Skip to main content
Log in

A new two-step hybrid method for the numerical solution of the Schrödinger equation

  • Original paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

With this paper, a new algorithm is developed for the numerical solution of the one-dimensional Schrödinger equation. The new method uses the minimum order of the phase-lag and its derivatives. Error analysis and the numerical results illustrate the efficiency of the new algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LTE:

Local truncation error

References

  1. Ixaru L.G., Micu M.: Topics in Theoretical Physics. Central Institute of Physics, Bucharest (1978)

    Google Scholar 

  2. Landau L.D., Lifshitz F.M.: Quantum Mechanics. Pergamon, New York (1965)

    Google Scholar 

  3. I. Prigogine, R. Stuart (eds.), Advances in Chemical Physics Vol. 93: New Methods in Computational Quantum Mechanics (Wiley, London, 1997)

    Google Scholar 

  4. Herzberg G.: Spectra of Diatomic Molecules. Van Nostrand, Toronto (1950)

    Google Scholar 

  5. T.E. Simos, Atomic Structure Computations in Chemical Modelling: Applications and Theory, ed. by A. Hinchliffe, UMIST, (The Royal Society of Chemistry, UK, 2000) pp. 38–142

  6. Simos T.E.: Numerical methods for 1D, 2D and 3D differential equations arising in chemical problems. Chem. Modell. Appl. Theory 2, 170–270 (2002)

    CAS  Google Scholar 

  7. Simos T.E., Williams P.S.: On finite difference methods for the solution of the Schrödinger equation. Comput. Chem. 23, 513–554 (1999)

    CAS  Google Scholar 

  8. T.E. Simos, Numerical Solution of Ordinary Differential Equations with Periodical Solution. Doctoral Dissertation (National Technical University of Athens, Greece, 1990) (in Greek)

  9. Konguetsof A., Simos T.E.: On the construction of exponentially-fitted methods for the numerical solution of the Schrödinger equation. J. Comput. Method Sci. Eng. 1, 143–165 (2001)

    Google Scholar 

  10. Raptis A.D., Allison A.C.: Exponential—fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)

    Google Scholar 

  11. Raptis A.D.: Exponential multistep methods for ordinary differential equations. Bull. Greek Math. Soc. 25, 113–126 (1984)

    Google Scholar 

  12. Ixaru L.G.: Numerical Methods for Differential Equations and Applications. Reidel, Dordrecht-Boston-Lancaster (1984)

    Google Scholar 

  13. Ixaru L.G., Rizea M.: A numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)

    Google Scholar 

  14. Simos T.E., Williams P.S.: A new Runge-Kutta-Nystrom method with phase-lag of order infinity for the numerical solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 45, 123–137 (2002)

    CAS  Google Scholar 

  15. Simos T.E.: Multiderivative methods for the numerical solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 45, 7–26 (2004)

    Google Scholar 

  16. Raptis A.D.: Exponentially-fitted solutions of the eigenvalue Shrödinger equation with automatic error control. Comput. Phys. Commun. 28, 427–431 (1983)

    Google Scholar 

  17. Raptis A.D.: On the numerical solution of the Schrodinger equation. Comput. Phys. Commun. 24, 1–4 (1981)

    Google Scholar 

  18. Zacharoula K., Simos T.E.: A P-stable exponentially-fitted method for the numerical integration of the Schrödinger equation. Appl. Math. Comput. 112, 99–112 (2000)

    Google Scholar 

  19. Ixaru Liviu G., Vanden Berghe G.: Exponential Fitting, Series on Mathematics and its Applications, vol. 568. Kluwer Academic Publisher, The Netherlands (2004)

    Google Scholar 

  20. Ixaru L.G., Rizea M.: Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)

    CAS  Google Scholar 

  21. Anastassi Z.A., Simos T.E.: A family of exponentially-fitted Runge-Kutta methods with exponential order up to three for the numerical solution of the Schrödinger equation. J. Math. Chem. 41(1), 79–100 (2007)

    CAS  Google Scholar 

  22. Monovasilis T., Kalogiratou Z., Simos T.E.: Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 40(3), 257–267 (2006)

    CAS  Google Scholar 

  23. Psihoyios G., Simos T.E.: The numerical solution of the radial Schrödinger equation via a trigonometrically fitted family of seventh algebraic order Predictor-Corrector methods. J. Math. Chem. 40(3), 269–293 (2006)

    CAS  Google Scholar 

  24. Simos T.E.: A four-step exponentially fitted method for the numerical solution of the Schrödinger equation. J. Math. Chem. 40(3), 305–318 (2006)

    CAS  Google Scholar 

  25. Monovasilis T., Kalogiratou Z., Simos T.E.: Exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 37(3), 263–270 (2005)

    CAS  Google Scholar 

  26. Kalogiratou Z., Monovasilis T., Simos T.E.: Numerical solution of the two-dimensional time independent Schrödinger equation with Numerov-type methods. J. Math. Chem. 37(3), 271–279 (2005)

    CAS  Google Scholar 

  27. Anastassi Z.A., Simos T.E.: Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 281–293 (2005)

    CAS  Google Scholar 

  28. Psihoyios G., Simos T.E.: Sixth algebraic order trigonometrically fitted predictor-corrector methods for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 37(3), 295–316 (2005)

    CAS  Google Scholar 

  29. Sakas D.P., Simos T.E.: A family of multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 317–331 (2005)

    CAS  Google Scholar 

  30. Simos T.E.: Exponentially-fitted multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 36(1), 13–27 (2004)

    CAS  Google Scholar 

  31. Tselios K., Simos T.E.: Symplectic methods of fifth order for the numerical solution of the radial Shrodinger equation. J. Math. Chem. 35(1), 55–63 (2004)

    CAS  Google Scholar 

  32. Simos T.E.: A family of trigonometrically-fitted symmetric methods for the efficient solution of the Schrödinger equation and related problems. J. Math. Chem. 34(1–2), 39–58 (2003)

    CAS  Google Scholar 

  33. Tselios K., Simos T.E.: Symplectic methods for the numerical solution of the radial Shrödinger equation. J. Math. Chem. 34(1–2), 83–94 (2003)

    CAS  Google Scholar 

  34. Vigo-Aguiar J J., Simos T.E.: Family of twelve steps exponential fitting symmetric multistep methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 32(3), 257–270 (2002)

    Google Scholar 

  35. Avdelas G., Kefalidis E., Simos T.E.: New P-stable eighth algebraic order exponentially-fitted methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 31(4), 371–404 (2002)

    CAS  Google Scholar 

  36. Simos T.E., Vigo-Aguiar J.: Symmetric eighth algebraic order methods with minimal phase-lag for the numerical solution of the Schrödinger equation. J. Math. Chem. 31(2), 135–144 (2002)

    CAS  Google Scholar 

  37. Z. Kalogiratou, T.E. Simos, Construction of trigonometrically and exponentially fitted Runge-Kutta-Nystrom methods for the numerical solution of the Schrödinger equation and related problems a method of 8th algebraic order. J. Math. Chem. 31(2): 211–232

  38. Simos T.E., Vigo-Aguiar J.: A modified phase-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. J. Math. Chem. 30(1), 121–131 (2001)

    CAS  Google Scholar 

  39. Avdelas G., Konguetsof A., Simos T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 1. Development of the basic method. J. Math. Chem. 29(4), 281–291 (2001)

    CAS  Google Scholar 

  40. Avdelas G., Konguetsof A., Simos T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 2. Development of the generator; optimization of the generator and numerical results. J. Math. Chem. 29(4), 293–305 (2001)

    CAS  Google Scholar 

  41. Vigo-Aguiar J., Simos T.E.: A family of P-stable eighth algebraic order methods with exponential fitting facilities. J. Math. Chem. 29(3), 177–189 (2001)

    Google Scholar 

  42. Simos T.E.: A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical solution of the Schrödinger equation. J. Math. Chem. 27(4), 343–356 (2000)

    CAS  Google Scholar 

  43. Avdelas G., Simos T.E.: Embedded eighth order methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 26(4), 327–341 (1999)

    Google Scholar 

  44. Simos T.E.: A family of P-stable exponentially-fitted methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 25(1), 65–84 (1999)

    CAS  Google Scholar 

  45. Simos T.E.: Some embedded modified Runge-Kutta methods for the numerical solution of some specific Schrödinger equations. J. Math. Chem. 24(1–3), 23–37 (1998)

    CAS  Google Scholar 

  46. Simos T.E.: Eighth order methods with minimal phase-lag for accurate computations for the elastic scattering phase-shift problem. J. Math. Chem. 21(4), 359–372 (1997)

    CAS  Google Scholar 

  47. Panopoulos G.A., Anastassi Z.A., Simos T.E.: Two optimized symmetric eight-step implicit methods for initial-value problems with oscillating solutions. J. Math. Chem. 46(2), 604–620 (2009)

    CAS  Google Scholar 

  48. Anastassi Z.A., Simos T.E.: A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem. 45(4), 1102–1129 (2009)

    CAS  Google Scholar 

  49. Simos T.E.: A family of four-step trigonometrically-fitted methods and its application to the schrodinger equation. J. Math. Chem. 44(2), 447–466 (2009)

    Google Scholar 

  50. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae of high order for the numerical integration of the Schrödinger equation. J. Math. Chem. 44(2), 483–499 (2008)

    CAS  Google Scholar 

  51. Monovasilis T., Simos T.E.: New second-order exponentially and trigonometrically fitted symplectic integrators for the numerical solution of the time-independent Schrödinger equation. J. Math. Chem. 42(3), 535–545 (2007)

    CAS  Google Scholar 

  52. Anastassi Z.A., Simos T.E.: New trigonometrically fitted six-step symmetric methods for the efficient solution of the Schrödinger equation. Match-Commun. Math. Comput. Chem. 60(3), 733–752 (2008)

    CAS  Google Scholar 

  53. Triantafyllidis T.V., Anastassi Z.A., Simos T.E.: Two optimized Runge-Kutta methods for the solution of the Schrödinger equation. Match-Commun. Math. Comput. Chem. 60(3), 753–771 (2008)

    CAS  Google Scholar 

  54. Panopoulos G.A., Anastassi Z.A., Simos T.E.: Two new optimized eight-step symmetric methods for the efficient solution of the Schrödinger equation and related problems. Match-Commun. Math. Comput. Chem. 60(3), 773–785 (2008)

    CAS  Google Scholar 

  55. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae for the solution of the Schrödinger equation. Match-Commun. Math. Comput. Chem. 60(3), 787–801 (2008)

    CAS  Google Scholar 

  56. Anastassi Z.A., Simos T.E.: A six-step P-stable trigonometrically-fitted method for the numerical integration of the radial Schrödinger equation. Match-Commun. Math. Comput. Chem. 60(3), 803–830 (2008)

    CAS  Google Scholar 

  57. Sakas D.P., Simos T.E.: Trigonometrically-fitted multiderivative methods for the numerical solution of the radial Schrödinger equation. Match-Commun. Math. Comput. Chem. 53(2), 299–320 (2005)

    CAS  Google Scholar 

  58. Psihoyios G., Simos T.E.: A family of fifth algebraic order trigonometrically fitted P-C schemes for the numerical solution of the radial Schrödinger equation. Match-Commun. Math. Comput. Chem. 53(2), 321–344 (2005)

    CAS  Google Scholar 

  59. Amodio P., Gladwell I., Romanazzi G.: Numerical solution of general bordered ABD linear systems by cyclic reduction. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(1), 5–12 (2006)

    Google Scholar 

  60. Capper S.D., Cash J.R., Moore D.R.: Lobatto-Obrechkoff formulae for 2nd order two-point boundary value problems. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(1), 13–25 (2006)

    Google Scholar 

  61. Capper S.D., Moore D.R.: On high Order MIRK schemes and Hermite-Birkhoff interpolants. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(1), 27–47 (2006)

    Google Scholar 

  62. Cash J.R., Sumarti N., Abdulla T.J., Vieira I.: The derivation of interpolants for nonlinear two-point boundary value problems. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(1), 49–58 (2006)

    Google Scholar 

  63. Cash J.R., Girdlestone S.: Variable step Runge-Kutta-Nystrom methods for the numerical solution of reversible systems. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(1), 59–80 (2006)

    Google Scholar 

  64. Cash J.R., Mazzia F.: Hybrid mesh selection algorithms based on conditioning for two-point boundary value problems. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(1), 81–90 (2006)

    Google Scholar 

  65. Iavernaro F., Mazzia F., Trigiante D.: Stability and conditioning in numerical analysis. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(1), 91–112 (2006)

    Google Scholar 

  66. Iavernaro F., Trigiante D.: Discrete conservative vector fields induced by the trapezoidal method. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(1), 113–130 (2006)

    Google Scholar 

  67. Mazzia F., Sestini A., Trigiante D.: BS linear multistep methods on non-uniform meshes. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(1), 131–144 (2006)

    Google Scholar 

  68. Shampine L.F., Muir P.H., Xu H.: A user-friendly Fortran BVP solver. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(2), 201–217 (2006)

    Google Scholar 

  69. Vanden Berghe G., Van Daele M.: Exponentially-fitted Stormer/Verlet methods. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(3), 241–255 (2006)

    Google Scholar 

  70. Aceto L., Pandolfi R., Trigiante D.: Stability analysis of linear multistep methods via polynomial type variation. JNAIAM J. Numer. Anal. Indust. Appl. Math. 2(1-2), 1–9 (2007)

    Google Scholar 

  71. Corless R.M., Shakoori A., Aruliah D.A., Gonzalez-Vega L.: Barycentric hermite interpolants for event location in initial-value problems. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 1–16 (2008)

    Google Scholar 

  72. Dewar M.: Embedding a general-purpose numerical library in an interactive environment. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 17–26 (2008)

    Google Scholar 

  73. Kierzenka J., Shampine L.F.: A BVP solver that controls residual and error. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 27–41 (2008)

    Google Scholar 

  74. Knapp R.: A method of lines framework in mathematica. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 43–59 (2008)

    Google Scholar 

  75. Nedialkov N.S., Pryce J.D.: Solving differential algebraic equations by Taylor series (III): the DAETS code. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 61–80 (2008)

    Google Scholar 

  76. Lipsman R.L., Osborn J.E., Rosenberg J.M.: The SCHOL Project at the University of Maryland: using mathematical software in the teaching of Sophomore differential equations. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 81–103 (2008)

    Google Scholar 

  77. Sofroniou M., Spaletta G.: Extrapolation methods in mathematica. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 105–121 (2008)

    Google Scholar 

  78. Spiteri R.J., Ter Thian-Peng: pythNon: a PSE for the numerical solution of nonlinear algebraic equations. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 123–137 (2008)

    Google Scholar 

  79. Corwin S.P., Thompson S., White S.M.: Solving ODEs and DDEs with impulses. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 139–149 (2008)

    Google Scholar 

  80. Weckesser W.: VFGEN: a code generation tool. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 151–165 (2008)

    Google Scholar 

  81. Wittkopf A.: Automatic code generation and optimization in maple. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 167–180 (2008)

    Google Scholar 

  82. Butcher J.C.: Forty-five years of A-stability. JNAIAM J. Numer. Anal. Indust. Appl. Math. 4, 1–9 (2009)

    Google Scholar 

  83. Fichtner A., Igel H., Bunge H.-P., Kennett B.L.N.: Simulation and inversion of seismic wave propagation on continental scales based on a spectral-element method. JNAIAM J. Numer. Anal. Indust. Appl. Math. 4, 11–22 (2009)

    Google Scholar 

  84. Brugnano L., Magherini C.: Blended general linear methods based on boundary value methods in the generalized BDF family. JNAIAM J. Numer. Anal. Indust. Appl. Math. 4, 23–40 (2009)

    Google Scholar 

  85. Burrage K., Jackiewicz Z., Welfert B.D.: Spectral approximation of time windows in the solution of dissipative linear differential equations. JNAIAM J. Numer. Anal. Indust. Appl. Math. 4, 41–64 (2009)

    Google Scholar 

  86. Amodio P., Settanni G.: Variable step/order generalized upwind methods for the numerical solution of second order singular perturbation problems. JNAIAM J. Numer. Anal. Indust. Appl. Math. 4, 65–76 (2009)

    Google Scholar 

  87. Calvo M., Montijano J.I., Laburta M.P., Rández L.: On the long time error of first integrals for some RK numerical integrators. JNAIAM J. Numer. Anal. Indust. Appl. Math. 4, 77–86 (2009)

    Google Scholar 

  88. Iavernaro F., Trigiante D.: High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems. JNAIAM J. Numer. Anal. Indust. Appl. Math. 4, 87–101 (2009)

    Google Scholar 

  89. Hill A.T.: Linear multistep approximation of nonsymmetric rotating systems. JNAIAM J. Numer. Anal. Indust. Appl. Math. 4, 103–112 (2009)

    Google Scholar 

  90. Aceto L., Ghelardoni P., Magherini C.: BVMs for Sturm-Liouville eigenvalue estimates with general boundary conditions. JNAIAM J. Numer. Anal. Indust. Appl. Math. 4, 113–127 (2009)

    Google Scholar 

  91. Cash J., Kitzhofer G., Koch O., Moore G., Weinmüller E.: Numerical solution of singular two point BVPs. JNAIAM J. Numer. Anal. Indust. Appl. Math. 4, 129–149 (2009)

    Google Scholar 

  92. Psihoyios G.: A block implicit advanced step-point (BIAS) algorithm for stiff differential systems. Comput Lett 2(1-2), 51–58 (2006)

    Google Scholar 

  93. Enright W.H.: On the use of ’arc length’ and ’defect’ for mesh selection for differential equations. Comput Lett 1(2), 47–52 (2005)

    Google Scholar 

  94. Simos T.E.: P-stable four-step exponentially-fitted method for the numerical integration of the Schrödinger equation. Comput. Lett. 1(1), 37–45 (2005)

    Google Scholar 

  95. Simos T.E.: Stabilization of a four-step exponentially-fitted method and its application to the Schrödinger equation. Int. J. Modern Phys. C 18(3), 315–328 (2007)

    Google Scholar 

  96. Wang Z.: P-stable linear symmetric multistep methods for periodic initial-value problems. Comput. Phys. Commun. 171, 162–174 (2005)

    CAS  Google Scholar 

  97. Simos T.E.: A Runge-Kutta Fehlberg method with phase-lag of order infinity for initial value problems with oscillating solution. Comput. Math. Appl. 25, 95–101 (1993)

    Google Scholar 

  98. Simos T.E.: Runge-Kutta interpolants with minimal phase-lag. Comput. Math. Appl. 26, 43–49 (1993)

    Google Scholar 

  99. Simos T.E.: Runge-Kutta-Nyström interpolants for the numerical integration of special second-order periodic initial-value problems. Comput. Math. Appl. 26, 7–15 (1993)

    Google Scholar 

  100. Simos T.E., Mitsou G.V.: A family of four-step exponential fitted methods for the numerical integration of the radial Schrödinger equation. Comput. Math. Appl. 28, 41–50 (1994)

    Google Scholar 

  101. Simos T.E., Mousadis G.: A two-step method for the numerical solution of the radial Schrodinger equation. Comput. Math. Appl. 29, 31–37 (1995)

    Google Scholar 

  102. Avdelas G., Simos T.E.: Block Runge-Kutta methods for periodic initial-value problems. Comput. Math. Appl. 31, 69–83 (1996)

    Google Scholar 

  103. Avdelas G., Simos T.E.: Embedded methods for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 31, 85–102 (1996)

    Google Scholar 

  104. Papakaliatakis G., Simos T.E.: A new method for the numerical solution of fourth order BVP with oscillating solutions. Comput. Math. Appl. 32, 1–6 (1996)

    Google Scholar 

  105. Simos T.E.: An extended Numerov-type method for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 33, 67–78 (1997)

    Google Scholar 

  106. Simos T.E.: A new hybrid imbedded variable-step procedure for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 36, 51–63 (1998)

    Google Scholar 

  107. Simos T.E.: Bessel and Neumann fitted methods for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 42, 833–847 (2001)

    Google Scholar 

  108. Konguetsof A., Simos T.E.: An exponentially-fitted and trigonometrically-fitted method for the numerical solution of periodic initial-value problems. Comput. Math. Appl. 45, 547–554 (2003)

    Google Scholar 

  109. Anastassi Z.A., Simos T.E.: An optimized Runge-Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175(1), 1–9 (2005)

    Google Scholar 

  110. Psihoyios G., Simos T.E.: A fourth algebraic order trigonometrically fitted predictor-corrector scheme for IVPs with oscillating solutions. J. Comput. Appl. Math. 175(1), 137–147 (2005)

    Google Scholar 

  111. Sakas D.P., Simos T.E.: Multiderivative methods of eighth algrebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation.. J. Comput. Appl. Math. 175(1), 161–172 (2005)

    Google Scholar 

  112. Tselios K., Simos T.E.: Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. J. Comput. Appl. Math. 175(1), 173–181 (2005)

    Google Scholar 

  113. Kalogiratou Z., Simos T.E.: Newton-Cotes formulae for long-time integration. J. Comput. Appl. Math. 158(1), 75–82 (2003)

    Google Scholar 

  114. Kalogiratou Z., Monovasilis T., Simos T.E.: Symplectic integrators for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 83–92 (2003)

    Google Scholar 

  115. Konguetsof A., Simos T.E.: A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 93–106 (2003)

    Google Scholar 

  116. Psihoyios G., Simos T.E.: Trigonometrically fitted predictor-corrector methods for IVPs with oscillating solutions. J. Comput. Appl. Math. 158(1), 135–144 (2003)

    Google Scholar 

  117. Tsitouras C., Simos T.E.: Optimized Runge-Kutta pairs for problems with oscillating solutions. J. Comput. Appl. Math. 147(2), 397–409 (2002)

    Google Scholar 

  118. Simos T.E.: An exponentially fitted eighth-order method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 108(1-2), 177–194 (1999)

    Google Scholar 

  119. Simos T.E.: An accurate finite difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 91(1), 47–61 (1998)

    Google Scholar 

  120. Thomas R.M., Simos T.E.: A family of hybrid exponentially fitted predictor-corrector methods for the numerical integration of the radial Schrödinger equation. J. Comput. Appl. Math. 87(2), 215–226 (1997)

    Google Scholar 

  121. Simos T.E., Williams P.S.: A finite-difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79(2), 189–205 (1997)

    Google Scholar 

  122. Avdelas G., Simos T.E.: A generator of high-order embedded P-stable methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 72(2), 345–358 (1996)

    Google Scholar 

  123. Thomas R.M., Simos T.E., Mitsou G.V.: A family of Numerov-type exponentially fitted predictor-corrector methods for the numerical integration of the radial Schrödinger equation. J. Comput. Appl. Math. 67(2), 255–270 (1996)

    Google Scholar 

  124. Simos T.E.: A family of 4-step exponentially fitted predictor-corrector methods for the numerical-integration of the Schrödinger-equation. J. Comput. Appl. Math. 58(3), 337–344 (1995)

    Google Scholar 

  125. Simos T.E.: An explicit 4-step phase-fitted method for the numerical-integration of 2nd-order initial-value problems. J. Comput. Appl. Math. 55(2), 125–133 (1994)

    Google Scholar 

  126. Simos T.E., Dimas E., Sideridis A.B.: A Runge-Kutta-Nyström method for the numerical-integration of special 2nd-order periodic initial-value problems. J. Comput. Appl. Math. 51(3), 317–326 (1994)

    Google Scholar 

  127. Sideridis A.B., Simos T.E.: A low-order embedded Runge-Kutta method for periodic initial-value problems. J. Comput. Appl. Math. 44(2), 235–244 (1992)

    Google Scholar 

  128. Simos T.E., amd Raptis A.D.: A 4th-order Bessel fitting method for the numerical-solution of the SchrÖdinger-equation. J. Comput. Appl. Math. 43(3), 313–322 (1992)

    Google Scholar 

  129. Simos T.E.: Explicit 2-step methods with minimal phase-lag for the numerical-integration of special 2nd-order initial-value problems and their application to the one-dimensional Schrödinger-equation. J. Comput. Appl. Math. 39(1), 89–94 (1992)

    Google Scholar 

  130. Simos T.E.: A 4-step method for the numerical-solution of the Schrödinger-equation. J. Comput. Appl. Math. 30(3), 251–255 (1990)

    Google Scholar 

  131. Papageorgiou C.D., Raptis A.D., Simos T.E.: A method for computing phase-shifts for scattering. J. Comput. Appl. Math. 29(1), 61–67 (1990)

    Google Scholar 

  132. Raptis A.D.: Two-step methods for the numerical solution of the Schrödinger equation. Computing 28, 373–378 (1982)

    Google Scholar 

  133. Simos T.E.: Two-step almost P-stable complete in phase methods for the numerical integration of second order periodic initial-value problems. Int. J. Comput. Math. 46, 77–85 (1992)

    Google Scholar 

  134. Simos T.E.: Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution. Appl. Math. Lett. 17(5), 601–607 (2004)

    Google Scholar 

  135. Simos T.E.: Exponentially-fitted Runge-Kutta-Nyström method for the numerical solution of initial-value problems with oscillating solutions. Appl. Math. Lett. 15(2), 217–225 (2002)

    Google Scholar 

  136. Simos T.E.: A modified Runge-Kutta method for the numerical solution of ODE’s with oscillation solutions. Appl. Math. Lett. 9(6), 61–66 (1996)

    Google Scholar 

  137. Simos T.E.: A high-order predictor-corrector method for periodic IVPS. Appl. Math. Lett. 6(5), 9–12 (1993)

    Google Scholar 

  138. Simos T.E.: A new variable-step method for the numerical-integration of special 2nd-order initial-value problems and their application to the one-dimensional Schrödinger-equation. Appl. Math. Lett. 6(3), 67–73 (1993)

    Google Scholar 

  139. T.E. Simos, Exponentially and trigonometrically fitted methods for the solution of the Schrd̈inger equation. Acta. Appl. Math. (2009) (in press)

  140. Stavroyiannis S., Simos T.E.: Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs. Appl. Numer. Math. 59(10), 2467–2474 (2009)

    Google Scholar 

  141. Simos T.E.: A numerov-type method for the numerical-solution of the radial Schrödinger-equation. Appl. Numer. Math. 7(2), 201–206 (1991)

    Google Scholar 

  142. Simos T.E.: A fourth algebraic order exponentially-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. Ima J. Numer. Anal. 21(4), 919–931 (2001)

    Google Scholar 

  143. Simos T.E.: Some new 4-step exponential-fitting methods for the numerical-solution of the radial SchrÖdinger-equation. Ima J. Numer. Anal. 11(3), 347–356 (1991)

    Google Scholar 

  144. Simos T.E.: An explicit high-order predictor-corrector method for periodic initial-value problems. Math. Model. Method. Appl. Sci. 5(2), 159–166 (1995)

    Google Scholar 

  145. Simos TE T.E., Famelis I.T., Tsitouras C.: Zero dissipative, explicit Numerov-type methods for second order IVPs with oscillating solutions. Numer. Algorithm. 34(1), 27–40 (2003)

    Google Scholar 

  146. Lambert J.D., Watson I.A.: Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Google Scholar 

  147. Raptis A.D., Simos T.E.: A four-step phase-fitted method for the numerical integration of second order initial-value problem. BIT 31, 160–168 (1991)

    Google Scholar 

  148. Henrici P.: Discrete Variable Methods in Ordinary Differential Equations. Wiley, London (1962)

    Google Scholar 

  149. Chawla M.M.: Uncoditionally stable Noumerov-type methods for second order differential equations. BIT 23, 541–542 (1983)

    Google Scholar 

  150. Chawla M.M., Rao P.S.: A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems. J. Comput. Appl. Math. 11(3), 277–281 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Konguetsof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konguetsof, A. A new two-step hybrid method for the numerical solution of the Schrödinger equation. J Math Chem 47, 871–890 (2010). https://doi.org/10.1007/s10910-009-9606-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-009-9606-5

Keywords

Navigation