Skip to main content
Log in

A new family of two stage symmetric two-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrödinger equation

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A family of two stage low computational cost symmetric two-step methods with vanished phase-lag and its derivatives is developed in this paper. More specifically we produce:

  • a two-stage symmetric two-step eighth algebraic order method which has the phase-lag and its first, second and third derivatives vanished and

  • a two-stage symmetric two-step sixth algebraic order method, which is P-stable and has the phase-lag and its first and second derivatives vanished.

The local truncation error, the interval of periodicity and the effect of the vanishing of the phase-lag and its derivatives on the efficiency of the obtained method are also studied in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Where S is a set of distinct points.

References

  1. G.D. Quinlan, S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits. Astron. J. 100, 1694–1700 (1990)

    Article  Google Scholar 

  2. Z.A. Anastassi, T.E. Simos, A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems. J. Comput. Appl. Math. 236, 3880–3889 (2012)

    Article  Google Scholar 

  3. J.D. Lambert, I.A. Watson, Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  Google Scholar 

  4. T.E. Simos, P.S. Williams, A finite-difference method for the numerical solution of the Schrdinger equation. J. Comput. Appl. Math. 79, 189–205 (1997)

    Article  Google Scholar 

  5. R.M. Thomas, Phase properties of high order almost P-stable formulae. BIT 24, 225–238 (1984)

    Article  Google Scholar 

  6. A.D. Raptis, T.E. Simos, A four-step phase-fitted method for the numerical integration of second order initial-value problem. BIT 31, 160–168 (1991)

    Article  Google Scholar 

  7. D.G. Quinlan, S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits. Astron. J. 100(5), 1694–1700 (1990)

    Article  Google Scholar 

  8. J.M. Franco, M. Palacios, J. Comput. Appl. Math. 30, 1 (1990)

    Article  Google Scholar 

  9. J.D. Lambert, Numerical Methods for Ordinary Differential Systems, the Initial Value Problem (Wiley, New York, 1991)

    Google Scholar 

  10. E. Stiefel, D.G. Bettis, Stabilization of Cowell’s method. Numer. Math. 13, 154–175 (1969)

    Article  Google Scholar 

  11. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, Two new optimized eight-step symmetric methods for the efficient solution of the Schrödinger equation and related problems. MATCH Commun. Math. Comput. Chem. 60(3), 773–785 (2008)

    CAS  Google Scholar 

  12. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, Two optimized symmetric eight-step implicit methods for initial-value problems with oscillating solutions. J. Math. Chem. 46(2), 604–620 (2009)

    Article  CAS  Google Scholar 

  13. http://www.burtleburtle.net/bob/math/multistep.html

  14. T.E. Simos, P.S. Williams, Bessel and Neumann fitted methods for the numerical solution of the radial Schrödinger equation. Comput. Chem. 21, 175–179 (1977)

    Article  Google Scholar 

  15. T.E. Simos, J. Vigo-Aguiar, A dissipative exponentially-fitted method for the numerical solution of the Schrödinger equation and related problems. Comput. Phys. Commun. 152, 274–294 (2003)

    Article  CAS  Google Scholar 

  16. T.E. Simos, G. Psihoyios, J. Comput. Appl. Math. 175(1), IX–IX (2005)

  17. T. Lyche, Chebyshevian multistep methods for ordinary differential eqations. Numer. Math. 19, 65–75 (1972)

    Article  Google Scholar 

  18. A. Konguetsof, T.E. Simos, A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 93–106 (2003)

    Article  Google Scholar 

  19. Z. Kalogiratou, T. Monovasilis, T.E. Simos, Symplectic integrators for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 83–92 (2003)

    Article  Google Scholar 

  20. Z. Kalogiratou, T.E. Simos, Newton–Cotes formulae for long-time integration. J. Comput. Appl. Math. 158(1), 75–82 (2003)

    Article  Google Scholar 

  21. G. Psihoyios, T.E. Simos, Trigonometrically fitted predictor–corrector methods for IVPs with oscillating solutions. J. Comput. Appl. Math. 158(1), 135–144 (2003)

    Article  Google Scholar 

  22. T.E. Simos, I.T. Famelis, C. Tsitouras, Zero dissipative, explicit Numerov-type methods for second order IVPs with oscillating solutions. Numer. Algorithms 34(1), 27–40 (2003)

    Article  Google Scholar 

  23. T.E. Simos, Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution. Appl. Math. Lett. 17(5), 601–607 (2004)

    Article  Google Scholar 

  24. K. Tselios, T.E. Simos, Runge–Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. J. Comput. Appl. Math. 175(1), 173–181 (2005)

    Article  Google Scholar 

  25. D.P. Sakas, T.E. Simos, Multiderivative methods of eighth algrebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation. J. Comput. Appl. Math. 175(1), 161–172 (2005)

    Article  Google Scholar 

  26. G. Psihoyios, T.E. Simos, A fourth algebraic order trigonometrically fitted predictor–corrector scheme for IVPs with oscillating solutions. J. Comput. Appl. Math. 175(1), 137–147 (2005)

    Article  Google Scholar 

  27. Z.A. Anastassi, T.E. Simos, An optimized Runge–Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175(1), 1–9 (2005)

    Article  Google Scholar 

  28. T.E. Simos, Closed Newton–Cotes trigonometrically-fitted formulae of high order for long-time integration of orbital problems. Appl. Math. Lett. 22(10), 1616–1621 (2009)

    Article  Google Scholar 

  29. S. Stavroyiannis, T.E. Simos, Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs. Appl. Numer. Math. 59(10), 2467–2474 (2009)

    Article  Google Scholar 

  30. T.E. Simos, Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation. Acta Appl. Math. 110(3), 1331–1352 (2010)

    Article  Google Scholar 

  31. T.E. Simos, New stable closed Newton–Cotes trigonometrically fitted formulae for long-time integration. Abstr. Appl. Anal. 2012 (2012). doi:10.1155/2012/182536 (Article ID 182536)

  32. T.E. Simos, Optimizing a hybrid two-step method for the numerical solution of the Schrödinger equation and related problems with respect to phase-lag. J. Appl. Math. 2012 (2012). doi:10.1155/2012/420387 (Article ID 420387)

  33. Z.A. Anastassi, T.E. Simos, A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems. J. Comput. Appl. Math. 236, 3880–3889 (2012)

    Article  Google Scholar 

  34. D.F. Papadopoulos, T.E. Simos, A modified Runge–Kutta–Nyström method by using phase lag properties for the numerical solution of orbital problems. Appl. Math. Inf. Sci. 7(2), 433–437 (2013)

    Article  Google Scholar 

  35. Th Monovasilis, Z. Kalogiratou, T.E. Simos, Exponentially fitted symplectic Runge–Kutta–Nyström methods. Appl. Math. Inf. Sci. 7(1), 81–85 (2013)

    Article  Google Scholar 

  36. G.A. Panopoulos, T.E. Simos, An optimized symmetric 8-step semi-embedded predictor–corrector method for IVPs with oscillating solutions. Appl. Math. Inf. Sci. 7(1), 73–80 (2013)

    Article  Google Scholar 

  37. D.F. Papadopoulos, T.E Simos, The use of phase lag and amplification error derivatives for the construction of a modified Runge–Kutta–Nyström method. Abstr. Appl. Anal. 2013 (2013). http://dx.doi.org/10.1155/2013/910624 (Article ID 910624)

  38. I. Alolyan, Z.A. Anastassi, T.E. Simos, A new family of symmetric linear four-step methods for the efficient integration of the Schrödinger equation and related oscillatory problems. Appl. Math. Comput. 218(9), 5370–5382 (2012)

    Article  Google Scholar 

  39. I. Alolyan, T.E. Simos, A family of high-order multistep methods with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 62(10), 3756–3774 (2011)

    Article  Google Scholar 

  40. Ch. Tsitouras, ITh Famelis, T.E. Simos, On modified Runge–Kutta trees and methods. Comput. Math. Appl. 62(4), 2101–2111 (2011)

    Article  Google Scholar 

  41. A.A. Kosti, Z.A. Anastassi, T.E. Simos, Construction of an optimized explicit Runge–Kutta-Nyström method for the numerical solution of oscillatory initial value problems. Comput. Math. Appl. 61(11), 3381–3390 (2011)

    Article  Google Scholar 

  42. Z. Kalogiratou, Th Monovasilis, T.E. Simos, New modified Runge–Kutta–Nystrom methods for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 60(6), 1639–1647 (2010)

    Article  Google Scholar 

  43. Th Monovasilis, Z. Kalogiratou, T.E. Simos, A family of trigonometrically fitted partitioned Runge–Kutta symplectic methods. Appl. Math. Comput. 209(1), 91–96 (2009)

    Article  Google Scholar 

  44. T.E. Simos, High order closed Newton–Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Appl. Math. Comput. 209(1), 137–151 (2009)

    Article  Google Scholar 

  45. A. Konguetsof, T.E. Simos, An exponentially-fitted and trigonometrically-fitted method for the numerical solution of periodic initial-value problems. Comput. Math. Appl. 45(1–3), 547–554 (2003) (Article Number: PII S0898-1221(02)00354-1)

  46. T.E. Simos, On the explicit four-step methods with vanished phase-lag and its first derivative. Appl. Math. Inf. Sci. 8(2), 447–458 (2014)

    Article  Google Scholar 

  47. G.A. Panopoulos, T.E. Simos, A new optimized symmetric embedded predictor–corrector method (EPCM) for initial-value problems with oscillatory solutions. Appl. Math. Inf. Sci. 8(2), 703–713 (2014)

    Article  Google Scholar 

  48. G.A. Panopoulos, T.E. Simos, An eight-step semi-embedded predictorcorrector method for orbital problems and related IVPs with oscillatory solutions for which the frequency is unknown. J. Comput. Appl. Math. 290, 1–15 (2015)

    Article  Google Scholar 

  49. L. Gr, M.R. Ixaru, Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)

    Article  Google Scholar 

  50. LGr Ixaru, M. Micu, Topics in Theoretical Physics (Central Institute of Physics, Bucharest, 1978)

    Google Scholar 

  51. LGr Ixaru, M. Rizea, A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)

    Article  Google Scholar 

  52. J.R. Dormand, M.E.A. El-Mikkawy, P.J. Prince, Families of Runge–Kutta–Nyström formulae. IMA J. Numer. Anal. 7, 235–250 (1987)

    Article  Google Scholar 

  53. J.R. Dormand, P.J. Prince, A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  Google Scholar 

  54. A.D. Raptis, A.C. Allison, Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)

    Article  Google Scholar 

  55. M.M. Chawla, P.S. Rao, An Noumerov-typ method with minimal phase-lag for the integration of second order periodic initial-value problems II explicit method. J. Comput. Appl. Math. 15, 329–337 (1986)

    Article  Google Scholar 

  56. M.M. Chawla, P.S. Rao, An explicit sixth-order method with phase-lag of order eight for \(y^{\prime \prime }=f(t, y)\). J. Comput. Appl. Math. 17, 363–368 (1987)

    Google Scholar 

  57. T.E. Simos, A new Numerov-type method for the numerical solution of the Schrödinger equation. J. Math. Chem. 46, 981–1007 (2009)

    Article  CAS  Google Scholar 

  58. A.C. Allison, The numerical solution of coupled differential equations arising from the Schrödinger equation. J. Comput. Phys. 6, 378–391 (1970)

    Article  Google Scholar 

  59. R.B. Bernstein, A. Dalgarno, H. Massey, I.C. Percival, Thermal scattering of atoms by homonuclear diatomic molecules. Proc. R. Soc. Ser. A 274, 427–442 (1963)

    Article  CAS  Google Scholar 

  60. R.B. Bernstein, Quantum mechanical (phase shift) analysis of differential elastic scattering of molecular beams. J. Chem. Phys. 33, 795–804 (1960)

    Article  CAS  Google Scholar 

  61. A.D. Raptis, J.R. Cash, A variable step method for the numerical integration of the one-dimensional Schrödinger equation. Comput. Phys. Commun. 36, 113–119 (1985)

    Article  CAS  Google Scholar 

  62. T.E. Simos, Exponentially fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation and related problems. Comput. Mater. Sci. 18, 315–332 (2000)

    Article  Google Scholar 

  63. Mu Kenan, T.E. Simos, A. Rungekutta, type implicit high algebraic order two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of coupled differential equations arising from the Schrödinger equation. J. Math. Chem. 53(1239), 1256 (2015)

    Google Scholar 

  64. A. Konguetsof, Two-step high order hybrid explicit method for the numerical solution of the Schrödinger equation. J. Math. Chem. 48, 224–252 (2010)

    Article  CAS  Google Scholar 

  65. J.R. Dormand, P.J. Prince, A family of embedded Runge–Kutta formula. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Simos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Consent to submit has been received explicitly from all co-authors, as well as from the responsible authorities—tacitly or explicitly—at the Institute/Organization where the work has been carried out, before the work is submitted.

Additional information

T. E. Simos: Highly Cited Researcher (http://isihighlycited.com/), Active Member of the European Academy of Sciences and Arts. Active Member of the European Academy of Sciences.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 57 KB)

Appendix: Formulae of the derivatives of \(q_{n}\)

Appendix: Formulae of the derivatives of \(q_{n}\)

Formulae of the derivatives which presented in the formulae of the Local Truncation Errors:

$$\begin{aligned} y_{n}^{(2)}= & {} \left( V(x)-V_{c} + G\right) \, y(x) \\ y_{n}^{(3)}= & {} \left( {\frac{d}{dx}}g \left( x \right) \right) y \left( x \right) + \left( g \left( x \right) +G \right) {\frac{d}{dx}}y \left( x \right) \\ y_{n}^{(4)}= & {} \left( {\frac{d^{2}}{d{x}^{2}}}g \left( x \right) \right) y \left( x \right) +2\, \left( {\frac{d}{dx}}g \left( x \right) \right) {\frac{d}{dx}}y \left( x \right) + \left( g \left( x \right) +G \right) ^{2}y \left( x \right) \\ y_{n}^{(5)}= & {} \left( {\frac{d^{3}}{d{x}^{3}}}g \left( x \right) \right) y \left( x \right) +3\, \left( {\frac{d^{2}}{d{x}^{2}}}g \left( x \right) \right) {\frac{d}{dx}}y \left( x \right) +\,4\, \left( g \left( x \right) +G \right) y \left( x \right) {\frac{d}{dx}}g \left( x \right) \\&+\, \left( g \left( x \right) +G \right) ^{2}{\frac{d}{dx}}y \left( x \right) \\ y_{n}^{(6)}= & {} \left( {\frac{d^{4}}{d{x}^{4}}}g \left( x \right) \right) y \left( x \right) +4\, \left( {\frac{d^{3}}{d{x}^{3}}}g \left( x \right) \right) {\frac{d}{dx}}y \left( x \right) +7\, \left( g \left( x \right) +G \right) y \left( x \right) {\frac{d^{2}}{d{x}^{2}}}g \left( x \right) \\&+\,4\, \left( {\frac{d}{dx}}g \left( x \right) \right) ^{2}y \left( x \right) +6\, \left( g \left( x \right) +G \right) \left( {\frac{d}{dx}}y \left( x \right) \right) {\frac{d}{dx}}g \left( x \right) + \left( g \left( x \right) +G \right) ^{3}y \left( x \right) \\ y_{n}^{(7)}= & {} \left( {\frac{d^{5}}{d{x}^{5}}}g \left( x \right) \right) y \left( x \right) +5\, \left( {\frac{d^{4}}{d{x}^{4}}}g \left( x \right) \right) {\frac{d}{dx}}y \left( x \right) +11\, \left( g \left( x \right) +G \right) y \left( x \right) {\frac{d^{3}}{d{x}^{3}}}g \left( x \right) \\&+\,15\, \left( {\frac{d}{dx}}g \left( x \right) \right) y \left( x \right) {\frac{d^{2}}{d{x}^{2}}}g \left( x \right) +13\, \left( g \left( x \right) +G \right) \left( {\frac{d}{dx}}y \left( x \right) \right) {\frac{d^{2}}{d{x}^{2}}}g \left( x \right) \\&+\,10\, \left( {\frac{d}{dx}}g \left( x \right) \right) ^{2}{\frac{d}{dx}}y \left( x \right) +9\, \left( g \left( x \right) +G \right) ^{2}y \left( x \right) {\frac{d}{dx}}g \left( x \right) + \left( g \left( x \right) +G \right) ^{3}{\frac{d}{dx}}y \left( x \right) \\ y_{n}^{(8)}= & {} \left( {\frac{d^{6}}{d{x}^{6}}}g \left( x \right) \right) y \left( x \right) \,+\,6\, \left( {\frac{d^{5}}{d{x}^{5}}}g \left( x \right) \right) {\frac{d}{dx}}y \left( x \right) +\,16\, \left( g \left( x \right) +G \right) y \left( x \right) {\frac{d^{4}}{d{x}^{4}}}g \left( x \right) \\&+\,26\, \left( {\frac{d}{dx}}g \left( x \right) \right) y \left( x \right) {\frac{d^{3}}{d{x}^{3}}}g \left( x \right) +24\, \left( g \left( x \right) +G \right) \left( {\frac{d}{dx}}y \left( x \right) \right) {\frac{d^{3}}{d{x}^{3}}}g \left( x \right) \\&+\,15\, \left( {\frac{d^{2}}{d{x}^{2}}}g \left( x \right) \right) ^{2}y \left( x \right) +48\, \left( {\frac{d}{dx}}g \left( x \right) \right) \left( {\frac{d}{dx}}y \left( x \right) \right) {\frac{d^{2}}{d{x}^{2}}}g \left( x \right) \nonumber \\&+\,22\, \left( g \left( x \right) +G \right) ^{2}y \left( x \right) {\frac{d^{2}}{d{x}^{2}}}g \left( x \right) +28\, \left( g \left( x \right) +G \right) y \left( x \right) \left( {\frac{d}{dx}}g \left( x \right) \right) ^{2}\\&+12\, \left( g \left( x \right) +G \right) ^{2} \left( {\frac{d}{dx}}y \left( x \right) \right) {\frac{d}{dx}}g \left( x \right) +\, \left( g \left( x \right) +G \right) ^{4}y \left( x \right) \ldots \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, F., Simos, T.E. A new family of two stage symmetric two-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrödinger equation. J Math Chem 53, 2191–2213 (2015). https://doi.org/10.1007/s10910-015-0545-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-015-0545-z

Keywords

Mathematics Subject Classification

Navigation