Skip to main content
Log in

A new explicit four-step method with vanished phase-lag and its first and second derivatives

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A study on the vanishing of the phase-lag and its first and second derivatives for a family of explicit four-step methods first introduced by Anastassi and Simos (J Comput Appl Math 236:3880–3889, 2012) is presented in this paper. The methods investigated in this paper belongs to the category of methods with frequency dependent coefficients. For these methods we will investigate the procedure of vanishing of the phase-lag and its first and second derivatives. For the new proposed methods we will define the local truncation error and we will study an local truncation error analysis. Finally we will compare the results of the error analysis with other known methods of the literature. We will study also the stability analysis of the new proposed method. We will apply the new produced methods on the resonance problem of the Schrödinger equation in order to investigate their efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Where \(S\) is a set of distinct points.

  2. With the term classical we mean the method of Sect. 4 with constant coefficients.

  3. The reference values are computed using the well known two-step method of Chawla and Rao [14] with small step size for the integration.

References

  1. I. Alolyan, T.E. Simos, A family of high-order multistep methods with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 62(10), 3756–3774 (2011)

    Article  Google Scholar 

  2. I. Alolyan, Z.A. Anastassi, T.E. Simos, A new family of symmetric linear four-step methods for the efficient integration of the Schrödinger equation and related oscillatory problems. Appl. Math. Comput. 218(9), 5370–5382 (2012)

    Article  Google Scholar 

  3. I. Alolyan, T.E. Simos, A new four-step Runge–Kutta type method with vanished phase-lag and its first, second and third derivatives for the numerical solution of the Schrödinger equation. J. Math. Chem. 51(5), 1418–1445 (2013)

    Article  CAS  Google Scholar 

  4. Z.A. Anastassi, T.E. Simos, Trigonometrically fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 281–293 (2005)

    Article  CAS  Google Scholar 

  5. Z.A. Anastassi, T.E. Simos, An optimized Runge–Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175(1), 1–9 (2005)

    Article  Google Scholar 

  6. Z.A. Anastassi, T.E. Simos, A family of exponentially-fitted Runge–Kutta methods with exponential order up to three for the numerical solution of the Schrödinger equation. J. Math. Chem. 41(1), 79–100 (2007)

    Article  CAS  Google Scholar 

  7. Z.A. Anastassi, T.E. Simos, A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem. 45(4), 1102–1129 (2009)

    Article  CAS  Google Scholar 

  8. Z.A. Anastassi, T.E. Simos, Numerical multistep methods for the efficient solution of quantum mechanics and related problems. Phys. Rep. 482, 1–240 (2009)

    Article  CAS  Google Scholar 

  9. Z.A. Anastassi, T.E. Simos, A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems. J. Comput. Appl. Math. 236, 3880–3889 (2012)

    Article  Google Scholar 

  10. G. Avdelas, A. Konguetsof, T.E. Simos, A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 1. Development of the basic method. J. Math. Chem. 29(4), 281–291 (2001)

    Article  CAS  Google Scholar 

  11. G. Avdelas, A. Konguetsof, T.E. Simos, A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 2. Development of the generator; optimization of the generator and numerical results. J. Math. Chem. 29(4), 293–305 (2001)

    Article  CAS  Google Scholar 

  12. G. Avdelas, E. Kefalidis, T.E. Simos, New P-stable eighth algebraic order exponentially-fitted methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 31(4), 371–404 (2002)

    Article  CAS  Google Scholar 

  13. M.M. Chawla, P.S. Rao, An Numerov-typ method with minimal phase-lag for the integration of second order periodic initial-value problems II. Explicit method. J. Comput. Appl. Math. 15, 329–337 (1986)

    Article  Google Scholar 

  14. M.M. Chawla, P.S. Rao, An explicit sixth-order method with phase-lag of order eight for \(y^{\prime \prime }=f(t, y)\). J. Comput. Appl. Math. 17, 363–368 (1987)

    Google Scholar 

  15. J.R. Dormand, P.J. Prince, A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  Google Scholar 

  16. J.R. Dormand, M.E.A. El-Mikkawy, P.J. Prince, Families of Runge–Kutta–Nyström formulae. IMA J. Numer. Anal. 7, 235–250 (1987)

    Article  Google Scholar 

  17. J.M. Franco, M. Palacios, High-order P-stable multistep methods. J. Comput. Appl. Math. 30(1), 1–10 (1990)

    Article  Google Scholar 

  18. G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand, Toronto, 1950)

    Google Scholar 

  19. http://www.burtleburtle.net/bob/math/multistep.html

  20. L.G. Ixaru, M. Micu, Topics in Theoretical Physics (Central Institute of Physics, Bucharest, 1978)

    Google Scholar 

  21. L.G. Ixaru, M. Rizea, A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)

    Article  Google Scholar 

  22. L.G. Ixaru, M. Rizea, Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)

    Article  CAS  Google Scholar 

  23. Z. Kalogiratou, T. Monovasilis, T.E. Simos, A fifth-order symplectic trigonometrically fitted partitioned Runge–Kutta method, international conference on numerical analysis and applied mathematics, Sept 16–20, 2007 Corfu, Greece. Numerical analysis and applied mathematics. AIP Conference Proceedings, vol. 936 (2007), pp 313–317

  24. Z. Kalogiratou, T.E. Simos, Construction of trigonometrically and exponentially fitted Runge–Kutta–Nyström methods for the numerical solution of the Schrödinger equation and related problems a method of 8th algebraic order. J. Math. Chem. 31(2), 211–232 (2002)

    Article  CAS  Google Scholar 

  25. Z. Kalogiratou, T. Monovasilis, T.E. Simos, Symplectic integrators for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 83–92 (2003)

    Article  Google Scholar 

  26. Z. Kalogiratou, T.E. Simos, Newton–Cotes formulae for long-time integration. J. Comput. Appl. Math. 158(1), 75–82 (2003)

    Article  Google Scholar 

  27. Z. Kalogiratou, Th Monovasilis, T.E. Simos, New modified Runge–Kutta–Nyström methods for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 60(6), 1639–1647 (2010)

    Article  Google Scholar 

  28. Z. Kalogiratou, Th Monovasilis, G. Psihoyios, T.E. Simos, Runge–Kutta type methods with special properties for the numerical integration of ordinary differential equations. Phys. Rep. Rev. Sect. Phys. Lett. 536(3), 75–146 (2014)

    Google Scholar 

  29. A. Konguetsof, T.E. Simos, An exponentially-fitted and trigonometrically-fitted method for the numerical solution of periodic initial-value problems. Comput. Math. Appl. 45(1–3), 547–554 (2003)

    Article  Google Scholar 

  30. A. Konguetsof, T.E. Simos, A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 93–106 (2003)

    Article  Google Scholar 

  31. A. Konguetsof, A new two-step hybrid method for the numerical solution of the Schrödinger equation. J. Math. Chem. 47(2), 871–890 (2010)

    Article  CAS  Google Scholar 

  32. A.A. Kosti, Z.A. Anastassi, T.E. Simos, An optimized explicit Runge–Kutta method with increased phase-lag order for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 47(1), 315–330 (2010)

    Article  CAS  Google Scholar 

  33. A.A. Kosti, Z.A. Anastassi, T.E. Simos, Construction of an optimized explicit Runge–Kutta–Nyström method for the numerical solution of oscillatory initial value problems. Comput. Math. Appl. 61(11), 3381–3390 (2011)

    Article  Google Scholar 

  34. J.D. Lambert, I.A. Watson, Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  Google Scholar 

  35. J.D. Lambert, Numerical Methods for Ordinary Differential Systems, The Initial Value Problem (Wiley, London, 1991), pp. 104–107

    Google Scholar 

  36. L.D. Landau, F.M. Lifshitz, Quantum Mechanics (Pergamon, New York, 1965)

    Google Scholar 

  37. T. Lyche, Chebyshevian multistep methods for ordinary differential eqations. Numer. Math. 19, 65–75 (1972)

    Article  Google Scholar 

  38. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 37(3), 263–270 (2005)

    Article  CAS  Google Scholar 

  39. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 40(3), 257–267 (2006)

    Article  CAS  Google Scholar 

  40. T. Monovasilis, T.E. Simos, New second-order exponentially and trigonometrically fitted symplectic integrators for the numerical solution of the time-independent Schrödinger equation. J. Math. Chem. 42(3), 535–545 (2007)

    Article  CAS  Google Scholar 

  41. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Families of third and fourth algebraic order trigonometrically fitted symplectic methods for the numerical integration of Hamiltonian systems. Comput. Phys. Commun. 177(10), 757–763 (2007)

    Article  CAS  Google Scholar 

  42. T. Monovasilis, T.E. Simos, Symplectic methods for the numerical integration of the Schrödinger equation. Comput. Mater. Sci. 38(3), 526–532 (2007)

    Article  CAS  Google Scholar 

  43. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Computation of the eigenvalues of the Schrödinger equation by symplectic and trigonometrically fitted symplectic partitioned Runge–Kutta methods. Phys. Lett. A 372(5), 569–573 (2008)

    Article  CAS  Google Scholar 

  44. Th Monovasilis, Z. Kalogiratou, T.E. Simos, A family of trigonometrically fitted partitioned Runge–Kutta symplectic methods. Appl. Math. Comput. 209(1), 91–96 (2009)

    Article  Google Scholar 

  45. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Symplectic partitioned Runge–Kutta methods with minimal phase-lag. Comput. Phys. Commun. 181(7), 1251–1254 (2010)

    Article  CAS  Google Scholar 

  46. Th Monovasilis, Z. Kalogiratou, T.E. Simos, Two new phase-fitted symplectic partitioned Runge–Kutta methods. Int. J. Mod. Phys. C 22(12), 1343–1355 (2011)

    Article  Google Scholar 

  47. Th Monovasilis, Z. Kalogiratou, T.E. Simos, Exponentially fitted symplectic Runge–Kutta–Nyström methods. Appl. Math. Inf. Sci. 7(1), 81–85 (2013)

    Article  Google Scholar 

  48. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, A new eight-step symmetric embedded predictor–corrector method (EPCM) for orbital problems and related IVPs with oscillatory solutions. Astron. J. 145(3) Article Number: 75 (2013). doi:10.1088/0004-6256/145/3/75

  49. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, Two new optimized eight-step symmetric methods for the efficient solution of the Schrödinger equation and related problems. MATCH Commun. Math. Comput. Chem. 60(3), 773–785 (2008)

    CAS  Google Scholar 

  50. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, Two optimized symmetric eight-step implicit methods for initial-value problems with oscillating solutions. J. Math. Chem. 46(2), 604–620 (2009)

    Article  CAS  Google Scholar 

  51. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, A new symmetric eight-step predictor-corrector method for the numerical solution of the radial Schrödinger equation and related orbital problems. Int. J. Mod. Phys. C 22(2), 133–153 (2011)

    Article  Google Scholar 

  52. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, A symmetric eight-step predictor–corrector method for the numerical solution of the radial Schrödinger equation and related IVPs with oscillating solutions. Comput. Phys. Commun. 182(8), 1626–1637 (2011)

    Article  CAS  Google Scholar 

  53. G.A. Panopoulos, T.E. Simos, An optimized symmetric 8-step semi-embedded predictor–corrector method for IVPs with oscillating solutions. Appl. Math. Inf. Sci. 7(1), 73–80 (2013)

    Article  Google Scholar 

  54. G.A. Panopoulos, T.E. Simos, A new optimized symmetric 8-step semi-embedded predictor–corrector method for the numerical solution of the radial Schrödinger equation and related orbital problems. J. Math. Chem. 51(7), 1914–1937 (2013)

    Article  CAS  Google Scholar 

  55. G.A. Panopoulos, T.E. Simos, A new optimized symmetric embedded predictor–corrector method (EPCM) for initial-value problems with oscillatory solutions. Appl. Math. Inf. Sci. 8(2), 703–713 (2014)

    Article  Google Scholar 

  56. G.A. Panopoulos, T.E. Simos, A new phase-fitted eight-step symmetric embedded predictor–corrector method (EPCM) for orbital problems and related IVPs with oscillating solutions. Comput. Phys. Commun. 185(2), 512–523 (2014)

    Article  CAS  Google Scholar 

  57. D.F. Papadopoulos, T.E Simos, The use of phase lag and amplification error derivatives for the construction of a modified Runge–Kutta–Nystrom method. Abstr. Appl. Anal. Article Number: 910624 Published (2013)

  58. D.F. Papadopoulos, T.E. Simos, A new methodology for the construction of optimized Runge–Kutta–Nyström methods. Int. J. Mod. Phys. C 22(6), 623–634 (2011)

    Article  Google Scholar 

  59. D.F. Papadopoulos, T.E. Simos, A modified Runge–Kutta–Nyström method by using phase lag properties for the numerical solution of orbital problems. Appl. Math. Inf. Sci. 7(2), 433–437 (2013)

    Article  Google Scholar 

  60. I. Prigogine, S. Rice (eds.), Advances in Chemical Physics Vol. 93: New Methods in Computational Quantum Mechanics. (Wiley, London, 1997)

    Google Scholar 

  61. G. Psihoyios, T.E. Simos, Trigonometrically fitted predictor–corrector methods for IVPs with oscillating solutions. J. Comput. Appl. Math. 158(1), 135–144 (2003)

    Article  Google Scholar 

  62. G. Psihoyios, T.E. Simos, A fourth algebraic order trigonometrically fitted predictor–corrector scheme for IVPs with oscillating solutions. J. Comput. Appl. Math. 175(1), 137–147 (2005)

    Article  Google Scholar 

  63. G. Psihoyios, T.E. Simos, Sixth algebraic order trigonometrically fitted predictor–corrector methods for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 37(3), 295–316 (2005)

    Article  CAS  Google Scholar 

  64. G. Psihoyios, T.E. Simos, The numerical solution of the radial Schrödinger equation via a trigonometrically fitted family of seventh algebraic order predictor–corrector methods. J. Math. Chem. 40(3), 269–293 (2006)

    Article  CAS  Google Scholar 

  65. G.D. Quinlan, S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits. Astron. J. 100, 1694–1700 (1990)

    Article  Google Scholar 

  66. A.D. Raptis, A.C. Allison, Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)

    Article  Google Scholar 

  67. A.D. Raptis, T.E. Simos, A four-step phase-fitted method for the numerical integration of second order initial-value problem. BIT 31, 160–168 (1991)

    Article  Google Scholar 

  68. D.P. Sakas, T.E. Simos, Multiderivative methods of eighth algrebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation. J. Comput. Appl. Math. 175(1), 161–172 (2005)

    Article  Google Scholar 

  69. D.P. Sakas, T.E. Simos, A family of multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 317–331 (2005)

    Article  CAS  Google Scholar 

  70. T.E. Simos, Accurately closed Newton–Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Int. J. Mod. Phys. C 24(3). (2013). doi:10.1142/S0129183113500149

  71. T.E. Simos, An explicit four-step method with vanished phase-lag and its first and second derivatives. J. Math. Chem. 52(3), 833–855 (2014)

  72. T.E. Simos, Ch. Tsitouras, I. Gutman, Preface for the special issue numerical methods in chemistry. MATCH Commun. Math. Comput. Chem. 60(3) (2008)

  73. T.E. Simos, New closed Newton–Cotes type formulae as multilayer symplectic integrators. J. Chem. Phys. 133(10) Article Number: 104108 (2010)

  74. T.E. Simos, New stable closed Newton–Cotes trigonometrically fitted formulae for long-time integration. Abstr. Appl. Anal. Article Number: 182536 (2012). doi:10.1155/2012/182536

  75. T.E. Simos, Optimizing a hybrid two-step method for the numerical solution of the Schrödinger equation and related problems with respect to phase-lag. J. Appl. Math. Article ID 420387, Volume 2012 (2012)

  76. T.E. Simos, I. Gutman, Papers presented on the international conference on computational methods in sciences and engineering (Castoria, Greece, Sept 12–16, 2003). MATCH Commun. Math. Comput. Chem. 53(2), A3–A4 (2005)

  77. T.E. Simos, G. Psihoyios, Special issue: the international conference on computational methods in sciences and engineering 2004—preface. J. Comput. Appl. Math. 191(2), 165–165 (2006)

  78. T.E. Simos, G. Psihoyios, Special issue—selected papers of the international conference on computational methods in sciences and engineering (ICCMSE 2003) Kastoria, Greece, 12–16 Sept 2003—Preface. J. Comput. Appl. Math. 175(1), IX–IX (2005)

  79. T.E. Simos, G. Psihoyios, J. Comput. Appl. Math. 175(1), IX–IX (2005)

  80. T.E. Simos, J. Vigo-Aguiar, Special issue—selected papers from the conference on computational and mathematical methods for science and engineering (CMMSE-2002)—Alicante University, Spain, 20–25 Sept 2002—preface. J. Comput. Appl. Math. 158(1), IX–IX (2003)

  81. T.E. Simos, P.S. Williams, Bessel and Neumann fitted methods for the numerical solution of the radial Schrödinger equation. Comput. Chem. 21, 175–179 (1997)

    Article  CAS  Google Scholar 

  82. T.E. Simos, P.S. Williams, A finite-difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79, 189–205 (1997)

    Article  Google Scholar 

  83. T.E. Simos, P.S. Williams, On finite difference methods for the solution of the Schrödinger equation. Comput. Chem. 23, 513–554 (1999)

    Article  CAS  Google Scholar 

  84. T.E. Simos, A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical solution of the Schrödinger equation. J. Math. Chem. 27(4), 343–356 (2000)

    Article  CAS  Google Scholar 

  85. T.E. Simos, A fourth algebraic order exponentially-fitted Runge–Kutta method for the numerical solution of the Schrödinger equation. IMA J. Numer. Anal. 21(4), 919–931 (2001)

    Article  Google Scholar 

  86. T.E. Simos, J. Vigo-Aguiar, A modified phase-fitted Runge–Kutta method for the numerical solution of the Schrödinger equation. J. Math. Chem. 30(1), 121–131 (2001)

    Article  CAS  Google Scholar 

  87. T.E. Simos, Exponentially-fitted Runge–Kutta–Nyström method for the numerical solution of initial-value problems with oscillating solutions. Appl. Math. Lett. 15(2), 217–225 (2002)

    Article  Google Scholar 

  88. T.E. Simos, J. Vigo-Aguiar, Symmetric eighth algebraic order methods with minimal phase-lag for the numerical solution of the Schrödinger equation. J. Math. Chem. 31(2), 135–144 (2002)

    Article  CAS  Google Scholar 

  89. T.E. Simos, A family of trigonometrically-fitted symmetric methods for the efficient solution of the Schrödinger equation and related problems. J. Math. Chem. 34(1–2), 39–58 (2003)

    Article  CAS  Google Scholar 

  90. T.E. Simos, I.T. Famelis, C. Tsitouras, Zero dissipative, explicit Numerov-type methods for second order IVPs with oscillating solutions. Numer. Algorithms 34(1), 27–40 (2003)

    Article  Google Scholar 

  91. T.E. Simos, Closed Newton–Cotes trigonometrically-fitted formulae for long-time integration. Int. J. Mod. Phys. C 14(8), 1061–1074 (2003)

    Article  Google Scholar 

  92. T.E. Simos, J. Vigo-Aguiar, A dissipative exponentially-fitted method for the numerical solution of the Schrödinger equation and related problems. Comput. Phys. Commun. 152, 274–294 (2003)

    Article  CAS  Google Scholar 

  93. T.E. Simos, Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution. Appl. Math. Lett. 17(5), 601–607 (2004)

    Article  Google Scholar 

  94. T.E. Simos, Exponentially-fitted multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 36(1), 13–27 (2004)

    Article  CAS  Google Scholar 

  95. T.E. Simos, A four-step exponentially fitted method for the numerical solution of the Schrödinger equation. J. Math. Chem. 40(3), 305–318 (2006)

    Article  CAS  Google Scholar 

  96. T.E. Simos, Closed Newton–Cotes trigonometrically-fitted formulae for long-time integration of orbital problems. RevMexAA 42(2), 167–177 (2006)

    Google Scholar 

  97. T.E. Simos, Closed Newton–Cotes trigonometrically-fitted formulae for numerical integration of the Schrödinger equation. Comput. Lett. 3(1), 45–57 (2007)

    Article  Google Scholar 

  98. T.E. Simos, Closed Newton–Cotes trigonometrically-fitted formulae for the solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 787–801 (2008)

    CAS  Google Scholar 

  99. T.E. Simos, Closed Newton–Cotes trigonometrically-fitted formulae of high order for the numerical integration of the Schrödinger equation. J. Math. Chem. 44(2), 483–499 (2008)

    Article  CAS  Google Scholar 

  100. T.E. Simos, High-order closed Newton–Cotes trigonometrically-fitted formulae for long-time integration of orbital problems. Comput. Phys. Commun. 178(3), L199–207 (2008)

    Article  CAS  Google Scholar 

  101. T.E. Simos, A family of four-step trigonometrically-fitted methods and its application to the Schrodinger equation. J. Math. Chem. 44(2), 447–466 (2009)

    Article  CAS  Google Scholar 

  102. T.E. Simos, A new Numerov-type method for the numerical solution of the Schrödinger equation. J. Math. Chem. 46(3), 981–1007 (2009)

    Article  CAS  Google Scholar 

  103. T.E. Simos, Closed Newton–Cotes trigonometrically-fitted formulae of high-order for long-time integration of orbital problems. Appl. Math. Lett. 22(10), 1616–1621 (2009)

    Article  Google Scholar 

  104. T.E. Simos, High order closed Newton–Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Appl. Math. Comput. 209(1), 137–151 (2009)

    Article  Google Scholar 

  105. T.E. Simos, Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation. Acta Appl. Math. 110(3), 1331–1352 (2010)

    Article  Google Scholar 

  106. T.E. Simos, Optimizing a class of linear multi-step methods for the approximate solution of the radial Schrödinger equation and related problems with respect to phase-lag. Cent. Eur. J. Phys. 9(6), 1518–1535 (2011)

    Article  Google Scholar 

  107. T.E. Simos, A two-step method with vanished phase-lag and its first two derivatives for the numerical solution of the Schrödinger equation. J. Math. Chem. 49(10), 2486–2518 (2011)

    Article  CAS  Google Scholar 

  108. T.E. Simos, High order closed Newton–Cotes exponentially and trigonometrically fitted formulae as multilayer symplectic integrators and their application to the radial Schrödinger equation. J. Math. Chem. 50(5), 1224–1261 (2012)

    Article  CAS  Google Scholar 

  109. T.E. Simos, New high order multiderivative explicit four-step methods with vanished phase-lag and its derivatives for the approximate solution of the Schrödinger equation. Construction and theoretical analysis. J. Math. Chem. 51(1), 194–226 (2013)

    Article  CAS  Google Scholar 

  110. T.E. Simos, New open modified Newton–Cotes type formulae as multilayer symplectic integrators. Appl. Math. Model. 37(4), 1983–1991 (2013)

    Article  Google Scholar 

  111. T.E. Simos, On the explicit four-step methods with vanished phase-lag and its first derivative. Appl. Math. Inf. Sci. 8(2), 447–458 (2014)

    Article  Google Scholar 

  112. S. Stavroyiannis, T.E. Simos, Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs. Appl. Numer. Math. 59(10), 2467–2474 (2009)

    Article  Google Scholar 

  113. S. Stavroyiannis, T.E. Simos, A nonlinear explicit two-step fourth algebraic order method of order infinity for linear periodic initial value problems. Comput. Phys. Commun. 181(8), 1362–1368 (2010)

    Article  CAS  Google Scholar 

  114. E. Stiefel, D.G. Bettis, Stabilization of Cowell’s method. Numer. Math. 13, 154–175 (1969)

    Article  Google Scholar 

  115. C. Tang, W. Wang, H. Yan, Z. Chen, High-order predictor–corrector of exponential fitting for the N-body problems. J. Comput. Phys. 214(2), 505–520 (2006)

    Article  CAS  Google Scholar 

  116. R.M. Thomas, Phase properties of high order almost P-stable formulae. BIT 24, 225–238 (1984)

    Article  Google Scholar 

  117. K. Tselios, T.E. Simos, Symplectic methods for the numerical solution of the radial Shrödinger equation. J. Math. Chem. 34(1–2), 83–94 (2003)

    Article  CAS  Google Scholar 

  118. K. Tselios, T.E. Simos, Symplectic methods of fifth order for the numerical solution of the radial Shrodinger equation. J. Math. Chem. 35(1), 55–63 (2004)

    Article  CAS  Google Scholar 

  119. K. Tselios, T.E. Simos, Runge–Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. J. Comput. Appl. Math. 175(1), 173–181 (2005)

    Article  Google Scholar 

  120. K. Tselios, T.E. Simos, Optimized fifth order symplectic integrators for orbital problems. Revista Mexicana de Astronomia y Astrofisica 49(1), 11–24 (2013)

    Google Scholar 

  121. Ch. Tsitouras, T.E. Simos, Optimized Runge–Kutta pairs for problems with oscillating solutions. J. Comput. Appl. Math. 147(2), 397–409 (2002)

    Article  Google Scholar 

  122. Ch. Tsitouras, ITh Famelis, T.E. Simos, On modified Runge–Kutta trees and methods. Comput. Math. Appl. 62(4), 2101–2111 (2011)

    Article  Google Scholar 

  123. G. Vanden Berghe, M. Van Daele, Exponentially fitted open Newton–Cotes differential methods as multilayer symplectic integrators. J. Chem. Phys. 132, 204107 (2010)

    Article  CAS  Google Scholar 

  124. J. Vigo-Aguiar, T.E. Simos, Family of twelve steps exponential fitting symmetric multistep methods for the numerical solution of the Schrödinger equation. J. Math. Chem 32(3), 257–270 (2002)

    Article  CAS  Google Scholar 

  125. J. Vigo-Aguiar, T.E. Simos, Review of multistep methods for the numerical solution of the radial Schrödinger equation. Int. J. Quantum Chem. 103(3), 278–290 (2005)

    Article  CAS  Google Scholar 

  126. R. Vujasin, M. Sencanski, J. Radic-Peric, M. Peric, A comparison of various variational approaches for solving the one-dimensional vibrational Schrödinger equation. MATCH Commun. Math. Comput. Chem. 63(2), 363–378 (2010)

    CAS  Google Scholar 

  127. H. Van de Vyver, A trigonometrically fitted explicit hybrid method for the numerical integration of orbital problems. Appl. Math. Comput. 189(1), 178–185 (2007)

    Article  Google Scholar 

  128. H. Van de Vyver, Phase-fitted and amplification-fitted two-step hybrid methods for \(y^{\prime \prime }=f(x, y)\). J. Comput. Appl. Math. 209(1), 33–53 (2007)

    Article  Google Scholar 

  129. H. Van de Vyver, An explicit Numerov-type method for second-order differential equations with oscillating solutions. Comput. Math. Appl. 53, 1339–1348 (2007)

    Article  Google Scholar 

  130. Z. Wang, P-stable linear symmetric multistep methods for periodic initial-value problems. Comput. Phys. Commun. 171(3), 162–174 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Simos.

Additional information

Highly Cited Researcher (http://highlycited.com/), Active Member of the European Academy of Sciences and Arts. Active Member of the European Academy of Sciences. Corresponding Member of European Academy of Arts, Sciences and Humanities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simos, T.E. A new explicit four-step method with vanished phase-lag and its first and second derivatives. J Math Chem 53, 402–429 (2015). https://doi.org/10.1007/s10910-014-0431-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-014-0431-0

Keywords

AMS Subject Classification

Navigation