google Scholar 

  33. Papadopoulos D.F., Anastassi Z.A., Simos T.E.: A phase-fitted Runge–Kutta–Nyström method for the numerical solution of initial value problems with oscillating solutions. Comput. Phys. Commun. 180(10), 1839–1846 (2009)

    Article  CAS  Google Scholar 

  34. Lambert J.D., Watson I.A.: Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  Google Scholar 

  35. Ixaru L.Gr., Rizea M.: A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum ofenergies. Comput. Phys. Commun. 19, 23–27 (1980)

    Article  Google Scholar 

  36. Chawla M.M.: Uncoditionally stable Noumerov-type methods for second order differential equations. BIT 23, 541–542 (1983)

    Article  Google Scholar 

  37. Mazzia F.: A. Sestini, D. Trigiante, BS linear multistep methods on non-uniform meshes. JNAIAM J. Numer. Anal. Ind. Appl. Math. 1(1), 131–144 (2006)

    Google Scholar 

  38. Psihoyios G.: A block implicit advanced step-point (BIAS) algorithm for stiff differential systems. Comput. Lett. 2(1–2), 51–58 (2006)

    Article  Google Scholar 

  39. Aceto L., Pandolfi R., Trigiante D.: Stability analysis of linear multistep methods via polynomial type variation. JNAIAM J. Numer. Anal. Ind. Appl. Math. 2(1–2), 1–9 (2007)

    Google Scholar 

  40. Hill A.T.: Linear multistep approximation of nonsymmetric rotating systems. JNAIAM J. Numer. Anal. Ind. Appl. Math. 4, 103–112 (2009)

    Google Scholar 

  41. Alolyan I., Simos T.E.: High algebraic order methods with vanished phase-lag and its first derivative for the numerical solution of the Schrödinger equation. J. Math. Chem. 48(4), 925–958 (2010)

    Article  CAS  Google Scholar 

  42. Panopoulos G.A., Anastassi Z.A., Simos T.E.: Two optimized symmetric eight-step implicit methods for initial-value problems with oscillating solutions. J. Math. Chem. 46(2), 604–620 (2009)

    Article  CAS  Google Scholar 

  43. Alolyan I., Simos T.E.: Multistep methods with vanished phase-lag and its first and second derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 48(4), 1092–1143 (2010)

    Article  CAS  Google Scholar 

  44. Panopoulos G.A., Anastassi Z.A., Simos T.E.: Two new optimized eight-step symmetric methods for the efficient solution of the Schrödinger equation and related problems. MATCH Commun. Math. Comput. Chem. 60(3), 773–785 (2008)

    CAS  Google Scholar 

  45. I. Alolyan, T.E. Simos, A family of eight-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. (to appear).

  46. Raptis A.D., Allison A.C.: Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)

    Article  Google Scholar 

  47. Ixaru L.Gr., Rizea M.: Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)

    Article  CAS  Google Scholar 

  48. Raptis A.D.: On the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 24, 1–4 (1981)

    Article  Google Scholar 

  49. Raptis A.D.: Two-step methods for the numerical solution of the Schrödinger equation. Computing 28, 373–378 (1982)

    Article  Google Scholar 

  50. Raptis A.D.: Exponentially-fitted solutions of the eigenvalue Shrödinger equation with automatic error control. Comput. Phys. Commun. 28, 427–431 (1983)

    Article  Google Scholar 

  51. Simos T.E.: A 4-step method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 30(3), 251–255 (1990)

    Article  Google Scholar 

  52. Simos T.E.: Some new 4-step exponential-fitting methods for the numerical solution of the radial Schrödinger equation. IMA J. Numer. Anal. 11(3), 347–356 (1991)

    Article  Google Scholar 

  53. Simos T.E., Mitsou G.V.: A family of four-step exponential fitted methods for the numerical integration of the radial Schrödinger equation. Comput. Math. Appl. 28, 41–50 (1994)

    Article  Google Scholar 

  54. Simos T.E.: A family of P-stable exponentially-fitted methods forthe numerical solution of the Schrödinger equation. J. Math. Chem. 25(1), 65–84 (1999)

    Article  CAS  Google Scholar 

  55. Simos T.E.: An exponentially fitted eighth-order method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 108(1–2), 177–194 (1999)

    Article  Google Scholar 

  56. Kalogiratou Z., Simos T.E.: A P-stable exponentially-fitted method for the numerical integration of the Schrödinger equation. Appl. Math. Comput. 112, 99–112 (2000)

    Article  Google Scholar 

  57. Konguetsof A., Simos T.E.: On the Construction of exponentially-fitted methods for the numerical solution of the Schrödinger equation. J. Comput. Methods Sci. Eng. 1, 143–165 (2001)

    Google Scholar 

  58. Vigo-Aguiar J., Simos T.E.: A family of P-stable eighth algebraic order methods with exponential fitting facilities. J. Math. Chem. 29(3), 177–189 (2001)

    Article  Google Scholar 

  59. Vigo-Aguiar J., Simos T.E.: Family of twelve steps exponential fitting symmetric multistep methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 32(3), 257–270 (2002)

    Article  CAS  Google Scholar 

  60. Avdelas G., Kefalidis E., Simos T.E.: New P-stable eighth algebraic order exponentially-fitted methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 31(4), 371–404 (2002)

    Article  CAS  Google Scholar 

  61. Simos T.E.: A family of trigonometrically-fitted symmetric methods for the efficient solution of the Schrödinger equation and related problems. J. Math. Chem. 34(1–2), 39–58 (2003)

    Article  CAS  Google Scholar 

  62. Konguetsof A., Simos T.E.: An exponentially-fitted and trigonometrically-fitted method for the numerical solution of periodic initial-value problems. Comput. Math. Appl. 45, 547–554 (2003)

    Article  Google Scholar 

  63. Simos T.E.: Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution. Appl. Math. Lett. 17(5), 601–607 (2004)

    Article  Google Scholar 

  64. Simos T.E.: Exponentially—fitted multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 36(1), 13–27 (2004)

    Article  CAS  Google Scholar 

  65. Monovasilis T., Kalogiratou Z., Simos T.E.: Exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 37(3), 263–270 (2005)

    Article  CAS  Google Scholar 

  66. Simos T.E.: P-stable four-step exponentially-fitted method for the numerical integration of the Schrödinger equation. Comput. Lett. 1(1), 37–45 (2005)

    Article  Google Scholar 

  67. Sakas D.P., Simos T.E.: Trigonometrically-fitted multiderivative methods for the numerical solution of the radial Schrödinger equation. MATCH Commun. Math. Comput. Chem. 53(2), 299–320 (2005)

    CAS  Google Scholar 

  68. Wang Z.: P-stable linear symmetric multistep methods for periodic initial-value problems. Comput. Phys. Commun. 171, 162–174 (2005)

    Article  CAS  Google Scholar 

  69. Monovasilis T., Kalogiratou Z., Simos T.E.: Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 40(3), 257–267 (2006)

    Article  CAS  Google Scholar 

  70. Simos T.E.: A four-step exponentially fitted method for the numerical solution of the Schrödinger equation. J. Math. Chem. 40(3), 305–318 (2006)

    Article  CAS  Google Scholar 

  71. Vanden Berghe G., Van Daele M.: Exponentially-fitted Stormer/Verlet methods. JNAIAM J. Numer. Anal. Ind. Appl. Math. 1(3), 241–255 (2006)

    Google Scholar 

  72. Simos T.E.: Stabilization of a four-step exponentially-fitted method and its application to the Schrödinger equation. Int. J. Modern Phys. C 18(3), 315–328 (2007)

    Article  Google Scholar 

  73. Monovasilis T., Simos T.E.: New second-order exponentially and trigonometrically fitted symplectic integrators for the numerical solution of the time-independent Schrödinger equation. J. Math. Chem. 42(3), 535–545 (2007)

    Article  CAS  Google Scholar 

  74. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae of high order for the numerical integration of the Schrödinger equation. J. Math. Chem. 44(2), 483–499 (2008)

    Article  CAS  Google Scholar 

  75. Simos T.E.: A family of four-step trigonometrically-fitted methods and its application to the Schrödinger equation. J. Math. Chem. 44(2), 447–466 (2009)

    Article  CAS  Google Scholar 

  76. Simos T.E.: Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation. Acta Appl. Math. 110(3), 1331–1352 (2010)

    Article  Google Scholar 

  77. Simos T.E.: P-stability, trigonometric-fitting and the numerical solution of the radial Schrödinger equation. Comput. Phys. Commun. 180(7), 1072–1085 (2009)

    Article  CAS  Google Scholar 

  78. Anastassi Z.A., Simos T.E.: New trigonometrically fitted six-step symmetric methods for the efficient solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 733–752 (2008)

    CAS  Google Scholar 

  79. Anastassi Z.A., Simos T.E.: A six-step P-stable trigonometrically-fitted method for the numerical integration of the radial Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 803–830 (2008)

    CAS  Google Scholar 

  80. Anastassi Z.A., Simos T.E.: A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem. 45(4), 1102–1129 (2009)

    Article  CAS  Google Scholar 

  81. Simos T.E.: Explicit 2-step methods with minimal phase-lag for the numerical integration of special 2nd-order initial value problems and their application to the one-dimensional Schrödinger equation. J. Comput. Appl. Math. 39(1), 89–94 (1992)

    Article  Google Scholar 

  82. Avdelas G., Simos T.E.: A generator of high-order embedded P-stable methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 72(2), 345–358 (1996)

    Article  Google Scholar 

  83. Simos T.E., Williams P.S.: A finite-difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79(2), 189–205 (1997)

    Article  Google Scholar 

  84. Simos T.E.: An accurate finite difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 91(1), 47–61 (1998)

    Article  Google Scholar 

  85. Simos T.E.: A new hybrid imbedded variable-step procedure for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 36, 51–63 (1998)

    Article  Google Scholar 

  86. Avdelas G., Konguetsof A., Simos T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 1. Development of the basic method. J. Math. Chem. 29(4), 281–291 (2001)

    Article  CAS  Google Scholar 

  87. Avdelas G., Konguetsof A., Simos T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 2. Development of the generator; optimization of the generator and numerical results. J. Math. Chem. 29(4), 293–305 (2001)

    Article  CAS  Google Scholar 

  88. Cash J.R., Mazzia F.: Hybrid mesh selection algorithms based on conditioning for two-point boundary value problems. JNAIAM J. Numer. Anal. Ind. Appl. Math. 1(1), 81–90 (2006)

    Google Scholar 

  89. Simos T.E.: A family of 4-step exponentially fitted Predictor-Corrector methods for the numerical integration of the Schrödinger equation. J. Comput. Appl. Math. 58(3), 337–344 (1995)

    Article  Google Scholar 

  90. Thomas R.M., Simos T.E., Mitsou G.V.: A family of Numerov-type exponentially fitted predictor-corrector methods for the numerical integration of the radial Schrödinger equation. J. Comput. Appl. Math. 67(2), 255–270 (1996)

    Article  Google Scholar 

  91. Thomas R.M., Simos T.E.: A family of hybrid exponentially fitted predictor-corrector methods for the numerical integration of the radial Schrödinger equation. J. Comput. Appl. Math. 87(2), 215–226 (1997)

    Article  Google Scholar 

  92. Psihoyios G., Simos T.E.: Trigonometrically fitted predictor-corrector methods for IVPs with oscillating solutions. J. Comput. Appl. Math. 158(1), 135–144 (2003)

    Article  Google Scholar 

  93. Psihoyios G., Simos T.E.: Sixth algebraic order trigonometrically fitted predictor-corrector methods for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 37(3), 295–316 (2005)

    Article  CAS  Google Scholar 

  94. Psihoyios G., Simos T.E.: A fourth algebraic order trigonometrically fitted predictor-corrector scheme for IVPs with oscillating solutions. J. Comput. Appl. Math. 175(1), 137–147 (2005)

    Article  Google Scholar 

  95. Psihoyios G., Simos T.E.: A family of fifth algebraic order trigonometrically fitted P-C schemes for the numerical solution of the radial Schrödinger equation. MATCH Commun. Math. Comput. Chem. 53(2), 321–344 (2005)

    CAS  Google Scholar 

  96. Psihoyios G., Simos T.E.: The numerical solution of the radial Schrödinger equation via a trigonometrically fitted family of seventh algebraic order Predictor-Corrector methods. J. Math. Chem. 40(3), 269–293 (2006)

    Article  CAS  Google Scholar 

  97. Raptis A.D., Simos T.E.: A 4-step phase-fitted method for the numerical integration of 2nd-order initialvalue problems. BIT 31(1), 160–168 (1991)

    Article  Google Scholar 

  98. Simos T.E.: A Numerov-type method for the numerical solution of the radial Schröding er-equation. Appl. Numer. Math. 7(2), 201–206 (1991)

    Article  Google Scholar 

  99. Simos T.E.: Two-step almost P-stable complete in phase methods for the numerical integration of second order periodic initial-value problems. Inter. J. Comput. Math. 46, 77–85 (1992)

    Article  Google Scholar 

  100. Simos T.E.: A new variable step method for the numerical integration of special 2nd order initial value problems and their application to the one dimensional Schrödinger equation. Appl. Math. Lett. 6(3), 67–73 (1993)

    Article  Google Scholar 

  101. Simos T.E.: Eighth order methods with minimal phase-lag for accurate computations for the elastic scattering phase-shift problem. J. Math. Chem. 21(4), 359–372 (1997)

    Article  CAS  Google Scholar 

  102. Simos T.E., Mousadis G.: A two-step method for the numerical solution of the radial Schrödinger equation. Comput. Math. Appl. 29, 31–37 (1995)

    Article  Google Scholar 

  103. Simos T.E.: An extended Numerov-type method for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 33, 67–78 (1997)

    Article  Google Scholar 

  104. Simos T.E., Famelis I.T., Tsitouras Ch.: Zero dissipative, explicit Numerov-type methods for second order IVPs with oscillating solutions. Numer. Algorithms 34(1), 27–40 (2003)

    Article  Google Scholar 

  105. Konguetsof A.: A new two-step hybrid method for the numerical solution of the Schrödinger equation. J. Math. Chem. 47(2), 871–890 (2010)

    Article  CAS  Google Scholar 

  106. Konguetsof A.: Two-step high order hybrid explicit method for the numerical solution of the Schrödinger equation. J. Math. Chem. 48, 224–252 (2010)

    Article  CAS  Google Scholar 

  107. Simos T.E.: A new Numerov-type method for the numerical solution of the Schrödinger equation. J. Math. Chem. 46(3), 981–1007 (2009)

    Article  CAS  Google Scholar 

  108. Kalogiratou Z., Simos T.E.: Newton-Cotes formulae for long-time integration. J. Comput. Appl. Math. 158(1), 75–82 (2003)

    Article  Google Scholar 

  109. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae for long-time integration. Int. J. Modern Phys. C 14(8), 1061–1074 (2003)

    Article  Google Scholar 

  110. Kalogiratou Z., Monovasilis T., Simos T.E.: Symplectic integrators for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 83–92 (2003)

    Article  Google Scholar 

  111. Tselios K., Simos T.E.: Symplectic methods for the numerical solution of the radial Shrödinger equation. J. Math. Chem. 34(1–2), 83–94 (2003)

    Article  CAS  Google Scholar 

  112. Tselios K., Simos T.E.: Symplectic methods of fifth order for the numerical solution of the radial Shrödinger equation. J. Math. Chem 35(1), 55–63 (2004)

    Article  CAS  Google Scholar 

  113. Simos T.E.: Multiderivative methods for the numerical solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 45, 7–26 (2004)

    Google Scholar 

  114. Kalogiratou Z., Simos T.E.: Newton-Cotes formulae for long-time integration. J. Comput. Appl. Math. 158(1), 75–82 (2003)

    Article  Google Scholar 

  115. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae of high order for long-time integration of orbital problems. Appl. Math. Lett. 22(10), 1616–1621 (2009)

    Article  Google Scholar 

  116. Simos T.E.: High order closed Newton-Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Appl. Math. Comput. 209(1), 137–151 (2009)

    Article  Google Scholar 

  117. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae for the solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 787–801 (2008)

    CAS  Google Scholar 

  118. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae of high order for the numerical integration of the Schrödinger equation. J. Math. Chem. 44(2), 483–499 (2008)

    Article  CAS  Google Scholar 

  119. Simos T.E.: High-order closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital problems. Comput. Phys. Commun. 178(3), 199–207 (2008)

    Article  CAS  Google Scholar 

  120. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae for numerical integration of the Schrödinger equation. Comput. Lett. 3(1), 45–57 (2007)

    Article  Google Scholar 

  121. T.E. Simos, New closed Newton-Cotes type formulae as multilayer symplectic integrators. J. Chem. Phys. 133(10): Art. No. 104108 (2010)

    Google Scholar 

  122. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital problems. Revista Mexicana de Astronomia y Astrofysica 42(2), 167–177 (2006)

    Google Scholar 

  123. Monovasilis T., Kalogiratou Z., Simos T.E.: Families of third and fourth algebraic order trigonometrically fitted symplectic methods for the numerical integration of Hamiltonian systems. Comput. Phys. Commun. 177(10), 757–763 (2007)

    Article  CAS  Google Scholar 

  124. Monovasilis T., Kalogiratou Z., Simos T.E.: Computation of the eigenvalues of the Schrödinger equation by symplectic and trigonometrically fitted symplectic partitioned Runge–Kutta methods. Phys. Lett. A 372(5), 569–573 (2008)

    Article  CAS  Google Scholar 

  125. Kalogiratou Z., Monovasilis T., Simos T.E.: Symplectic partitioned Runge–Kutta methods with minimal phase-lag. Comput. Phys. Commun. 181(7), 1251–1254 (2010)

    Article  CAS  Google Scholar 

  126. Simos T.E., Williams P.S.: On finite difference methods for the solution of the Schrödinger equation. Comput. Chem. 23, 513–554 (1999)

    Article  CAS  Google Scholar 

  127. Anastassi Z.A., Simos T.E.: Numerical multistep methods for the efficient solution of quantum mechanics and related problems. Phys. Rep. Rev. Sect. Phys. Lett. 482, 1–240 (2009)

    Google Scholar 

  128. Simos T.E.: A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical solution of the Schrödinger equation. J. Math. Chem. 27(4), 343–356 (2000)

    Article  CAS  Google Scholar 

  129. Simos T.E.: Bessel and Neumann fitted methods for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 42, 833–847 (2001)

    Article  Google Scholar 

  130. Simos T.E., Raptis A.D.: A 4th-order Bessel fitting method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 43(3), 313–322 (1992)

    Article  Google Scholar 

  131. Kalogiratou Z., Monovasilis T., Simos T.E.: Numerical solution of the two-dimensional time independent Schrödinger equation with Numerov-type methods. J. Math. Chem. 37(3), 271–279 (2005)

    Article  CAS  Google Scholar 

  132. Stavroyiannis S., Simos T.E.: Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs. Appl. Numer. Math. 59(10), 2467–2474 (2009)

    Article  Google Scholar 

  133. Stavroyiannis S., Simos T.E.: A nonlinear explicit two-step fourth algebraic order method of order infinity for linear periodic initial value problems. Comput. Phys. Commun. 181(8), 1362–1368 (2010)

    Article  CAS  Google Scholar 

  134. Simos T.E., Zdetsis A.D., Psihoyios G., Anastassi Z.A.: Special issue on mathematical chemistry based on papers presented within ICCMSE 2005 preface. J. Math. Chem. 46(3), 727–728 (2009)

    Article  CAS  Google Scholar 

  135. Simos T.E., Psihoyios G.: Special issue: the International Conference on Computational Methods in Sciences and Engineering 2004—Preface. J. Comput. Appl. 191(2), 165–165 (2006)

    Article  Google Scholar 

  136. Simos T.E., Psihoyios G.: Special issue—selected papers of the International Conference on Computational Methods in Sciences and Engineering (ICCMSE 2003) Kastoria, Greece, 12–16 September 2003—Preface. J. Comput. Appl. Math. 175(1), IX–IX (2005)

    Article  Google Scholar 

  137. Simos T.E., Psihoyios G., Anastassi Z.: Preface, Proceedings of the International Conference of Computational Methods in Sciences and Engineering 2005. Math. Comput. Model. 51(3–4), 137 (2010)

    Article  Google Scholar 

  138. Gurlebeck K., Simos T.: Special issue: approximation, stability and error analysis—Preface. Math. Methods Appl. Sci. 30(14), 1609–1610 (2007)

    Article  Google Scholar 

  139. Simos T.E., Vigo-Aguiar J.: Special issue—selected papers from the Conference on Computational and Mathematical Methods for Science and Engineering (CMMSE-2002)—Alicante University, Spain, 20–25 September 2002—Preface. J. Comput. Appl. Math. 158(1), IX–IX (2003)

    Article  Google Scholar 

  140. Papageorgiou C.D., Raptis A.D., Simos T.E.: A method for computing phase-shifts for scattering. J. Comput. Appl. Math. 29(1), 61–67 (1990)

    Article  Google Scholar 

  141. Simos T.E., Williams P.S.: Bessel and Neumann fitted methods for the numerical solution of the radial Schrödinger equation. Comput. Chem. 21, 175–179 (1997)

    Article  CAS  Google Scholar 

  142. Amodio P., Gladwell I., Romanazzi G.: Numerical solution of general bordered ABD linear systems by cyclic reduction. JNAIAM J. Numer. Anal. Ind. Appl. Math. 1(1), 5–12 (2006)

    Google Scholar 

  143. Cash J.R., Sumarti N., Abdulla T.J., Vieira I.: The derivation of interpolants for nonlinear two-point boundary value problems. JNAIAM J. Numer. Anal. Ind. Appl. Math. 1(1), 49–58 (2006)

    Google Scholar 

  144. Shampine L.F., Muir P.H., Xu H.: A user-friendly Fortran BVP solver. JNAIAM J. Numer. Anal. Ind. Appl. Math. 1(2), 201–217 (2006)

    Google Scholar 

  145. Kierzenka J., Shampine L.F.: A BVP solver that controls residual and error. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 27–41 (2008)

    Google Scholar 

  146. Aceto L., Ghelardoni P., Magherini C.: BVMs for Sturm-Liouville eigenvalue estimates with general boundary conditions. JNAIAM J. Numer. Anal. Ind. Appl. Math. 4, 113–127 (2009)

    Google Scholar 

  147. Cash J., Kitzhofer G., Koch O., Moore G., Weinmller E.: Numerical solution of singular two point BVPs. JNAIAM J. Numer. Anal. Ind. Appl. Math. 4, 129–149 (2009)

    Google Scholar 

  148. Iavernaro F., Mazzia F., Trigiante D.: Stability and conditioning in numerical analysis. JNAIAM J. Numer. Anal. Ind. Appl. Math. 1(1), 91–112 (2006)

    Google Scholar 

  149. Butcher J.C.: Forty-five years of A-stability. JNAIAM J. Numer. Anal. Ind. Appl. Math. 4, 1–9 (2009)

    Google Scholar 

  150. Brugnano L., Magherini C.: Blended general linear methods based on boundary value methods in the generalized BDF family. JNAIAM J. Numer. Anal. Ind. Appl. Math. 4, 23–40 (2009)

    Google Scholar 

  151. Iavernaro F., Trigiante D.: Discrete conservative vector fields induced by the trapezoidal method. JNAIAM J. Numer. Anal. Ind. Appl. Math. 1(1), 113–130 (2006)

    Google Scholar 

  152. Capper S.D., Cash J.R., Moore D.R.: Lobatto-Obrechkoff formulae for 2nd order two-point boundary value problems. JNAIAM J. Numer. Anal. Ind. Appl. Math. 1(1), 13–25 (2006)

    Google Scholar 

  153. Iavernaro F., Trigiante D.: High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems. JNAIAM J. Numer. Anal. Ind. Appl. Math. 4, 87–101 (2009)

    Google Scholar 

  154. Corless R.M., Shakoori A., Aruliah D.A., Gonzalez-Vega L.: Barycentric Hermite interpolants for event location in initial-value problems. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 1–16 (2008)

    Google Scholar 

  155. Nedialkov N.S., Pryce J.D.: Solving differential algebraic equations by Taylor series (III): the DAETS Code. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 61–80 (2008)

    Google Scholar 

  156. Corwin S.P., Thompson S., White S.M.: Solving ODEs and DDEs with impulses. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 139–149 (2008)

    Google Scholar 

  157. Fichtner A., Igel H., Bunge H.-P., Kennett B.L.N.: Simulation and inversion of seismic wave propagation on continental scales based on a spectral-element method. JNAIAM J. Numer. Anal. Ind. Appl. Math. 4, 11–22 (2009)

    Google Scholar 

  158. Burrage K., Jackiewicz Z., Welfert B.D.: Spectral approximation of time windows in the solution of dissipative linear differential equations. JNAIAM J. Numer. Anal. Ind. Appl. Math. 4, 41–64 (2009)

    Google Scholar 

  159. Amodio P., Settanni G.: Variable step/order generalized upwind methods for the numerical solution of second order singular perturbation problems. JNAIAM J. Numer. Anal. Ind. Appl. Math. 4, 65–76 (2009)

    Google Scholar 

  160. Enright W.H.: On the use of ‘arc length’ and ‘defect’ for mesh selection for differential equations. Comput. Lett. 1(2), 47–52 (2005)

    Article  Google Scholar 

  161. Weckesser W.: VFGEN: a code generation tool. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 151–165 (2008)

    Google Scholar 

  162. Dewar M.: Embedding a general-purpose numerical library in an interactive environment. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 17–26 (2008)

    Google Scholar 

  163. Knapp R.: A method of lines framework in Mathematica. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 43–59 (2008)

    Google Scholar 

  164. Lipsman R.L., Osborn J.E., Rosenberg J.M.: The SCHOL Project at the University of Maryland: using mathematical software in the teaching of sophomore differential equations. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 81–103 (2008)

    Google Scholar 

  165. Sofroniou M., Spaletta G.: Extrapolation methods in Mathematica. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 105–121 (2008)

    Google Scholar 

  166. Spiteri R.J., Ter T.-P.: pythNon: a PSE for the numerical solution of nonlinear algebraic equations. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 123–137 (2008)

    Google Scholar 

  167. Wittkopf A.: Automatic code generation and optimization in Maple. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 167–180 (2008)

    Google Scholar 

  168. Henrici P.: Discrete Variable Methods in Ordinary Diferential Equations. Wiley, NewYork, USA (1962)

    Google Scholar 

  169. Ixaru L.Gr.: Numerical Methods for Differential Equations and Applications. Reidel, Dordrecht, Boston, Lancaster (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Konguetsof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konguetsof, A. A hybrid method with phase-lag and derivatives equal to zero for the numerical integration of the Schrödinger equation. J Math Chem 49, 1330–1356 (2011). https://doi.org/10.1007/s10910-011-9824-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-011-9824-5

Keywords

Navigation