Skip to main content
Log in

QTL mapping integrated with BSA-Seq analysis identifies a novel gene conferring resistance to brown planthopper from common wild rice (Oryza rufipogon Griff.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The brown planthopper (Nilaparvata lugens Stål, BPH) is one of the most destructive rice pests worldwide. GXU202 is a germplasm of common wild rice (Oryza rufipogon Griff.) with high resistance to the BPH. In this study, genetic analysis indicated that the BPH-resistant phenotype of GXU202 is controlled by a major gene. Through the combination and comparison of QTL linkage and BSA-seq analyses, a novel gene locus, BPH41, conferring BPH resistance was identified. This gene locus was finely mapped to a 116-kb region delimited by W4-4–3 and W1-6–3 on chromosome 4. The markers D01031 and D01045 showed high accuracy in predicting phenotypes resistant to BPH, suggesting their reliability for marker-assisted selection of BPH41 in breeding BPH-resistant rice varieties. The present identification of BPH41 will establish a foundation for further map-based cloning and functional characterization of the gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30(2):174–178. https://doi.org/10.1038/nbt.2095

    Article  CAS  PubMed  Google Scholar 

  • Akanksha S, Jhansi Lakshmi V, Singh AK, Deepthi Y, Chirutkar PM, Ramdeen B, D., Sarla, N., Mangrauthia, S. K., & Ram, T. (2019) Genetics of novel brown planthopper Nilaparvata lugens (Stål) resistance genes in derived introgression lines from the interspecific cross O sativa var Swarna × O nivara. J Genetics 98:113

    Article  CAS  Google Scholar 

  • Backus EA, Serrano MS, Ranger CM (2005) Mechanisms of hopperburn: an overview of insect taxonomy, behavior, and physiology. Annu Rev Entomol 50:125–151. https://doi.org/10.1146/annurev.ento.49.061802.123310

    Article  CAS  PubMed  Google Scholar 

  • Bisht DS, Bhatia V, Bhattacharya R (2019) Improving plant-resistance to insect-pests and pathogens: the new opportunities through targeted genome editing. Semin Cell Dev Biol 96:65–76. https://doi.org/10.1016/j.semcdb.2019.04.008

    Article  CAS  PubMed  Google Scholar 

  • Chmielowska-Bąk J, Deckert J (2021) Plant recovery after metal stress-a review. Plants (basel, Switzerland) 10(3):450. https://doi.org/10.3390/plants10030450

    Article  CAS  Google Scholar 

  • De Vega D, Holden N, Hedley PE, Morris J, Luna E, Newton A (2021) Chitosan primes plant defence mechanisms against Botrytis cinerea, including expression of Avr9/Cf-9 rapidly elicited genes. Plant, Cell Environ 44(1):290–303. https://doi.org/10.1111/pce.13921

    Article  CAS  Google Scholar 

  • Du B, Zhang W, Liu B, Hu J, Wei Z, Shi Z, He R, Zhu L, Chen R, Han B, He G (2009) Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci USA 106(52):22163–22168. https://doi.org/10.1073/pnas.0912139106

    Article  PubMed  PubMed Central  Google Scholar 

  • Fekih R, Takagi H, Tamiru M, Abe A, Natsume S, Yaegashi H, Sharma S, Sharma S, Kanzaki H, Matsumura H, Saitoh H, Mitsuoka C, Utsushi H, Uemura A, Kanzaki E, Kosugi S, Yoshida K, Cano L, Kamoun S, Terauchi R (2013) MutMap+: genetic mapping and mutant identification without crossing in rice. PLoS ONE 8(7):e68529. https://doi.org/10.1371/journal.pone.0068529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frisvold GB (2019) How low can you go? Estimating impacts of reduced pesticide use. Pest Manag Sci 75(5):1223–1233. https://doi.org/10.1002/ps.5249

    Article  CAS  PubMed  Google Scholar 

  • Fujita D, Kohli A, Horgan FG (2013) Rice resistance to planthoppers and leafhoppers. Crit Rev Plant Sci 32(3):162–191. https://doi.org/10.1080/07352689.2012.735986

    Article  CAS  Google Scholar 

  • Guo J, Xu C, Wu D, Zhao Y, Qiu Y, Wang X, Ouyang Y, Cai B, Liu X, Jing S, Shangguan X, Wang H, Ma Y, Hu L, Wu Y, Shi S, Wang W, Zhu L, Xu X, Chen R, Du B, He G (2018) Bph6 encodes an exocyst-localized protein and confers broad resistance to planthoppers in rice. Nat Genet 50(2):297–306

    Article  CAS  Google Scholar 

  • Gupta PK, Kulwal PL, Jaiswal V (2019) Association mapping in plants in the post-GWAS genomics era. Adv Genet 104:75–154. https://doi.org/10.1016/bs.adgen.2018.12.001

    Article  PubMed  Google Scholar 

  • Han G, Lu C, Guo J, Qiao Z, Sui N, Qiu N, Wang B (2020) C2H2 Zinc finger proteins: master regulators of abiotic stress responses in plants. Front Plant Sci 11:115. https://doi.org/10.3389/fpls.2020.00115

    Article  PubMed  PubMed Central  Google Scholar 

  • Han Y, Lv P, Hou S, Li S, Ji G, Ma X, Du R, Liu G (2015) Combining next generation sequencing with bulked segregant analysis to fine map a stem moisture locus in sorghum (Sorghum bicolor L. Moench). PLoS ONE 10(5):e0127065. https://doi.org/10.1371/journal.pone.0127065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Liu YQ, Liu YL, Jiang L, Wu H, Kang HY, Liu SJ, Chen LM, Liu X, Cheng XN, Wan JM (2013) High-resolution mapping of brown planthopper (BPH) resistance gene Bph27(t) in rice (Oryza sativa L.). Mol Breeding 31:549–557

    Article  CAS  Google Scholar 

  • Hill JT, Demarest BL, Bisgrove BW, Gorsi B, Su YC, Yost HJ (2013) MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res 23(4):687–697. https://doi.org/10.1101/gr.146936.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirabayashi H, Angeles ER, Kaji R, Ogawa T, Brar DS, Khush GS (1998) Identification of brown planthopper resistance gene derived from o. officinalis using molecular markers in rice. Breed Sci ,48(Suppl):82 (in Japanese)

  • Hou LY, Peng ST, Xing-Hua W et al (2011) Genetic analysis and preliminary mapping of two recessive resistance genes to brown planthopper, nilaparvata lugens Stl in rice[J]. Rice Sci 18(003):238–242

    Article  Google Scholar 

  • Hu J, Xiao C, Cheng M, Gao G, Zhang Q, He Y (2015a) Fine mapping and pyramiding of brown planthopper resistance genes qbph3 and qbph4 in an introgression line from wild rice o. officinalis. Mol Breeding 35(1):3

    Article  CAS  Google Scholar 

  • Hu J, Chang X, Zou L, Tang W, Wu W (2018) Identification and fine mapping of Bph33 a new brown planthopper resistance gene in rice (Oryza sativa L.). Rice (new York, n.y.) 11(1):55. https://doi.org/10.1186/s12284-018-0249-7

    Article  Google Scholar 

  • Hu J, Xiao C, He Y (2016) Recent progress on the genetics and molecular breeding of brown planthopper resistance in rice. Rice (new York, n.y.) 9(1):30. https://doi.org/10.1186/s12284-016-0099-0

    Article  Google Scholar 

  • Hu J, Xiao C, Cheng MX, Gao GJ, Zhang QL, He YQ (2015b) A new finely mapped Oryza australiensis-derived QTL in rice confers resistance to brown planthopper. Gene 561(1):132–137. https://doi.org/10.1016/j.gene.2015.02.026

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Qiu Y, Zhang Y, Huang F, Meng J, Wei S, Li R, Chen B (2013) Fine mapping and characterization of BPH27, a brown planthopper resistance gene from wild rice (Oryza rufipogon Griff.). TAG. Theoretical and applied genetics. Theoretische Und Angewandte Genetik 126(1):219–229. https://doi.org/10.1007/s00122-012-1975-7

    Article  CAS  PubMed  Google Scholar 

  • IRRI (1988) Standard evaluation system for rice resistance to brown planthopper. International Rice Research Institute, Manila

  • Ishii T, Brar DS, Multani DS, Khush GS (1994) Molecular tagging of genes for brown planthopper resistance and earliness introgressed from Oryza australiensis into cultivated rice O. sativa. Genome 37(2):217–221. https://doi.org/10.1139/g94-030

    Article  CAS  PubMed  Google Scholar 

  • Ji H, Kim SR, Kim YH, Suh JP, Park HM, Sreenivasulu N, Misra G, Kim SM, Hechanova SL, Kim H, Lee GS, Yoon UH, Kim TH, Lim H, Suh SC, Yang J, An G, Jena KK (2016) Map-based cloning and characterization of the BPH18 gene from wild rice conferring resistance to brown planthopper (BPH) insect pest. Sci Rep 6:34376

    Article  CAS  Google Scholar 

  • Jia Q, Wang J, Zhu J, Hua W, Shang Y, Yang J, Liang Z (2017) Toward identification of black lemma and pericarp gene Blp1 in barley combining bulked segregant analysis and specific-locus amplified fragment sequencing. Front Plant Sci 8:1414. https://doi.org/10.3389/fpls.2017.01414

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaminski KP, Kørup K, Andersen MN, Sønderkær M, Andersen MS, Kirk HG et al (2016) Next generation sequencing bulk segregant analysis of potato support that differential flux into the cholesterol and stigmasterol metabolite pools is important for steroidal glycoalkaloid content. Potato Res 59:81–97

    Article  CAS  Google Scholar 

  • Kamolsukyeunyong W, Ruengphayak S, Chumwong P, Kusumawati L, Chaichoompu E, Jamboonsri W, Saensuk C, Phoonsiri K, Toojinda T, Vanavichit A (2019) Identification of spontaneous mutation for broad-spectrum brown planthopper resistance in a large, long-term fast neutron mutagenized rice population. Rice (new York, n.y.) 12(1):16. https://doi.org/10.1186/s12284-019-0274-1

    Article  PubMed Central  Google Scholar 

  • Klein H, Xiao Y, Conklin PA, Govindarajulu R, Kelly JA, Scanlon MJ, Whipple CJ, Bartlett M (2018) Bulked-segregant analysis coupled to whole genome sequencing (BSA-Seq) for rapid gene cloning in Maize. G3 (bethesda, Md.) 8(11):3583–3592. https://doi.org/10.1534/g3.118.200499

    Article  CAS  Google Scholar 

  • Kumar K, Sarao PS, Bhatia D, Neelam K, Kaur A, Mangat GS, Brar DS, Singh K (2018) High-resolution genetic mapping of a novel brown planthopper resistance locus, Bph34 in Oryza sativa L. X Oryza nivara (Sharma & Shastry) derived interspecific F2 population. TAG. Theoretical and applied genetics. Theoretische Und Angewandte Genetik 131(5):1163–1171. https://doi.org/10.1007/s00122-018-3069-7

    Article  CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics (oxford, England) 25(14):1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  Google Scholar 

  • Li Z, Xue Y, Zhou H, Li Y, Usman B, Jiao X, Wang X, Liu F, Qin B, Li R, Qiu Y (2019) High-resolution mapping and breeding application of a novel brown planthopper resistance gene derived from wild rice (Oryza. rufipogon Griff). Rice (new York, n.y.) 12(1):41. https://doi.org/10.1186/s12284-019-0289-7

    Article  Google Scholar 

  • Liang T, Chi W, Huang L, Qu M, Zhang S, Chen ZQ, Chen ZJ, Tian D, Gui Y, Chen X, Wang Z, Tang W, Chen S (2020) Bulked segregant analysis coupled with whole-genome sequencing (BSA-Seq) mapping Identifies a novel pi21 haplotype conferring basal resistance to rice blast disease. Int J Mol Sci 21(6):2162. https://doi.org/10.3390/ijms21062162

    Article  CAS  PubMed Central  Google Scholar 

  • Liu GQ, Yan H, Fu Q, Qian Q, Zhang ZT, Zhai WX, Zhu LH (2001) Mapping of a new gene for brown planthopper resistance in cultivated rice introgressed from Oryza eichingeri. Chin Sci Bull 46:738–742

    Article  Google Scholar 

  • Liu Y, Wu H, Chen H, Liu Y, He J, Kang H, Sun Z, Pan G, Wang Q, Hu J, Zhou F, Zhou K, Zheng X, Ren Y, Chen L, Wang Y, Zhao Z, Lin Q, Wu F, Zhang X, Guo X, Cheng X, Jiang L, Wu C, Wang H, Wan J (2015) A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice. Nat Biotechnol 33(3):301–305. https://doi.org/10.1038/nbt.3069

    Article  CAS  PubMed  Google Scholar 

  • Lv W, Du B, Shangguan X, Zhao Y, Pan Y, Zhu L, He Y, He G (2014) BAC and RNA sequencing reveal the brown planthopper resistance gene BPH15 in a recombination cold spot that mediates a unique defense mechanism. BMC Genomics 15(1):674. https://doi.org/10.1186/1471-2164-15-674

    Article  PubMed  PubMed Central  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303

    Article  CAS  Google Scholar 

  • Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal 3:269–283

    Article  Google Scholar 

  • Mizuno H, Katagiri S, Kanamori H, Mukai Y, Sasaki T, Matsumoto T, Wu J (2020) Evolutionary dynamics and impacts of chromosome regions carrying R-gene clusters in rice. Sci Rep 10(1):872. https://doi.org/10.1038/s41598-020-57729-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanty SK, Panda RS, Mohapatra SL, Nanda A, Behera L, Jena M, Sahu RK, Sahu SC, Mohapatra T (2017) Identification of novel quantitative trait loci associated with brown planthopper resistance in the rice landrace Salkathi. Euphytica 213:38. https://doi.org/10.1007/s10681-017-1835-2

    Article  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4325. https://doi.org/10.1093/nar/8.19.4321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro-Escalante L, Zhao C, Shukle R, Stuart J (2020) BSA-Seq discovery and functional analysis of candidate hessian fly (Mayetiola destructor) avirulence genes. Front Plant Sci 11:956. https://doi.org/10.3389/fpls.2020.00956

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen KL, Grondin A, Courtois B, Gantet P (2019) Next-generation sequencing accelerates crop gene discovery. Trends Plant Sci 24(3):263–274. https://doi.org/10.1016/j.tplants.2018.11.008

    Article  CAS  PubMed  Google Scholar 

  • Normile D (2008) Agricultural research. Reinventing rice to feed the world. Sci (new York, n.y.) 321(5887):330–333. https://doi.org/10.1126/science.321.5887.330

    Article  CAS  Google Scholar 

  • Pandey MK, Khan AW, Singh VK, Vishwakarma MK, Shasidhar Y, Kumar V, Garg V, Bhat RS, Chitikineni A, Janila P, Guo B, Varshney RK (2017) QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnol J 15(8):927–941. https://doi.org/10.1111/pbi.12686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Y, Guo J, Jing S, Zhu L, He G (2012) Development and characterization of japonica rice lines carrying the brown planthopper-resistance genes BPH12 and BPH6. TAG. Theoretical and applied genetics. Theoretische Und Angewandte Genetik 124(3):485–494. https://doi.org/10.1007/s00122-011-1722-5

    Article  CAS  PubMed  Google Scholar 

  • Rahman ML, Jiang W, Chu SH, Qiao Y, Ham TH, Woo MO, Lee J, Khanam MS, Chin JH, Jeung JU, Brar DS, Jena KK, Koh HJ (2009) High-resolution mapping of two rice brown planthopper resistance genes, Bph20(t) and Bph21(t), originating from Oryza minuta. TAG. Theoretical and applied genetics. Theoretische Und Angewandte Genetik 119(7):1237–1246. https://doi.org/10.1007/s00122-009-1125-z

    Article  PubMed  Google Scholar 

  • Renganayaki K, Feitz AK, Sadasivam S, Pammi S, Harrington SE, McCouch SR, Kumar SM, Reddy AS (2002) Mapping and progress toward map-based cloning of brown planthopper biotype-4 resistance gene introgressed from Oryza officinalis into cultivated rice. O Sativa Crop Sci 42:2112–2117

    Article  CAS  Google Scholar 

  • Sharma PN, Ketipearachchi Y, Murata K, Torii A, Takumi S, Mori N, Nakamura C (2003) RFLP/AFLP mapping of a brown planthopper (Nilaparvata lugens Stål) resistance gene Bph1 in rice. Euphytica 129(1):109–117

    Article  CAS  Google Scholar 

  • Singh VK, Khan AW, Saxena RK, Sinha P, Kale SM, Parupalli S, Kumar V, Chitikineni A, Vechalapu S, Sameer Kumar CV, Sharma M, Ghanta A, Yamini KN, Muniswamy S, Varshney RK (2017) Indel-seq: a fast-forward genetics approach for identification of trait-associated putative candidate genomic regions and its application in pigeonpea (Cajanus cajan). Plant Biotechnol J 15(7):906–914. https://doi.org/10.1111/pbi.12685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Li Z, Liu Z, Guo Y, Qiu LJ (2017) Next-generation sequencing from bulked-segregant analysis accelerates the simultaneous identification of two qualitative genes in Soybean. Front Plant Sci 8:919. https://doi.org/10.3389/fpls.2017.00919

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun L, Su C, Wang C, Zhai HQ, Wan JM (2005) Mapping of a major resistance gene to brown planthopper in the rice cultivar Rathu Heenati. Breed Sci 55:391–396

    Article  CAS  Google Scholar 

  • Sun J, Yang L, Wang J, Liu H, Zheng H, Xie D, Zhang M, Feng M, Jia Y, Zhao H, Zou D (2018) Identification of a cold-tolerant locus in rice (Oryza sativa L.) using bulked segregant analysis with a next-generation sequencing strategy. Rice (new York, n.y.) 11(1):24. https://doi.org/10.1186/s12284-018-0218-1

    Article  Google Scholar 

  • Tao Y, Niu Y, Wang Y, Chen T, Naveed SA, Zhang J, Xu J, Li Z (2018) Genome-wide association mapping of aluminum toxicity tolerance and fine mapping of a candidate gene for Nrat1 in rice. PLoS ONE 13(6):e0198589. https://doi.org/10.1371/journal.pone.0198589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Shi S, Guo Q, Nie L, Du B, Chen R, Zhu L, He G (2018) Highresolution mapping of a gene conferring strong antibiosis to brown planthopper and developing resistant near-isogenic lines in 9311 background. Mol Breed 38:107

    Article  Google Scholar 

  • Wang Y, Cao L, Zhang Y, Cao C, Liu F, Huang F, Qiu Y, Li R, Lou X (2015) Map-based cloning and characterization of BPH29, a B3 domain-containing recessive gene conferring brown planthopper resistance in rice. J Exp Bot 66(19):6035–6045. https://doi.org/10.1093/jxb/erv318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Qiu J, Gao Q (2019) QTL-BSA: a bulked segregant analysis and visualization pipeline for QTL-seq. Interdiscip Sci Comput Life Sci 11(4):730–737. https://doi.org/10.1007/s12539-019-00344-9

    Article  CAS  Google Scholar 

  • Yang L, Li RB, Li YR, Huang FK, Chen YZ, Huang SS, Huang LF, Liu C, Ma ZF, Huang DH, Jiang JJ (2012) Genetic mapping of bph20(t) and bph21(t) loci conferring brown planthopper resistance to Nilaparvata lugens Stål in rice (Oryza sativa L.). Euphytica 183:161–171

    Article  CAS  Google Scholar 

  • Zhao H, Yin CC, Ma B, Chen SY, Zhang JS (2021) Ethylene signaling in rice and Arabidopsis: New regulators and mechanisms. J Integr Plant Biol 63(1):102–125. https://doi.org/10.1111/jipb.13028

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Qin G, Ma Q, Wei M, Yang X, Ma Z, Liang H, Liu C, Li Z, Liu F, Huang D, Li R (2020) Identification of major locus Bph35 resistance to brown planthopper in rice[J]. Rice Sci 27(03):237–247

    Article  Google Scholar 

  • Zheng X, Zhu L, He G (2020) Genetic and molecular understanding of host rice resistance and Nilaparvata lugens adaptation. Current Opinion Insect Sci 45:14–20. https://doi.org/10.1016/j.cois.2020.11.005

    Article  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (No. 31860416, No. 31460387) and the Science and Technology Project of Guangxi (No. GuikeAB16380093); Key projects of Guangxi Natural Science Foundation of China (Guangdong-Guangxi Joint Fund Project, No. 2021GXNSFDA075013).

Author information

Authors and Affiliations

Authors

Contributions

RL and JL designed and supervised the study. XW, YH, YZ, BD, BW, XG, YQ, YF, FL, and BQ performed the phenotypic data collection. XW analysed the data and drafted the manuscript. RL, JL and YZ revised and finalized the manuscript. All the authors read and approved the manuscript.

Corresponding authors

Correspondence to Ji-jing Luo or Rong-bai Li.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 288 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Han, Y., Zhang, Yx. et al. QTL mapping integrated with BSA-Seq analysis identifies a novel gene conferring resistance to brown planthopper from common wild rice (Oryza rufipogon Griff.). Euphytica 218, 34 (2022). https://doi.org/10.1007/s10681-021-02964-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-021-02964-z

Keywords

Navigation