Skip to main content
Log in

A High-Order Two-Step Phase-Fitted Method for the Numerical Solution of the Schrödinger Equation

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we will develop a four-stage high algebraic order symmetric two-step method with vanished phase-lag and its first up to the fourth derivative. For the proposed method, we will study the following: the phase-lag analysis of the new method; the development of the new method; the local truncation error analysis which is based on the radial Schrödinger equation; the stability and the interval of periodicity analysis which is based on a scalar test equation with frequency different than the frequency of the scalar test equation used for the phase-lag analysis; the error estimation procedure which is based on the algebraic order; and the numerical results from our numerical tests for the examination of the efficiency of the new obtained method. The numerical tests are based on the numerical solution of the Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anastassi Z.A., Simos T.E.: A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems. J. Comput. Appl. Math. 236, 3880–3889 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Raptis A.D., Simos T.E.: A four-step phase-fitted method for the numerical integration of second order initial-value problem. BIT. 31, 160–168 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lambert, J.D.: Numerical Methods for Ordinary Differential Systems, The Initial Value Problem, pp. 104–107. Wiley, New York (1991)

  4. Simos J.D., Williams J.D.: A finite-difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79, 189–205 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Thomas R.M.: Phase properties of high order almost P-stable formulae. BIT. 24, 225–238 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lambert J.D., Watson I.A.: Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. http://www.icnaam.org/documents/Detailed_Computations_MJM

  8. Franco J.M., Palacios M.: High-order P-stable multistep method. J. Comput. Appl. Math. 30, 1–10 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chawla M.M., Neta B.: Families of two-step fourth order P-stable methods for second order differential equations. J. Comput. Appl. Math. 15, 213–223 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Anastassi Z.A., Simos T.E.: An optimized Runge–Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175(1), 1–9 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Papadopoulos D.F., Simos D.F.: A modified Runge–Kutta–Nyström method using phase lag properties for the numerical solution of orbital problems. Appl. Math. Inform. Sci. 7(2), 433–437 (2013)

    Article  MathSciNet  Google Scholar 

  12. ThMonovasilis D.F., Kalogiratou Z., Simos T.E.: Exponentially fitted symplectic Runge–Kutta–Nyström methods. Appl. Math. Inform. Sci. 7(1), 81–85 (2013)

    Article  Google Scholar 

  13. Panopoulos T.E., Simos T.E.: An optimized symmetric 8-step semi-embedded predictor-corrector method for ivps with oscillating solutions. Appl. Math. Inform. Sci. 7(1), 73–80 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kalogiratou Z., Monovasilis T., Ramos H., Simos T.E.: A new approach on the construction of trigonometrically fitted two step hybrid methods. J. Comput. Appl. Math. 303, 146–155 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dormand J.R., Prince P.J.: A family of embedded RungeKutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Raptis A.D., Allison A.C.: Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)

    Article  Google Scholar 

  17. Raptis A.D., Cash J.R.: A variable step method for the numerical integration of the one-dimensional Schrödinger equation. Comput. Phys. Commun. 36, 113–119 (1985)

    Article  MATH  Google Scholar 

  18. Allison J.R.: The numerical solution of coupled differential equations arising from the Schrödinger equation. J. Comput. Phys. 6, 378–391 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  19. Allison A.C., Dalgarno A.: The rotational excitation of molecular hydrogen. Proc. Phys. Soc. 90(3), 609–614 (1967)

    Article  Google Scholar 

  20. Bernstein R.B., Dalgarno A., Massey H., Percival I.C.: Thermal scattering of atoms by homonuclear diatomic molecules. Proc. Roy. Soc. Ser. A. 274, 427–442 (1963)

    Article  Google Scholar 

  21. Bernstein R.B.: Quantum mechanical (phase shift) analysis of differential elastic scattering of molecular beams. J. Chem. Phys. 33, 795–804 (1960)

    Article  Google Scholar 

  22. Simos T.E.: Exponentially fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation and related problems. Comput. Mater. Sci. 18, 315–332 (2000)

    Article  MathSciNet  Google Scholar 

  23. Dormand J.R., Prince J.R.: A family of embedded Runge–Kutta formula. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. Brugnano, L., Iavernaro, F.: Line Integral Methods for Conservative Problems, Series: Monographs and Research Notes in Mathematics. Chapman and Hall/CRC (2016). ISBN 978 – 1 – 4822 – 6384 – 8 (print), ISBN 978 – 1 – 4822 – 6385 – 5 (eBook)

  25. Mu K., Simos T.E.: A RungeKutta type implicit high algebraic order two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of coupled differential equations arising from the Schrödinger equation. J. Math. Chem. 53, 1239–1256 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liang M., Simos T.E.: A new four stages symmetric two-step method with vanished phase-lag and its first derivative for the numerical integration of the Schrödinger equation. J. Math. Chem. 54, 1187–1211 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hui F., Simos T.E.: Hybrid high algebraic order two-step method with vanished phase-lag and its first and second derivatives. MATCH Commun. Math. Comput. Chem. 73, 619–648 (2015)

    MathSciNet  Google Scholar 

  28. Xi, X., Simos, T.E.: A new high algebraic order four stages symmetric two-step method with vanished phase-lag and its first and second derivatives for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. (in press)

  29. Zhou Z., Simos T.E.: A new two stage symmetric two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 54, 442–465 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Simos.

Additional information

Highly Cited Researcher (http://highlycited.com/), Active member of the European Academy of Sciences. Active member of the European Academy of Sciences and Arts. Corresponding Member of the of European Academy of Arts, Sciences and Humanities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Simos, T.E. A High-Order Two-Step Phase-Fitted Method for the Numerical Solution of the Schrödinger Equation. Mediterr. J. Math. 13, 5177–5194 (2016). https://doi.org/10.1007/s00009-016-0800-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-016-0800-y

Mathematics Subject Classification

Keywords

Navigation