Skip to main content
Log in

Two-step high order hybrid explicit method for the numerical solution of the Schrödinger equation

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper we present a new method for the numerical solution of the time-independent Schrödinger equation for one spatial dimension and related problems. A technique, based on the phase-lag and its derivatives, is used, in order to calculate the parameters of the new Numerov-type algorithm. We study the relation of the local truncation error with the energy of the model of the radial Schrödinger equation and via this investigation we examine how accurate is the new method compared with other well known numerical methods in the literature. We present also the stability analysis of the new method and the relation of the interval of periodicity with the frequency of the test problem and the frequency of the new developed method. We illustrate the accuracy and computational efficiency of the new developed method via numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LTE:

Local Truncation Error

References

  1. Ixaru L.G., Micu M.: Topics in Theoretical Physics. Central Institute of Physics, Bucharest (1978)

    Google Scholar 

  2. Landau L.D., Lifshitz F.M.: Quantum Mechanics. Pergamon, New York (1965)

    Google Scholar 

  3. Prigogine I., Rice S. (eds), Advances in Chemical Physics Vol. 93: New Methods in Computational Quantum Mechanics. Wiley, New York (1997)

    Google Scholar 

  4. Herzberg G.: Spectra of Diatomic Molecules. Van Nostrand, Toronto (1950)

    Google Scholar 

  5. T.E. Simos, in Atomic Structure Computations in Chemical Modelling: Applications and Theory, ed. by A. Hinchliffe (UMIST). (The Royal Society of Chemistry, Cambridge, UK, 2000), pp. 38–142

  6. Simos T.E.: Numerical methods for 1D, 2D and 3D differential equations arising in chemical problems, chemical modelling: application and theory. R. Soc. Chem. 2, 170–270 (2002)

    CAS  Google Scholar 

  7. T.E. Simos: Numerical solution of ordinary differential equations with periodical solution. Doctoral Dissertation, National Technical University of Athens, Greece, 1990 (in Greek)

  8. Ixaru L.G.: Numerical Methods for Differential Equations and Applications. Reidel, Dordrecht (1984)

    Google Scholar 

  9. Simos T.E., Williams P.S.: On finite difference methods for the solution of the Schrödinger equation. Comput. Chem. 23, 513–554 (1999)

    Article  CAS  Google Scholar 

  10. Lambert J.D., Watson I.A.: Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  Google Scholar 

  11. Chawla M.M.: Uncoditionally stable Noumerov-type methods for second order differential equations. BIT 23, 541–542 (1983)

    Article  Google Scholar 

  12. Chawla M.M., Rao P.S.: A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems. J. Comput. Appl. Math. 11(3), 277–281 (1984)

    Article  Google Scholar 

  13. Konguetsof A., Simos T.E.: On the Construction of exponentially-fitted methods for the numerical solution of the Schrödinger equation. J. Comput. Methods Sci. Eng. 1, 143–165 (2001)

    Google Scholar 

  14. Raptis A.D., Allison A.C.: Exponential—fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)

    Article  Google Scholar 

  15. Raptis A.D.: Exponentially-fitted solutions of the eigenvalue Shrödinger equation with automatic error control. Comput. Phys. Commun. 28, 427–431 (1983)

    Article  Google Scholar 

  16. Raptis A.D.: On the numerical solution of the Schrodinger equation. Comput. Phys. Commun. 24, 1–4 (1981)

    Article  Google Scholar 

  17. Ixaru L.G., Rizea M.: A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)

    Article  Google Scholar 

  18. Ixaru L.G., Rizea M.: Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)

    Article  CAS  Google Scholar 

  19. Simos T.E., Williams P.S.: A new Runge-Kutta-Nystrom method with phase-lag of order infinity for the numerical solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 45, 123–137 (2002)

    CAS  Google Scholar 

  20. Simos T.E.: Multiderivative methods for the numerical solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 45, 7–26 (2004)

    Google Scholar 

  21. Kalogiratou Z., Simos T.E.: A P-stable exponentially-fitted method for the numerical integration of the Schrödinger equation. Appl. Math. Comput. 112, 99–112 (2000)

    Article  Google Scholar 

  22. Raptis A.D., Simos T.E.: A four-step phase-fitted method for the numerical integration of second order initial-value problem. BIT 31, 160–168 (1991)

    Article  Google Scholar 

  23. Anastassi Z.A., Simos T.E.: A family of exponentially-fitted Runge-Kutta methods with exponential order up to three for the numerical solution of the Schrödinger equation. J. Math. Chem. 41(1), 79–100 (2007)

    Article  CAS  Google Scholar 

  24. Monovasilis T., Kalogiratou Z., Simos T.E.: Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 40(3), 257–267 (2006)

    Article  CAS  Google Scholar 

  25. Psihoyios G., Simos T.E.: The numerical solution of the radial Schrödinger equation via a trigonometrically fitted family of seventh algebraic order predictor–corrector methods. J. Math. Chem. 40(3), 269–293 (2006)

    Article  CAS  Google Scholar 

  26. Simos T.E.: A four-step exponentially fitted method for the numerical solution of the Schrödinger equation. J. Math. Chem. 40(3), 305–318 (2006)

    Article  CAS  Google Scholar 

  27. Monovasilis T., Kalogiratou Z., Simos T.E.: Exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 37(3), 263–270 (2005)

    Article  CAS  Google Scholar 

  28. Kalogiratou Z., Monovasilis T., Simos T.E.: Numerical solution of the two-dimensional time independent Schrödinger equation with Numerov-type methods. J. Math. Chem. 37(3), 271–279 (2005)

    Article  CAS  Google Scholar 

  29. Anastassi Z.A., Simos T.E.: Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 281–293 (2005)

    Article  CAS  Google Scholar 

  30. Psihoyios G., Simos T.E.: Sixth algebraic order trigonometrically fitted predictor–corrector methods for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 37(3), 295–316 (2005)

    Article  CAS  Google Scholar 

  31. Sakas D.P., Simos T.E.: A family of multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 317–331 (2005)

    Article  CAS  Google Scholar 

  32. Simos T.E.: Exponentially—fitted multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 36(1), 13–27 (2004)

    Article  CAS  Google Scholar 

  33. Tselios K., Simos T.E.: Symplectic methods of fifth order for the numerical solution of the radial Shrodinger equation. J. Math. Chem. 35(1), 55–63 (2004)

    Article  CAS  Google Scholar 

  34. Simos T.E.: A family of trigonometrically-fitted symmetric methods for the efficient solution of the Schrödinger equation and related problems. J. Math. Chem. 34(1–2), 39–58 (2003)

    Article  CAS  Google Scholar 

  35. Tselios K., Simos T.E.: Symplectic methods for the numerical solution of the radial Shrödinger equation. J. Math. Chem. 34(1–2), 83–94 (2003)

    Article  CAS  Google Scholar 

  36. Vigo-Aguiar J., Simos T.E.: Family of twelve steps exponential fitting symmetric multistep methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 32(3), 257–270 (2002)

    Article  CAS  Google Scholar 

  37. Raptis A.D.: Exponential multistep methods for ordinary differential equations. Bull. Greek Math. Soc. 25, 113–126 (1984)

    Google Scholar 

  38. Ixaru L.G., Berghe G.V.: Exponential Fitting, Series on Mathematics and its Applications. Kluwer, The Netherlands (2004)

    Google Scholar 

  39. Avdelas G., Kefalidis E., Simos T.E.: New P-stable eighth algebraic order exponentially-fitted methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 31(4), 371–404 (2002)

    Article  CAS  Google Scholar 

  40. Simos T.E., Vigo-Aguiar J.: Symmetric eighth algebraic order methods with minimal phase-lag for the numerical solution of the Schrödinger equation. J. Math. Chem. 31(2), 135–144 (2002)

    Article  CAS  Google Scholar 

  41. Kalogiratou Z., Simos T.E.: Construction of trigonometrically and exponentially fitted Runge- Kutta-Nystrom methods for the numerical solution of the Schrödinger equation and related problems a method of 8th algebraic order. J. Math. Chem. 31(2), 211–232 (2002)

    Article  CAS  Google Scholar 

  42. Simos T.E., Vigo-Aguiar J.: A modified phase-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. J. Math. Chem. 30(1), 121–131 (2001)

    Article  CAS  Google Scholar 

  43. Avdelas G., Konguetsof A., Simos T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 1. Development of the basic method. J. Math. Chem. 29(4), 281–291 (2001)

    Article  CAS  Google Scholar 

  44. Avdelas G., Konguetsof A., Simos T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 2. Development of the generator; optimization of the generator and numerical results. J. Math. Chem. 29(4), 293–305 (2001)

    Article  CAS  Google Scholar 

  45. Vigo-Aguiar J., Simos T.E.: A family of P-stable eighth algebraic order methods with exponential fitting facilities. J. Math. Chem. 29(3), 177–189 (2001)

    Article  Google Scholar 

  46. Simos T.E.: A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical solution of the Schrödinger equation. J. Math. Chem. 27(4), 343–356 (2000)

    Article  CAS  Google Scholar 

  47. Avdelas G., Simos T.E.: Embedded eighth order methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 26(4), 327–341 (1999)

    Article  Google Scholar 

  48. Simos T.E.: A family of P-stable exponentially-fitted methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 25(1), 65–84 (1999)

    Article  CAS  Google Scholar 

  49. Simos T.E.: Some embedded modified Runge-Kutta methods for the numerical solution of some specific Schrödinger equations. J. Math. Chem. 24(1–3), 23–37 (1998)

    Article  CAS  Google Scholar 

  50. Simos T.E.: Eighth order methods with minimal phase-lag for accurate computations for the elastic scattering phase-shift problem. J. Math. Chem. 21(4), 359–372 (1997)

    Article  CAS  Google Scholar 

  51. Panopoulos G.A., Anastassi Z.A., Simos T.E.: Two optimized symmetric eight-step implicit methods for initial-value problems with oscillating solutions. J. Math. Chem. 46(2), 604–620 (2009)

    Article  CAS  Google Scholar 

  52. Anastassi Z.A., Simos T.E.: A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem. 45(4), 1102–1129 (2009)

    Article  CAS  Google Scholar 

  53. Simos T.E.: A family of four-step trigonometrically-fitted methods and its application to the schrodinger equation. J. Math. Chem. 44(2), 447–466 (2009)

    Article  CAS  Google Scholar 

  54. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae of high order for the numerical integration of the Schrödinger equation. J. Math. Chem. 44(2), 483–499 (2008)

    Article  CAS  Google Scholar 

  55. Monovasilis T., Simos T.E.: New second-order exponentially and trigonometrically fitted symplectic integrators for the numerical solution of the time-independent Schrödinger equation. J. Math. Chem. 42(3), 535–545 (2007)

    Article  CAS  Google Scholar 

  56. Anastassi Z.A., Simos T.E.: New trigonometrically fitted six-step symmetric methods for the efficient solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 733–752 (2008)

    CAS  Google Scholar 

  57. Triantafyllidis T.V., Anastassi Z.A., Simos T.E.: Two optimized Runge-Kutta methods for the solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 753–771 (2008)

    CAS  Google Scholar 

  58. Panopoulos G.A., Anastassi Z.A., Simos T.E.: Two new optimized eight-step symmetric methods for the efficient solution of the Schrödinger equation and related problems. MATCH Commun. Math. Comput. Chem. 60(3), 773–785 (2008)

    CAS  Google Scholar 

  59. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae for the solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 787–801 (2008)

    CAS  Google Scholar 

  60. Anastassi Z.A., Simos T.E.: A six-step P-stable trigonometrically-fitted method for the numerical integration of the radial Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 803–830 (2008)

    CAS  Google Scholar 

  61. Sakas D.P., Simos T.E.: Trigonometrically-fitted multiderivative methods for the numerical solution of the radial Schrödinger equation. MATCH Commun. Math. Comput. Chem. 53(2), 299–320 (2005)

    CAS  Google Scholar 

  62. Psihoyios G., Simos T.E.: A family of fifth algebraic order trigonometrically fitted P–C schemes for the numerical solution of the radial Schrödinger equation. MATCH Commun. Math. Comput. Chem. 53(2), 321–344 (2005)

    CAS  Google Scholar 

  63. Amodio P., Gladwell I., Romanazzi G.: Numerical solution of general bordered ABD linear systems by cyclic reduction. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(1), 5–12 (2006)

    Google Scholar 

  64. Capper S.D., Cash J.R., Moore D.R.: Lobatto-Obrechkoff formulae for 2nd order two-point boundary value problems. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(1), 13–25 (2006)

    Google Scholar 

  65. Capper S.D., Moore D.R.: On high order MIRK schemes and Hermite-Birkhoff interpolants. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(1), 27–47 (2006)

    Google Scholar 

  66. Cash J.R., Sumarti N., Abdulla T.J., Vieira I.: The derivation of interpolants for nonlinear two-point boundary value problems. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(1), 49–58 (2006)

    Google Scholar 

  67. Cash J.R., Girdlestone S.: Variable step Runge-Kutta-Nystrom methods for the numerical solution of reversible systems. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(1), 59–80 (2006)

    Google Scholar 

  68. Cash J.R., Mazzia F.: Hybrid mesh selection algorithms based on conditioning for two-point boundary value problems. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(1), 81–90 (2006)

    Google Scholar 

  69. Iavernaro F., Mazzia F., Trigiante D.: Stability and conditioning in numerical analysis. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(1), 91–112 (2006)

    Google Scholar 

  70. Iavernaro F., Trigiante D.: Discrete conservative vector fields induced by the trapezoidal method. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(1), 113–130 (2006)

    Google Scholar 

  71. Mazzia F., Sestini A., Trigiante D.: BS linear multistep methods on non-uniform meshes. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(1), 131–144 (2006)

    Google Scholar 

  72. Shampine L.F., Muir P.H., Xu H.: A user-friendly fortran BVP solver. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(2), 201–217 (2006)

    Google Scholar 

  73. Berghe G.V., Van Daele M.: Exponentially—fitted Stormer/Verlet methods. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(3), 241–255 (2006)

    Google Scholar 

  74. Aceto L., Pandolfi R., Trigiante D.: Stability analysis of linear multistep methods via polynomial type variation. JNAIAM J. Numer. Anal. Indust. Appl. Math. 2(1–2), 1–9 (2007)

    Google Scholar 

  75. Corless R.M., Shakoori A., Aruliah D.A., Gonzalez-Vega L.: Barycentric hermite interpolants for event location in initial-value problems. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 1–16 (2008)

    Google Scholar 

  76. Dewar M.: Embedding a general-purpose numerical library in an interactive environment. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 17–26 (2008)

    Google Scholar 

  77. Kierzenka J., Shampine L.F.: A BVP solver that controls residual and error. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 27–41 (2008)

    Google Scholar 

  78. Knapp R.: A method of lines framework in mathematica. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 43–59 (2008)

    Google Scholar 

  79. Nedialkov N.S., Pryce J.D.: Solving differential algebraic equations by Taylor series (III): the DAETS Code. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 61–80 (2008)

    Google Scholar 

  80. Lipsman R.L., Osborn J.E., Rosenberg J.M.: The SCHOL project at the university of Maryland: using mathematical software in the teaching of Sophomore differential equations. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 81–103 (2008)

    Google Scholar 

  81. Sofroniou M., Spaletta G.: Extrapolation methods in mathematica. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 105–121 (2008)

    Google Scholar 

  82. Spiteri R.J., Ter T.P.: pythNon: A PSE for the numerical solution of nonlinear algebraic equations. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 123–137 (2008)

    Google Scholar 

  83. Corwin S.P., Thompson S., White S.M.: Solving ODEs and DDEs with impulses. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 139–149 (2008)

    Google Scholar 

  84. Weckesser W.: VFGEN: a code generation tool. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 151–165 (2008)

    Google Scholar 

  85. Wittkopf A.: Automatic code generation and optimization in maple. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 167–180 (2008)

    Google Scholar 

  86. Butcher J.C.: Forty-five years of a-stability. JNAIAM J. Numer. Anal. Indust. Appl. Math. 4, 1–9 (2009)

    Google Scholar 

  87. Fichtner A., Igel H., Bunge H.P., Kennett B.L.N.: Simulation and inversion of seismic wave propagation on continental scales based on a spectral-element method. JNAIAM J. Numer. Anal. Indust. Appl. Math. 4, 11–22 (2009)

    Google Scholar 

  88. Brugnano L., Magherini C.: Blended general linear methods based on boundary value methods in the generalized BDF family. JNAIAM J. Numer. Anal. Indust. Appl. Math. 4, 23–40 (2009)

    Google Scholar 

  89. Burrage K., Jackiewicz Z., Welfert B.D.: Spectral approximation of time windows in the solution of dissipative linear differential equations. JNAIAM J. Numer. Anal. Indust. Appl. Math. 4, 41–64 (2009)

    Google Scholar 

  90. Amodio P., Settanni G.: Variable step/order generalized upwind methods for the numerical solution of second order singular perturbation problems. JNAIAM J. Numer. Anal. Indust. Appl. Math. 4, 65–76 (2009)

    Google Scholar 

  91. Calvo M., Montijano J.I., Laburta M.P., Rández L.: On the long time error of first integrals for Some RK numerical integrators. JNAIAM J. Numer. Anal. Indust. Appl. Math. 4, 77–86 (2009)

    Google Scholar 

  92. Iavernaro F., Trigiante D.: High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems. JNAIAM J. Numer. Anal. Indust. Appl. Math. 4, 87–101 (2009)

    Google Scholar 

  93. Hill A.T.: Linear multistep approximation of nonsymmetric rotating systems. JNAIAM J. Numer. Anal. Indust. Appl. Math. 4, 103–112 (2009)

    Google Scholar 

  94. Aceto L., Ghelardoni P., Magherini C.: BVMs for Sturm-Liouville eigenvalue estimates with general boundary conditions. JNAIAM J. Numer. Anal. Indust. Appl. Math. 4, 113–127 (2009)

    Google Scholar 

  95. Cash J., Kitzhofer G., Koch O., Moore G., Weinmller E.: Numerical solution of singular two point BVPs. JNAIAM J. Numer. Anal. Indust. Appl. Math. 4, 129–149 (2009)

    Google Scholar 

  96. Psihoyios G.: A block implicit advanced step-point (BIAS) algorithm for Stiff differential systems. Comput. Lett. 2(1–2), 51–58 (2006)

    Article  Google Scholar 

  97. Enright W.H.: On the use of ‘arc length’ and ‘defect’ for mesh selection for differential equations. Comput. Lett. 1(2), 47–52 (2005)

    Article  Google Scholar 

  98. Simos T.E.: P-stable four-step exponentially-fitted method for the numerical integration of the Schrödinger equation. Comput. Lett. 1(1), 37–45 (2005)

    Article  Google Scholar 

  99. Simos T.E.: Stabilization of a four-step exponentially-fitted method and its application to the Schrödinger equation. Int. J. Mod. Phys. C. 18(3), 315–328 (2007)

    Article  Google Scholar 

  100. Wang Z.: P-stable linear symmetric multistep methods for periodic initial-value problems. Comput. Phys. Commun. 171, 162–174 (2005)

    Article  CAS  Google Scholar 

  101. Simos T.E.: A Runge-Kutta Fehlberg method with phase-lag of order infinity for initial value problems with oscillating solution. Comput. Math. Appl. 25, 95–101 (1993)

    Article  Google Scholar 

  102. Simos T.E.: Runge-Kutta interpolants with minimal phase-lag. Comput. Math. Appl. 26, 43–49 (1993)

    Article  Google Scholar 

  103. Simos T.E.: Runge-Kutta-Nyström interpolants for the numerical integration of special second-order periodic initial-value problems. Comput. Math. Appl. 26, 7–15 (1993)

    Article  Google Scholar 

  104. Simos T.E., Mitsou G.V.: A family of four-step exponential fitted methods for the numerical integration of the radial Schrödinger equation. Comput. Math. Appl. 28, 41–50 (1994)

    Article  Google Scholar 

  105. Simos T.E., Mousadis G.: A two-step method for the numerical solution of the radial Schrodinger equation. Comput. Math. Appl. 29, 31–37 (1995)

    Article  Google Scholar 

  106. Avdelas G., Simos T.E.: Block Runge-Kutta methods for periodic initial-value problems. Comput. Math. Appl. 31, 69–83 (1996)

    Article  Google Scholar 

  107. Avdelas G., Simos T.E.: Embedded methods for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 31, 85–102 (1996)

    Article  Google Scholar 

  108. Papakaliatakis G., Simos T.E.: A new method for the numerical solution of fourth order BVPs with oscillating solutions. Comput. Math. Appl. 32, 1–6 (1996)

    Article  Google Scholar 

  109. Simos T.E.: An extended Numerov-type method for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 33, 67–78 (1997)

    Article  Google Scholar 

  110. Simos T.E.: A new hybrid imbedded variable-step procedure for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 36, 51–63 (1998)

    Article  Google Scholar 

  111. Simos T.E.: Bessel and Neumann fitted methods for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 42, 833–847 (2001)

    Article  Google Scholar 

  112. Konguetsof A., Simos T.E.: An exponentially-fitted and trigonometrically-fitted method for the numerical solution of periodic initial-value problems. Comput. Math. Appl. 45, 547–554 (2003)

    Article  Google Scholar 

  113. Anastassi Z.A., Simos T.E.: An optimized Runge-Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175(1), 1–9 (2005)

    Article  Google Scholar 

  114. Psihoyios G., Simos T.E.: A fourth algebraic order trigonometrically fitted predictor–corrector scheme for IVPs with oscillating solutions. J. Comput. Appl. Math. 175(1), 137–147 (2005)

    Article  Google Scholar 

  115. Sakas D.P., Simos T.E.: Multiderivative methods of eighth algrebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation. J. Comput. Appl. Math. 175(1), 161–172 (2005)

    Article  Google Scholar 

  116. Tselios K., Simos T.E.: Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. J. Comput. Appl. Math. 175(1), 173–181 (2005)

    Article  Google Scholar 

  117. Kalogiratou Z., Simos T.E.: Newton-Cotes formulae for long-time integration. J. Comput. Appl. Math. 158(1), 75–82 (2003)

    Article  Google Scholar 

  118. Kalogiratou Z., Monovasilis T., Simos T.E.: Symplectic integrators for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 83–92 (2003)

    Article  Google Scholar 

  119. Konguetsof A., Simos T.E.: A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 93–106 (2003)

    Article  Google Scholar 

  120. Psihoyios G., Simos T.E.: Trigonometrically fitted predictor–corrector methods for IVPs with oscillating solutions. J. Comput. Appl. Math. 158(1), 135–144 (2003)

    Article  Google Scholar 

  121. Tsitouras Ch., Simos T.E.: Optimized Runge-Kutta pairs for problems with oscillating solutions. J. Comput. Appl. Math. 147(2), 397–409 (2002)

    Article  Google Scholar 

  122. Simos T.E.: An exponentially fitted eighth-order method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 108(1–2), 177–194 (1999)

    Article  Google Scholar 

  123. Simos T.E.: An accurate finite difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 91(1), 47–61 (1998)

    Article  Google Scholar 

  124. Thomas R.M., Simos T.E.: A family of hybrid exponentially fitted predictor–corrector methods for the numerical integration of the radial Schrödinger equation. J. Comput. Appl. Math. 87(2), 215–226 (1997)

    Article  Google Scholar 

  125. Simos T.E., Williams P.S.: A finite-difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79(2), 189–205 (1997)

    Article  Google Scholar 

  126. Avdelas G., Simos T.E.: A generator of high-order embedded P-stable methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 72(2), 345–358 (1996)

    Article  Google Scholar 

  127. Thomas R.M., Simos T.E., Mitsou G.V.: A family of Numerov-type exponentially fitted predictor–corrector methods for the numerical integration of the radial Schrödinger equation. J. Comput. Appl. Math. 67(2), 255–270 (1996)

    Article  Google Scholar 

  128. Simos T.E.: A family of 4-step exponentially fitted pedictor-corrector methods for the numerical-integration of The Schrödinger-equation. J. Comput. Appl. Math. 58(3), 337–344 (1995)

    Article  Google Scholar 

  129. Simos T.E.: An explicit 4-step phase-fitted method for the numerical-integration of 2nd-order initial-value problems. J. Comput. Appl. Math. 55(2), 125–133 (1994)

    Article  Google Scholar 

  130. Simos T.E., Dimas E., Sideridis A.B.: A Runge-Kutta-Nyström method for the numerical-integration of special 2nd-order periodic initial-value problems. J. Comput. Appl. Math. 51(3), 317–326 (1994)

    Article  Google Scholar 

  131. Sideridis A.B., Simos T.E.: A low-order embedded Runge-Kutta method for periodic initial-value problems. J. Comput. Appl. Math. 44(2), 235–244 (1992)

    Article  Google Scholar 

  132. Simos T.E., Raptis A.D.: A 4th-order Bessel fitting method for the numerical-solution of the SchrÖdinger-equation. J. Comput. Appl. Math. 43(3), 313–322 (1992)

    Article  Google Scholar 

  133. Simos T.E.: Explicit 2-step methods with minimal phase-lag for the numerical-integration of special 2nd-order initial-value problems and their application to the one-dimensional Schrödinger-equation. J. Comput. Appl. Math. 39(1), 89–94 (1992)

    Article  Google Scholar 

  134. Simos T.E.: A 4-step method for the numerical-solution of the Schrödinger-equation. J. Comput. Appl. Math. 30(3), 251–255 (1990)

    Article  Google Scholar 

  135. Papageorgiou C.D., Raptis A.D., Simos T.E.: A method for computing phase-shifts for scattering. J. Comput. Appl. Math. 29(1), 61–67 (1990)

    Article  Google Scholar 

  136. Raptis A.D.: Two-step methods for the numerical solution of the Schrödinger equation. Computing 28, 373–378 (1982)

    Article  Google Scholar 

  137. Simos T.E.: Two-step almost P-stable complete in phase methods for the numerical integration of second order periodic initial-value problems. Int. J. Comput. Math. 46, 77–85 (1992)

    Article  Google Scholar 

  138. Simos T.E.: Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution. Appl. Math. Lett. 17(5), 601–607 (2004)

    Article  Google Scholar 

  139. Simos T.E.: Exponentially-fitted Runge-Kutta-Nyström method for the numerical solution of initial-value problems with oscillating solutions. Appl. Math. Lett. 15(2), 217–225 (2002)

    Article  Google Scholar 

  140. Simos T.E.: A modified Runge-Kutta method for the numerical solution of ODE’s with oscillation solutions. Appl. Math. Lett. 9(6), 61–66 (1996)

    Article  Google Scholar 

  141. SIMOS T.E.: A High-order predictor–corrector method for periodic IVPs. Appl. Math. Lett. 6(5), 9–12 (1993)

    Article  Google Scholar 

  142. SIMOS T.E.: A new variable-step method for the numerical-integration of special 2Nd-order initial-value problems and their application to the one-dimensional SchrÖdinger-equation. Appl. Math. Lett. 6(3), 67–73 (1993)

    Article  Google Scholar 

  143. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae of high order for long-time integration of orbital problems. Appl. Math. Lett. 22(10), 1616–1621 (2009)

    Article  Google Scholar 

  144. Papadopoulos D.F., Anastassi Z.A., Simos T.E.: A phase-fitted Runge-Kutta-Nystrom method for the numerical solution of initial value problems with oscillating solutions. Comput. Phys. Commun. 180(10), 1839–1846 (2009)

    Article  CAS  Google Scholar 

  145. Simos T.E., Zdetsis A.D., Psihoyios G., Anastassi Z.A.: Special issue on mathematical chemistry based on papers presented within ICCMSE 2005 preface. J. Math. Chem. 46(3), 727–728 (2009)

    Article  CAS  Google Scholar 

  146. Simos T.E.: A new Numerov-type method for the numerical solution of the Schrödinger equation. J. Math. Chem. 46(3), 981–1007 (2009)

    Article  CAS  Google Scholar 

  147. Anastassi Z.A., Simos T.E.: Numerical multistep methods for the efficient solution of quantum mechanics and related problems. Phys. Rep.-Rev Section Phys. Lett. 482, 1–240 (2009)

    Google Scholar 

  148. T.E. Simos, Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation, Acta. Appl. Math., (in press)

  149. Stavroyiannis S., Simos T.E.: Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs. Appl. Numer. Math. 59(10), 2467–2474 (2009)

    Article  Google Scholar 

  150. Simos T.E.: A Numerov-type method for the numerical-solution of the radial Schrödinger-equation. Appl. Numer. Math. 7(2), 201–206 (1991)

    Article  Google Scholar 

  151. Raptis A.D., Simos T.E.: A 4-step phase-fitted method for the numerical-integration of 2nd-order initial-value problems. BIT 31(1), 160–168 (1991)

    Article  Google Scholar 

  152. Simos T.E.: A fourth algebraic order exponentially-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. IMA J. Numer. Anal. 21(4), 919–931 (2001)

    Article  Google Scholar 

  153. Simos T.E.: Some new 4-step exponential-fitting methods for the numerical-solution of the radial SchrÖdinger-equation. IMA J. Numer. Anal. 11(3), 347–356 (1991)

    Article  Google Scholar 

  154. Simos T.E.: An explicit high-order predictor–corrector method for periodic initial-value problems. Math. Models Methods Appl. Sci. 5(2), 159–166 (1995)

    Article  Google Scholar 

  155. Simos T.E., Famelis I.T., Tsitouras Ch.: Zero dissipative, explicit Numerov-type methods for second order IVPs with oscillating solutions. Numer. Algorithms 34(1), 27–40 (2003)

    Article  Google Scholar 

  156. A. Konguetsof, A new two-step hybrid method for the numerical solution of the Schrödinger equation, J. Math. Chem. (to appear)

  157. Raptis A.D.: Two-step methods for the numerical solution of the Schrödinger equation. Computing 28, 373–378 (1982)

    Article  Google Scholar 

  158. Simos T.E., Psihoyios G.: Special issue: The international conference on computational methods in sciences and engineering 2004—Preface. J. Comput. Appl. Math. 191(2), 165–165 (2006)

    Article  Google Scholar 

  159. Simos T.E., Psihoyios G.: Special issue—selected papers of the international conference on computational methods in sciences and engineering (ICCMSE 2003) Kastoria, Greece, 12–16 September 2003—Preface. J. Comput. Appl. Math. 175(1), IX–IX (2005)

    Article  Google Scholar 

  160. Simos T.E., Vigo-Aguiar J.: Special issue—selected papers from the conference on computational and mathematical methods for science and engineering (CMMSE-2002)—Alicante University, Spain, 20–25 September 2002—Preface. J. Comput. Appl. Math. 158(1), IX–IX (2003)

    Article  Google Scholar 

  161. Henrici P.: Discrete Variable Methods in Ordinary Differential Equations. Wiley, New York (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Konguetsof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konguetsof, A. Two-step high order hybrid explicit method for the numerical solution of the Schrödinger equation. J Math Chem 48, 224–252 (2010). https://doi.org/10.1007/s10910-010-9664-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-010-9664-8

Keywords

Navigation