Skip to main content
Log in

Evolutionary engineering by genome shuffling

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An upsurge in the bioeconomy drives the need for engineering microorganisms with increasingly complex phenotypes. Gains in productivity of industrial microbes depend on the development of improved strains. Classical strain improvement programmes for the generation, screening and isolation of such mutant strains have existed for several decades. An alternative to traditional strain improvement methods, genome shuffling, allows the directed evolution of whole organisms via recursive recombination at the genome level. This review deals chiefly with the technical aspects of genome shuffling. It first presents the diversity of organisms and phenotypes typically evolved using this technology and then reviews available sources of genetic diversity and recombination methodologies. Analysis of the literature reveals that genome shuffling has so far been restricted to microorganisms, both prokaryotes and eukaryotes, with an overepresentation of antibiotics- and biofuel-producing microbes. Mutagenesis is the main source of genetic diversity, with few studies adopting alternative strategies. Recombination is usually done by protoplast fusion or sexual recombination, again with few exceptions. For both diversity and recombination, prospective methods that have not yet been used are also presented. Finally, the potential of genome shuffling for gaining insight into the genetic basis of complex phenotypes is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bajwa PK, Pinel D, Martin VJ, Trevors JT, Lee H (2010) Strain improvement of the pentose-fermenting yeast Pichia stipitis by genome shuffling. J Microbiol Methods 81:179–186

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Hou L, Lu M, Wang C, Zeng B (2010) Genome shuffling of Zygosaccharomyces rouxii to accelerate and enhance the flavour formation of soy sauce. J Sci Food Agric 90:281–285

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Song Q, Wang C, Hou L (2012) Genome shuffling of Hansenula anomala to improve flavour formation of soy sauce. World J Microbiol Biotechnol 28:1857–62

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Wei P, Fan L, Yang D, Zhu X, Shen W, Xu Z, Cen P (2009) Generation of high-yield rapamycin-producing strains through protoplasts-related techniques. Appl Microbiol Biotechnol 83:507–512

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Song X, Qin Y, Qu Y (2009) Genome shuffling improves production of cellulase by Penicillium decumbens JU-A10. J Appl Microbiol 107:1837–1846

    Article  PubMed  CAS  Google Scholar 

  • Clermont N, Lerat S, Beaulieu C (2011) Genome shuffling enhances biocontrol abilities of Streptomyces strains against two potato pathogens. J Appl Microbiol 111:671–682

    Article  PubMed  CAS  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–23

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Crook N, Alper HS (2013) Classical strain improvement. In: Patnaik R (ed) Engineering complex phenotypes in industrial strains. Wiley, Hoboken, pp 1–33

    Google Scholar 

  • Cupples CG, Miller JH (1989) A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc Natl Acad Sci U S A 86:5345–9

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dai M, Copley SDC-P (2004) Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Appl Env Microbiol 70:2391–2397

    Article  CAS  Google Scholar 

  • Dai M, Ziesman S, Copley SD (2005) Visualization of protoplast fusion and quantitation of recombination in fused protoplasts of auxotrophic strains of Escherichia coli. Metab Eng 7:45–52

    Article  PubMed  CAS  Google Scholar 

  • delCardayre S, Tobin MB, Stemmer WPC, Ness JE, Minshull JS, Patten PA, Subramanian VM, Castle LA, Krebber CM, Bass SH, Zhang Y-X, Cox AR, Huisman GW, Yuan L, Affholter J (2013) Evolution of whole cells and organisms by recursive sequence recombination. USPTO 8377681B2.

  • Demeke MM, Dietz H, Li Y, Foulquié-Moreno MR, Mutturi S, Deprez S, Den Abt T, Bonini BM, Liden G, Dumortier F, Verplaetse A, Boles E, Thevelein JM (2013) Development of a d-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels 6:89

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • El-Bondkly AMA (2012) Molecular identification using ITS sequences and genome shuffling to improve 2-deoxyglucose tolerance and xylanase activity of marine-derived fungus, Aspergillus sp. NRCF5. Appl Biochem Biotechnol 167:2160–73

    Article  PubMed  CAS  Google Scholar 

  • El-Gendy MM, El-Bondkly AM (2011) Genome shuffling of marine derived bacterium Nocardia sp. ALAA 2000 for improved ayamycin production. Antonie Van Leeuwenhoek 99:773–780

    Article  PubMed  CAS  Google Scholar 

  • Fodor K, Demiri E, Alföldi L (1978) Polyethylene glycol-induced fusion of heat-inactivated and living protoplasts of Bacillus megaterium. J Bacteriol 135:68–70

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gao X, Zhao H, Zhang G, He K, Jin Y (2012) Genome shuffling of Clostridium acetobutylicum CICC 8012 for improved production of acetone-butanol-ethanol (ABE). Curr Microbiol 65:128–32

    Article  PubMed  CAS  Google Scholar 

  • Gong GL, Sun X, Liu XL, Hu W, Cao WR, Liu H, Liu WF, Li YZ (2007) Mutation and a high-throughput screening method for improving the production of epothilones of Sorangium. J Ind Microbiol Biotechnol 34:615–623

    Article  PubMed  CAS  Google Scholar 

  • Guan N, Liu L, Zhuge X, Xu Q, Li J, Du G, Chen J (2012) Genome shuffling improves acid tolerance of Propionibacterium acidipropionici and propionic acid production. In: Taylor JC (ed) Advances in chemistry research, vol 15. Nova, New York, pp 143–152

  • Hamer L, DeZwaan TM, Motenegro-Chamoro MV, Frank SA, Hamer JE (2001) Recent advances in large-scale transposon mutagenesis. Curr Opin Chem Biol 5:67–73

    Article  PubMed  CAS  Google Scholar 

  • Hampsey M (1991) A tester system for detecting each of the six base-pair substitutions in Saccharomyces cerevisiae by selecting for an essential cysteine in iso-1-cytochrome-c. Genetics 128(1):59–67

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hida H, Yamada T, Yamada Y (2007) Genome shuffling of Streptomyces sp. U121 for improved production of hydroxycitric acid. Appl Microbiol Biotechnol 73:1387–1393

    Article  PubMed  CAS  Google Scholar 

  • Hopwood DA (1970) The isolation of mutants. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 3A. Academic, London, pp 363–433

    Google Scholar 

  • Hopwood DA, Wright HM (1978) Bacterial protoplast fusion: recombination in fused protoplasts of Streptomyces coelicolor. Mol Gen Genet 162:307–317

    Article  PubMed  CAS  Google Scholar 

  • Hou L (2010) Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Appl Biochem Biotechnol 160:1084–1093

    Article  PubMed  CAS  Google Scholar 

  • Jin ZH, Xu B, Lin SZ, Jin QC, Cen PL (2009) Enhanced production of spinosad in Saccharopolyspora spinosa by genome shuffling. Appl Biochem Biotechnol 159:655–663

    Article  PubMed  CAS  Google Scholar 

  • Jin Q, Jin Z, Zhang L, Yao S, Li F (2012) Probing the molecular mechanisms for pristinamycin yield enhancement in Streptomyces pristinaespiralis. Curr Microbiol 65:792–8

    Article  PubMed  CAS  Google Scholar 

  • Jingping G, Hongbing S, Gang S, Hongzhi L, Wenxiang P (2012) A genome shuffling-generated Saccharomyces cerevisiae isolate that ferments xylose and glucose to produce high levels of ethanol. J Ind Microbiol Biotechnol 39:777–87

    Article  PubMed  CAS  Google Scholar 

  • John RP, Gangadharan D, Madhavan Nampoothiri K (2008) Genome shuffling of Lactobacillus delbrueckii mutant and Bacillus amyloliquefaciens through protoplasmic fusion for L-lactic acid production from starchy wastes. Bioresour Technol 99:8008–15

    Article  PubMed  CAS  Google Scholar 

  • Lanza A, Alper H (2012) Using transcription machinery engineering to elicit complex cellular phenotypes. Methods Mol Biol 813:229–248

    Article  PubMed  CAS  Google Scholar 

  • Lee BU, Cho YS, Park SC, Oh KH (2009) Enhanced degradation of TNT by genome-shuffled Stenotrophomonas maltophilia OK-5. Curr Microbiol 59:346–351

    Article  PubMed  CAS  Google Scholar 

  • Li WFF, Ji J, Wang G, Wang HYY, Niu BLL, Josine TLL (2011) Oxidative stress-resistance assay for screening yeast strains overproducing heterologous proteins. Genetika 47:1175–1183

    PubMed  CAS  Google Scholar 

  • Li S, Li F, Chen X-S, Wang L, Xu J, Tang L, Mao Z-G (2012) Genome shuffling enhanced ε-poly-L-lysine production by improving glucose tolerance of Streptomyces graminearus. Appl Biochem Biotechnol 166:414–23

    Article  PubMed  CAS  Google Scholar 

  • Li S, Chen X, Dong C, Zhao F, Tang L, Mao Z (2013a) Combining genome shuffling and interspecific hybridization among Streptomyces improved ε-poly-l-lysine production. Appl Biochem Biotechnol 169:338–50

    Article  PubMed  CAS  Google Scholar 

  • Li W, Chen G, Gu L, Zeng W, Liang Z (2013b) Genome shuffling of Aspergillus niger for improving transglycosylation activity. Appl Biochem Biotechnol 172(1):50–61

    Google Scholar 

  • Link AJ, Jeong KJ, Georgiou G (2007) Beyond toothpicks: new methods for isolating mutant bacteria. Nat Rev Microbiol 5:680–8

    Article  PubMed  CAS  Google Scholar 

  • Liu J-J, Ding W-T, Zhang G-C, Wang J-Y (2011) Improving ethanol fermentation performance of Saccharomyces cerevisiae in very high-gravity fermentation through chemical mutagenesis and meiotic recombination. Appl Microbiol Biotechnol 91:1239–46

    Article  PubMed  CAS  Google Scholar 

  • Luo J-M, Li J-S, Liu D, Liu F, Wang Y-T, Song X-R, Wang M (2012) Genome shuffling of Streptomyces gilvosporeus for improving natamycin production. J Agric Food Chem 60(23):6026–36

    Article  PubMed  CAS  Google Scholar 

  • Lv X-A, Jin Y-Y, Li Y-D, Zhang H, Liang X-L (2012) Genome shuffling of Streptomyces viridochromogenes for improved production of avilamycin. Appl Microbiol Biotechnol 97(2):641–8

    Article  PubMed  CAS  Google Scholar 

  • Mao EF, Lane L, Lee J, Miller JH, Mao EF, Lane L, Lee J, Miller JH (1997) Proliferation of mutators in A cell population. J Bacteriol 179(2):417–22

    PubMed Central  PubMed  CAS  Google Scholar 

  • Miller JH (1996) Spontaneous mutators in bacteria: insights into pathways of mutagenesis and repair. Annu Rev Microbiol 50:625–43

    Article  PubMed  CAS  Google Scholar 

  • Muteeb G, Sen R (2010) Random mutagenesis using a mutator strain. Methods Mol Biol 634:411–419

    Article  PubMed  CAS  Google Scholar 

  • Otte B, Grunwaldt E, Mahmoud O, Jennewein SC-P (2009) Genome shuffling in Clostridium diolis DSM 15410 for improved 1,3-propanediol production. Appl Env Microbiol 75:7610–7616

    Article  CAS  Google Scholar 

  • Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WP, Ryan CM, del Cardayré S (2002) GS of Lactobacillus for improved acid tolerance. Nat Biotechnol 20:707–712

    Article  PubMed  CAS  Google Scholar 

  • Pinel D, D'Aoust F, del Cardayre SB, Bajwa PK, Lee H, Martin VJJC-P (2011) Saccharomyces cerevisiae genome shuffling through recursive population mating leads to improved tolerance to spent sulfite liquor. Appl Env Microbiol 77:4736–4743

    Article  CAS  Google Scholar 

  • Pirakitikulr N, Ostrov N, Peralta-Yahya P, Cornish VW (2010) PCRless library mutagenesis via oligonucleotide recombination in yeast. Protein Sci 19:2336–46

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Radding C (1989) Helical RecA nucleoprotein filaments mediate homologous pairing and strand exchange. Biochim Biophys Acta 1008:131–145

    Article  PubMed  CAS  Google Scholar 

  • Révet B, Sena E, Zarling D (1993) Homologous DNA targeting with RecA protein-coated short DNA probes and electron microscope mapping on linear duplex molecules. J Mol Biol 232:779–791

    Article  PubMed  Google Scholar 

  • Sena E, Zarling D (1993) Targeting in linear DNA duplexes with two complementary probe strands for hybrid stability. Nat Genet 3:365–372

    Article  PubMed  CAS  Google Scholar 

  • Setlow RB (1966) Cyclobutane-type pyrimidine dimers in polynucleotides. Science 153:379–86

    Article  PubMed  CAS  Google Scholar 

  • Shi D, Wang C, Wang K (2009) Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 36:139–47

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Zhang M, Zhang L, Wang P, Jiang L, Deng H (2014) Xylose-fermenting Pichia stipitis by genome shuffling for improved ethanol production. Microb Biotechnol. doi:10.1111/1751-7915.12092

    PubMed Central  PubMed  Google Scholar 

  • Singer B (1981) Mutagenesis from a chemical perspective: nucleic acid reactions, repair, translation, and transcription. In: Lemontt J, Generoso W (eds) Molecular and cellular mechanisms of mutagenesis. Plenum, New York, pp 1–42

    Google Scholar 

  • Spencer J, Spencer D (1996) Mutagenesis in yeast. Methods Mol Biol 53:17–38

    PubMed  CAS  Google Scholar 

  • Tao X, Zheng D, Liu T, Wang P, Zhao W, Zhu M, Jiang X, Zhao Y, Wu X (2012) A novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation. PLoS One 7(2):e31235

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tobin M, Stemmer WPC, Ness JE, Minshull JS (2001) Evolution of whole cells and organisms by recursive sequence recombination. USPTO 6251674B1.

  • Wang ZG, Wu XH, Friedberg EC (1991) Nucleotide excision repair of DNA by human cell extracts is suppressed in reconstituted nucleosomes. J Biol Chem 266:22472–8

    PubMed  CAS  Google Scholar 

  • Wang Y, Li Y, Pei X, Yu L, Feng Y (2007) Genome-shuffling improved acid tolerance and l-lactic acid volumetric productivity in Lactobacillus rhamnosus. J Biotechnol 129:510–515

    Article  PubMed  CAS  Google Scholar 

  • Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–8

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Liu S, Li Y, Xu R, Lu C, Shen Y (2010) Protoplast mutation and genome shuffling induce the endophytic fungus Tubercularia sp. TF5 to produce new compounds. Curr Microbiol 61:254–260

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Zhang J, Wang X, Qi W, Dai Y (2012a) Genome shuffling improves production of the low-temperature alkalophilic lipase by Acinetobacter johnsonii. Biotechnol Lett 34:145–51. doi:10.1007/s10529-011-0749-7

    Article  PubMed  CAS  Google Scholar 

  • Wang P-M, Zheng D-Q, Liu T-Z, Tao X-L, Feng M-G, Min H, Jiang X-H, Wu X-C (2012b) The combination of glycerol metabolic engineering and drug resistance marker-aided genome shuffling to improve very-high-gravity fermentation performances of industrial Saccharomyces cerevisiae. Bioresour Technol 108:203–10

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Wu G, Li Y, Huang Y, Zhang F, Liang X (2013) Genome shuffling of Penicillium citrinum for enhanced production of nuclease P1. Appl Biochem Biotechnol 170:1533–45

    Article  PubMed  CAS  Google Scholar 

  • Wei P, Li Z, He P, Lin Y, Jiang N (2008) Genome shuffling in the ethanologenic yeast Candida krusei to improve acetic acid tolerance. Biotechnol Appl Biochem 49:113–120

    Article  PubMed  CAS  Google Scholar 

  • Wei Y, Wang C, Wang M, Cao X, Houa L (2013) Comparative analysis of salt-tolerant gene HOG1 in a Zygosaccharomyces rouxii mutant strain and its parent strain. J Sci Food Agric. doi:10.1002/jsfa.6096

    Google Scholar 

  • Winston F (2008) EMS and UV mutagenesis in yeast. Curr Protoc Mol Biol Chapter 13:Unit 13.3B. doi: 10.1002/0471142727.mb1303bs82

  • Xu B, Jin Z, Wang H, Jin Q, Jin X, Cen P (2008) Evolution of Streptomyces pristinaespiralis for resistance and production of pristinamycin by genome shuffling. Appl Microbiol Biotechnol 80:261–267

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Wang J, Chen S, Qin W, Yu Z, Zhao H, Xing X, Li H (2011) Strain improvement for enhanced production of cellulase in Trichoderma viride. Prikl Biokhim Mikrobiol 47:61–65

    PubMed  CAS  Google Scholar 

  • Yu L, Pei X, Lei T, Wang Y, Feng Y (2008) Genome shuffling enhanced l-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. J Biotechnol 134:154–159

    Article  PubMed  CAS  Google Scholar 

  • Yu G, Hu Y, Chen L, Wang L, Liu N, Yin Y, Zhao J (2014) Genome shuffling of Streptomyces roseosporus for improving daptomycin production. Appl Biochem Biotechnol. doi:10.1007/s12010-013-0687-z

  • Zhang W, Geng A (2012) Improved ethanol production by a xylose-fermenting recombinant yeast strain constructed through a modified genome shuffling method. Biotechnol Biofuels 5(1):46

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang Y-XX, Perry K, Vinci VA, Powell K, Stemmer WPC, del Cardayré SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644–6

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Liu J-Z, Huang J-S, Mao Z-W (2010) Genome shuffling of Propionibacterium shermanii for improving vitamin B12 production and comparative proteome analysis. J Biotechnol 148:139–43

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Wang X, Diao J, He H, Zhang Y, Xiang W (2013) Streptomycin resistance-aided genome shuffling to improve doramectin productivity of Streptomyces avermitilis NEAU1069. J Ind Microbiol Biotechnol 40:877–89

    Article  PubMed  CAS  Google Scholar 

  • Zhao K, Ping W, Zhang L, Liu J, Lin Y, Jin T, Zhou D (2008) Screening and breeding of high taxol producing fungi by genome shuffling. Sci China C Life Sci 51:222–231

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Li Y, Zhang C, Yao Z, Zhang L, Bie X, Lu F, Lu Z (2012) Genome shuffling of Bacillus amyloliquefaciens for improving antimicrobial lipopeptide production and an analysis of relative gene expression using FQ RT-PCR. J Ind Microbiol Biotechnol 39:889–96

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, Gong J, Chen T, Chen X, Zhao X (2010) Strain improvement of Sporolactobacillus inulinus ATCC 15538 for acid tolerance and production of d-lactic acid by genome shuffling. Appl Microbiol Biotechnol 85:1541–1549

    Article  PubMed  CAS  Google Scholar 

  • Zheng D-Q, Wu X-C, Tao X-L, Wang P-M, Li P, Chi X-Q, Li Y-D, Yan Q-F, Zhao Y-H (2011a) Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresour Technol 102:3020–7

    Article  PubMed  CAS  Google Scholar 

  • Zheng DQ, Wu XC, Wang PM, Chi XQ, Tao XL, Li P, Jiang XH, Zhao YH (2011b) Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 38:415–422

    Article  PubMed  CAS  Google Scholar 

  • Zheng P, Liu M, Liu X, Du Q-Y, Ni Y, Sun Z-H (2012) Genome shuffling improves thermotolerance and glutamic acid production of Corynebacteria glutamicum. World J Microbiol Biotechnol 28:1035–43

    Article  PubMed  CAS  Google Scholar 

  • Zheng D-Q, Chen J, Zhang K, Gao K-H, Li O, Wang P-M, Zhang X-Y, Du F-G, Sun P-Y, Qu A-M, Wu S, Wu X-C (2013a) Genomic structural variations contribute to trait improvement during whole-genome shuffling of yeast. Appl Microbiol Biotechnol. doi:10.1007/s00253-013-5423-7

    Google Scholar 

  • Zheng P, Zhang K, Yan Q, Xu Y, Sun Z (2013b) Enhanced succinic acid production by Actinobacillus succinogenes after genome shuffling. J Ind Microbiol Biotechnol 40:831–40

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent J. J. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biot-Pelletier, D., Martin, V.J.J. Evolutionary engineering by genome shuffling. Appl Microbiol Biotechnol 98, 3877–3887 (2014). https://doi.org/10.1007/s00253-014-5616-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5616-8

Keywords

Navigation