Skip to main content
Log in

A genome shuffling-generated Saccharomyces cerevisiae isolate that ferments xylose and glucose to produce high levels of ethanol

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Genome shuffling is an efficient approach for the rapid improvement of industrially important microbial phenotypes. This report describes optimized conditions for protoplast preparation, regeneration, inactivation, and fusion using the Saccharomyces cerevisiae W5 strain. Ethanol production was confirmed by TTC (triphenyl tetrazolium chloride) screening and high-performance liquid chromatography (HPLC). A genetically stable, high ethanol-producing strain that fermented xylose and glucose was obtained following three rounds of genome shuffling. After fermentation for 84 h, the high ethanol-producing S. cerevisiae GS3-10 strain (which utilized 69.48 and 100% of the xylose and glucose stores, respectively) produced 26.65 g/L ethanol, i.e., 47.08% higher than ethanol production by S. cerevisiae W5 (18.12 g/L). The utilization ratios of xylose and glucose were 69.48 and 100%, compared to 14.83 and 100% for W5, respectively. The ethanol yield was 0.40 g/g (ethanol/consumed glucose and xylose), i.e., 17.65% higher than the yield by S. cerevisiae W5 (0.34 g/g).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bettiga M, Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF (2009) Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microb Cell Fact 8:40

    Article  PubMed  Google Scholar 

  2. Chu BC, Lee H (2007) Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 25:425–441

    Article  PubMed  CAS  Google Scholar 

  3. Dong JS, Wang CL, Wang KM (2009) Genome shuffling to improve thermo-tolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 36:139–147

    Article  Google Scholar 

  4. Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in minimal medium chemostat cultures. Appl Environ Microbiol 66:3381–3386

    Article  PubMed  CAS  Google Scholar 

  5. Ge JP, Cao XS, Song G, Ling HZ, Ping WX (2010) Construction of integrative vector for xylulokinase gene and its overexpression in Saccharomyces cerevisiae. Acta Microbiologica Sinica 50:762–767

    PubMed  CAS  Google Scholar 

  6. Gong GL, Wang CL, Chen MH, Chen ZQ, Wang YR (2008) Genome shuffling to improve the ethanol production of Saccharomyces cerevisiae. J Biotechnol 136:S311–S312

    Article  Google Scholar 

  7. Gong JX, Zheng HJ, Wu ZJ, Chen T, Zhao XM (2009) Genome shuffling: progress and applications for phenotype improvement. Biotechnol Adv 27:996–1005

    Article  PubMed  Google Scholar 

  8. Grotkjaer T, Christakopoulos P, Nielsen J, Olsson L (2005) Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains. Metab Eng 7:437–444

    Article  PubMed  CAS  Google Scholar 

  9. Hamacher T, Becker J, Gárdonyi M, Hahn-Hägerdal B, Boles E (2002) Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148:2783–2788

    PubMed  CAS  Google Scholar 

  10. Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A (2011) Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb Cell Fact 10:2

    Article  PubMed  CAS  Google Scholar 

  11. Hou J, Vemur G, Bao XM, Olsson L (2009) Impact of overexpressing NADH kinase on glucose and xylose metabolism of recombinan xylose-utilizing Saccharomyces cerevisiae. Appl Microbiol Biotech 82:909–919

    Article  CAS  Google Scholar 

  12. Hou LH (2009) Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Appl Biochem Biotechnol 160:1084–1093

    Article  PubMed  Google Scholar 

  13. Jin ZH, Xu B, Lin SZ, Jin QC, Cen PL (2009) Enhanced production of spinosad in Saccharopolyspora spinosa by genome shuffling. Appl Biochem Biotechnol 159:655–663

    Article  PubMed  CAS  Google Scholar 

  14. Karhumaa K, Sanchez RG, Arcia SR, Hahn-Hägerdal B, Gorwa-Grauslund MF (2007) Comparison of the xylose reductase-xylitol dehydrogenase and thexylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Fact 6:5

    Article  PubMed  Google Scholar 

  15. Katahira S, Ito M, Takema H (2008) Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1. Enzyme Microb Technol 43:115–119

    Article  CAS  Google Scholar 

  16. Katahira S, Mizuike A, Fukuda H, Kondo A (2006) Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 72:1136–1143

    Article  PubMed  CAS  Google Scholar 

  17. Li J, Li F, Liu CG, Ren JG, Zhao XQ, Ge XM, Bai FW (2009) Breeding of yeast fusant for efficient ethanol fermentation from xylose. Chin Biotechnol 29:74–78

    Google Scholar 

  18. Luo X, Ge JP, Ping WX (2009) Cloning and sequence analysis of the xylitol dehydrogenase gene (xyl2) from Candida shehatae. Chin J Bioinform 3:240–242

    Google Scholar 

  19. Matsushika A, Oguri E, Sawayama S (2010) Evolutionary adaptation of recombinant shochu yeast for improved xylose utilization. J Biosci Bioeng 110:102–105

    Article  PubMed  CAS  Google Scholar 

  20. Olofsson K, Rudolf A, Lidén G (2008) Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae. J Biotechnol 134:112–120

    Article  PubMed  CAS  Google Scholar 

  21. Patnaik R, Louie S, Gavrilovic V, Satoshi K, Meguru I, Hisae T, Perry K, Stemmer WP, Ryan CM, del Cardayré S (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20:707–712

    Article  PubMed  CAS  Google Scholar 

  22. Sun HB, Song G, Ping WX, Ge JP (2010) Research on protoplast preparation and regeneration of Saccharomyces cerevisiae W5. J Heilongjiang Univ (Nat Sci) 27:386–390

    CAS  Google Scholar 

  23. Sun HB, Song G, Ping WX, Ge JP (2010) The applications of genome shuffling in strain seed breeding of Saccharomyces cerevisiae. J Microbiol 30:68–71

    CAS  Google Scholar 

  24. Wang YH, Li Y, Pei XL, Yu L, Feng Y (2007) Genome shuffling improved acid tolerance and l-lactic acid volumetric productivity in Lactobacillus rhamnosus. J Biotechnol 129:510–515

    Article  PubMed  CAS  Google Scholar 

  25. Yu L, Pei XL, Lei T, Wang YH, Feng Y (2008) Genome shuffling enhanced l-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. J Biotechnol 134:154–159

    Article  PubMed  CAS  Google Scholar 

  26. Zhang LY (2008) Screening and molecular biological modification of yeast strains for ethanol production from xylose. Dissertation, Jiangnan University

  27. Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WP, del Cardayré SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644–646

    Article  PubMed  CAS  Google Scholar 

  28. Zhao K, Ping WX, Zhang LN, Liu J, Lin Y, Jin T, Zhou DP (2008) Screening and breeding of high taxol producing fungi by genome shuffling. Scientia Sinica Vitae 51:222–231

    CAS  Google Scholar 

  29. Zheng ZB, Zhao XM (2008) Astaxanthin-producing strain breeding by genome shuffling. J Biotechnol 136S:S310–S311

    Article  Google Scholar 

  30. Zhou DP, Ping WX (2010) Microbial protoplast fusion and genome shuffling. China Science and Technology, Beijing

    Google Scholar 

Download references

Acknowledgments

The research was supported by High-level Talents (innovation team) Projects of Heilongjiang University of China (No. Hdtd2010-17); Educational Commission of Heilongjiang Province of China (No. 11551z011); The Special Fund for Scientific and Technological Innovative Talents in Harbin, China (No. RC2010XK002028); The National Natural Science Foundation of China (Grant No. 31070446); and National High Technology Research and Development Program of China (863 Program) (No. 2007AA 100702-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wenxiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jingping, G., Hongbing, S., Gang, S. et al. A genome shuffling-generated Saccharomyces cerevisiae isolate that ferments xylose and glucose to produce high levels of ethanol. J Ind Microbiol Biotechnol 39, 777–787 (2012). https://doi.org/10.1007/s10295-011-1076-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-1076-7

Keywords

Navigation