Skip to main content
Log in

QTL mapping of yield-related traits in the wheat germplasm 3228

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The new wheat germplasm 3228, a putative derivative of tetraploid Agropyron cristatum Z559 and the common wheat Fukuhokomugi, has superior features in yield-related traits, particularly in spike morphological traits, such as large spike and superior grain number. To identify favorable alleles of these traits in 3228, 237 F2:3 families were developed from the cross 3228/Jing 4839. A genetic map was constructed using 179 polymorphic SSR and EST-SSR markers. A total of 76 QTL controlling spike number per plant (SNP), spike length (SL), spikelet number per spike (SNS), floret number per spikelet (FNS), grain number per spike (GNS) and thousand-grain weight (TGW) were detected on 16 chromosomes. Each QTL explained 1.24–27.01% of the phenotypic variation, and 9 QTL (28.95%) were detected in two or all environments. Additive effects of 45 QTL were positive with 3228 alleles increasing the QTL effects, 31 QTL had negative effects indicating positive contributions from Jing 4839. Three important clusters involving all traits were located on chromosomes 5A, 6A and 4B, and several co-located QTL were also found. Most of the QTL detected on the three chromosome regions could contribute to the use of 3228 in breeding for grain yield improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Austin DF, Lee M (1996) Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize. Theor Appl Genet 92:817–826

    Article  CAS  Google Scholar 

  • Börner A, Korzun V, Voylokov AV, Worland AJ, Weber WE (2000) Genetic mapping of quantitative trait loci in rye (Secale cereale L.). Euphytica 116:203–209

    Article  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936. doi:10.1007/s00122-002-0994-1

    Article  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2005) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 177:1165–1177. doi:10.1007/s10709-009-9351-5

    Article  Google Scholar 

  • Chen Q, Jahier J, Cauderon Y (1990) Intergeneric hybrids between Triticum aestivum and three crested wheatgrasses: Agropyron mongolicum, A. michnoi, A. desertorum. Genome 33:663–667

    Google Scholar 

  • Chen Q, Jahier J, Cauderon Y (1992) Production and cytogenetic analysis of BC1, BC2, and BC3 progenies of an intergeneric hybrid between Triticum aestivum (L.) Thell. and tetraploid Agropyron cristatum (L.) Gaertn. Theor Appl Genet 84:698–703

    Google Scholar 

  • Cuthbert JL, Somers DJ, Brûlé-Babel AL, Brown PD, Crow GH (2008) Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theor Appl Genet 117:595–608. doi:10.1007/s00122-008-0804-5

    Article  CAS  PubMed  Google Scholar 

  • Dellaport SL, Wood J, Hicks JB (1983) A plant DNA mini-preparation: version II. Plant Mol Biol Rep 1:19–21

    Article  Google Scholar 

  • Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP (ed) Gene manipulation in plant improvement, 16th stadler genetics symposium. Plenum Press, New York, pp 209–279

    Google Scholar 

  • Dholakia BB, Ammiraju JSS, Singh H, Lagu MD, Röder MS, Rao VS, Dhaliwal HS, Ranjekar PK, Gupta VS (2003) Molecular marker analysis of kernel size and shape in bread wheat. Plant Breed 122:392–395

    Article  CAS  Google Scholar 

  • Dong YS, Zhou RH, Xu SJ, Li LH, Cauderon Y, Wang RR-C (1992) Desirable characteristics in perennial Triticeae collected in China for wheat improvement. Hereditas 116:175–178

    Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032–1040. doi:10.1007/s00122-002-1111-1

    CAS  PubMed  Google Scholar 

  • He DH, Lin ZX, Zhang XL, Nie YC, Guo XP, Feng CD, Stewart JM (2005) Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton. Euphytica 144:141–149

    Article  CAS  Google Scholar 

  • Huang XQ, Cöster H, Ganal MW, Röder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389. doi:10.1007/s00122-002-1179-7

    CAS  PubMed  Google Scholar 

  • Huang XQ, Kempf H, Ganal MW, Röder MS (2004) Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet 109:933–943. doi:10.1007/s00122-004-1708-7

    Article  CAS  PubMed  Google Scholar 

  • Huang XQ, Cloutier SC, Lycar L, Radovanovic N, Humphreys DG, Noll JS, Somers DJ, Brown PD (2006) Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet 113:753–766. doi:10.1007/s00122-006-0346-7

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Miura H, Sawada S (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101:1114–1121. doi:10.1007/s001220051587

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kumar N, Kulwal PL, Balyan HS, Gupta PK (2007) QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol Breed 19:163–177. doi:10.1007/s11032-006-9056-8

    Article  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Li LH, Dong YS (1991) Hybridization between Triticum aestivum L. and Agropyron michnoi Roshev. 1. Production and cytogenetic study of F1 hybrids. Theor Appl Genet 81:312–316

    Article  Google Scholar 

  • Li LH, Dong YS (1993) A self-fertile trigeneric hybrid, Triticum aestivum × Agropyron michnoi × Secale cereale. Theor Appl Genet 87:361–368

    Article  Google Scholar 

  • Li LH, Dong YC, Zhou RH, Li XQ, Li P (1995) Cytogenetics and self-fertility of intergeneric hybrids between Triticum aestivum L. and Agropyron cristatum (L.) Gaertn. Acta Genet Sin 22:109–114

    Google Scholar 

  • Li LH, Li XQ, Li P, Dong YC, Zhao GS (1997) Establishment of wheat-Agropyron cristatum alien addition lines. I. Cytology of F3, F2BC1, BC4 and BC3F1 progenies. Acta Genet Sin 24:154–159

    CAS  Google Scholar 

  • Li LH, Yang XM, Zhou RH, Li XQ, Dong YC, Zhao H (1998) Establishment of wheat-Agropyron cristatum alien addition lines. II. Identification of alien chromosomes and analysis of development approaches. Acta Genet Sin 25:538–544

    Google Scholar 

  • Li HH, Ye GY, Wang JK (2007a) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374. doi:10.1534/genetics.106.066811

    Article  PubMed  Google Scholar 

  • Li SS, Jia JZ, Wei XY, Zhang XC, Li LZ, Chen HM, Fan YD, Sun HY, Zhao XH, Lei TD, Xu YF, Jiang FS, Wang HG, Li LH (2007b) A intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed 20:167–178. doi:10.1007/s11032-007-9080-3

    Article  Google Scholar 

  • Li YL, Dong YB, Niu SZ, Cui DQ, Wang YZ, Liu YY, Wei MG, Li XH (2007c) Identification of agronomically favorable quantitative trait loci alleles from a dent corn inbred Dan232 using advanced backcross QTL analysis and comparison with the F2:3 population in popcorn. Mol Breed. doi:10.1007/s11032-007-9104-z

  • Luan Y, Wang XG, Liu WH, Li CY, Zhang JP, Gao AN, Wang YD, Yang XM, Li LH (2010) Production and identification of wheat-Agropyron cristatum 6P translocation lines. Planta. doi:10.1007/s00425-010-1187-9

  • Marsan PA, Gorni C, Chittò A, Redaelli R, Vijk R, Stam P, Motto M (2001) Identification of QTLs for grain yield and grain-related traits of maize (Zea mays L.) using an AFLP map, different testers, and cofactor analysis. Theor Appl Genet 102:230–243

    Article  CAS  Google Scholar 

  • Marza F, Bai G-H, Carver BF, Zhou W-C (2006) Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark. Theor Appl Genet 112:688–698

    Article  CAS  PubMed  Google Scholar 

  • McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames N, Noll J, Cloutier S, McCallum BD (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’. Genome 48:870–883

    CAS  PubMed  Google Scholar 

  • McIntyre CL, Mathews KL, Rattey A, Chapman SC, Drenth J, Ghaderi M, Reynolds M, Shorter R (2010) Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theor Appl Genet 120:527–541. doi:10.1007/s00122-009-1173-4

    Article  CAS  PubMed  Google Scholar 

  • Narasimhamoorthy B, Gill BS, Fritz AK, Nelson JC, Brown-Guedira GL (2006) Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet 112:787–796. doi:10.1007/s00122-005-0159-0

    Article  CAS  PubMed  Google Scholar 

  • Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr G (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet 107:1235–1242

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Ronin Y, Fahima T, Röder MS, Li Y, Nevo E, Korol A (2003) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci 100:2489–2494. doi:10.1073/pnas.252763199

    Article  CAS  PubMed  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Lebreton C, Semikhidskii A, Chinoy C, Steele N (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880. doi:10.1007/s00122-004-1902-7

    Article  CAS  PubMed  Google Scholar 

  • Ribaut JM, Jiang C, Gonzalez-de-Leon D, Edmeades GO, Hoisington DA (1997) Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor Appl Genet 94:887–896

    Article  Google Scholar 

  • Röder MS, Korzun V, Gill BS, Ganal MW (1998a) The physical mapping of microsatellite markers in wheat. Genome 41:278–283

    Article  Google Scholar 

  • Röder MS, Korzun V, Wandehake K, Planschke J, Tixier MH, Leroy P, Ganal MW (1998b) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Shah MM, Gill KS, Baenziger PS, Yen Y, Kaeppler SM, Ariyarathne HM (1999) Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci 39:1728–1732

    Article  CAS  Google Scholar 

  • Snape JW, Butterworth K, Whitechurch E, Worland AJ (2001) Waiting for fine times: genetics of flowering time in wheat. Euphytica 119:185–190

    Article  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114. doi:10.1007/s00122-004-1740-7

    Article  CAS  PubMed  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    CAS  PubMed  Google Scholar 

  • Sun XY, Wu K, Zhao Y, Kong FM, Han GZ, Jiang HM, Huang XJ, Li RJ, Wang HG, Li SS (2009) QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica 165:615–624. doi:10.1007/s10681-008-9794-2

    Article  CAS  Google Scholar 

  • Tsilo TJ, Hareland GA, Simsek S, Chao S, Anderson JA (2010) Genome mapping of kernel characteristics in hard red spring wheat breeding lines. Theor Appl Genet. doi:10.1007/s00122-010-1343-4

  • Wang JK (2009) Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin 35:239–245

    Article  CAS  Google Scholar 

  • Wang RX, Hai L, Zhang XY, You GX, Yan CS, Xiao SH (2009) QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679. Theor Appl Genet 118:313–325. doi:10.1007/s00122-008-0901-5

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Yang XM, Wang H, Li HJ, Li LH, Li XQ, Liu WH (2006) The introgression of chromosome 6P specifying for increased numbers of florets and kernels from Agropyron cristatum into wheat. Theor Appl Genet 114:13–20. doi:10.1007/s00122-006-0405-0

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Li H, Li Z, Wang JK (2008) Interactions between markers can be caused by the dominance effect of QTL. Genetics 180:1177–1190. doi:10.1534/genetics.108.092122

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support provided by the 973 project of China (Grant No. 2006CB101700), the National High-technology Research and Development Program (Grant No. 2006AA10Z174) and the National Key Technology Research and Development Program (Grant No. 2006BAD13B02) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihui Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Liu, W., Wang, H. et al. QTL mapping of yield-related traits in the wheat germplasm 3228. Euphytica 177, 277–292 (2011). https://doi.org/10.1007/s10681-010-0267-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-010-0267-z

Keywords

Navigation